1. Characteristic X-ray absorptiometry applied to the assessment of tissue-engineered cartilage development.
- Author
-
Masaki Misawa, Naotaka Nitta, Yoshio Shirasaki, Kazuhiko Hayashi, Ryo Kosaka, Koji Hyodo, Tomokazu Numano, Kazuhiro Homma, Shota Kuribayashi, Yuko Fujihara, and Kazuto Hoshi
- Subjects
X-ray absorption ,TISSUE engineering ,CARTILAGE ,CHONDROGENESIS ,ATTENUATION coefficients - Abstract
BACKGROUND: Transmission and tomographic X-ray measurements are useful in assessing bone structures, but only a few studies have examined cartilage growth because of the poor contrast in conventional X-ray imaging. OBJECTIVE: In this study, we attempted to use the linear attenuation coefficient (LAC) as a metric of tissue-engineered cartilage development, which would be useful in high-throughput screening of cartilage products. METHODS: Assuming that the LAC is related to the amount of extracellular matrix (ECM) in terms of the density and its atomic components, we measured X-ray absorption through tissue-engineered cartilage constructs. Characteristic X-ray beams from a molybdenum microfocus X-ray tube were employed to avoid beam hardening. The correlation of the LAC with mechanical properties was analyzed for verification. RESULTS: The LAC was higher for chondrocyte constructs and lower for fibroblast-dominant constructs and was consistent with the quantification of toluidine blue staining, which is a proof of ECM production. The LAC was positively correlated with the bending modulus but negatively correlated with the dynamic elastic modulus and stiffness, possibly because of the remaining scaffold. CONCLUSIONS: The LAC has the potential to be used as a metric of development of tissue-engineered cartilage. However, the calcified regions should be excluded from analysis to avoid decreasing the correlation between the LAC and the amount of ECM. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF