11 results on '"Prosvirin, Alexander E."'
Search Results
2. Enhancing Brain Tumor Classification with Transfer Learning across Multiple Classes: An In-Depth Analysis.
- Author
-
Ahmmed, Syed, Podder, Prajoy, Mondal, M. Rubaiyat Hossain, Rahman, S M Atikur, Kannan, Somasundar, Hasan, Md Junayed, Rohan, Ali, and Prosvirin, Alexander E.
- Subjects
BRAIN tumors ,MACHINE learning ,MAGNETIC resonance imaging of the brain ,DEEP learning ,MATHEMATICAL optimization - Abstract
This study focuses on leveraging data-driven techniques to diagnose brain tumors through magnetic resonance imaging (MRI) images. Utilizing the rule of deep learning (DL), we introduce and fine-tune two robust frameworks, ResNet 50 and Inception V3, specifically designed for the classification of brain MRI images. Building upon the previous success of ResNet 50 and Inception V3 in classifying other medical imaging datasets, our investigation encompasses datasets with distinct characteristics, including one with four classes and another with two. The primary contribution of our research lies in the meticulous curation of these paired datasets. We have also integrated essential techniques, including Early Stopping and ReduceLROnPlateau, to refine the model through hyperparameter optimization. This involved adding extra layers, experimenting with various loss functions and learning rates, and incorporating dropout layers and regularization to ensure model convergence in predictions. Furthermore, strategic enhancements, such as customized pooling and regularization layers, have significantly elevated the accuracy of our models, resulting in remarkable classification accuracy. Notably, the pairing of ResNet 50 with the Nadam optimizer yields extraordinary accuracy rates, reaching 99.34% for gliomas, 93.52% for meningiomas, 98.68% for non-tumorous images, and 97.70% for pituitary tumors. These results underscore the transformative potential of our custom-made approach, achieving an aggregate testing accuracy of 97.68% for these four distinct classes. In a two-class dataset, Resnet 50 with the Adam optimizer excels, demonstrating better precision, recall, F1 score, and an overall accuracy of 99.84%. Moreover, it attains perfect per-class accuracy of 99.62% for 'Tumor Positive' and 100% for 'Tumor Negative', underscoring a remarkable advancement in the realm of brain tumor categorization. This research underscores the innovative possibilities of DL models and our specialized optimization methods in the domain of diagnosing brain cancer from MRI images. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Robot manipulator active fault-tolerant control using a machine learning-based automated robust hybrid observer.
- Author
-
Piltan, Farzin, Prosvirin, Alexander E., Kim, Jong-Myon, and Kahraman, Cengiz
- Subjects
- *
ROBOTS , *FAULT diagnosis , *DECISION trees , *ALGORITHMS , *MACHINE learning , *MANIPULATORS (Machinery) , *FAULT-tolerant computing - Abstract
Robotic manipulators represent a class of nonlinear and multiple-degrees-of-freedom robots that have pronounced coupling effects and can be used in various applications. The challenge of understanding complexity in a system's dynamic behavior, coupling effects, and sources of uncertainty presents substantial challenges regarding fault estimation, detection, identification, and tolerant-control (FEDIT) in a robot manipulator. Thus, a proposed active fault-tolerant control algorithm, based on an adaptive modern sliding mode observer, is represented. Due to the effect of the system's complexities and uncertainties for fault estimation, detection, and identification (FEDI), a sliding mode observer (SMO) is proposed. To address the sliding mode observer drawbacks for FEDI such as high-frequency oscillation (chattering) and fault estimation accuracy, the modern (T-S fuzzy higher order) technique is represented. In addition, the adaptive technique is applied to the modern sliding mode observer (MSMO) to self-tune the coefficients of the fault estimation observer to increase the reliability and robustness of decision-making for diagnosis of the fault. Next, the residual delivered by the adaptive MSMO (AMSMO) is split into windows, and each window is characterized by a numerical parameter. Finally, the machine learning technique known as a decision tree adaptively derives the threshold values that are used for problems of fault detection and fault identification in this work. Due to control of the effective fault, a surface automated new sliding mode controller (SANSMC) is presented in this work. To address the challenge of chattering and unlimited uncertainties (faults), the AMSMO is applied to the sliding mode controller (SMC). In addition, the surface-automated technique is used to fine-tune the surface coefficient to reduce the chattering and faults in the robot manipulator. The results show that the machine learning-based automated robust hybrid observer significantly improves the robustness, reliability, and accuracy of FEDIT in unknown conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. An SVM-Based Neural Adaptive Variable Structure Observer for Fault Diagnosis and Fault-Tolerant Control of a Robot Manipulator.
- Author
-
Piltan, Farzin, Prosvirin, Alexander E., Sohaib, Muhammad, Saldivar, Belem, and Kim, Jong-Myon
- Subjects
MANIPULATORS (Machinery) ,FAULT diagnosis ,SMART structures ,ROBOT control systems ,SUPPORT vector machines ,FUZZY algorithms - Abstract
Featured Application: Fault diagnosis and fault-tolerant control. A robot manipulator is a multi-degree-of-freedom and nonlinear system that is used in various applications, including the medical area and automotive industries. Uncertain conditions in which a robot manipulator operates, as well as its nonlinearities, represent challenges for fault diagnosis and fault-tolerant control (FDC) that are addressed through the proposed FDC technique. A machine-learning-based neural adaptive, high-order, variable structure observer for fault diagnosis (FD) and adaptive, modern, fuzzy, backstepping, variable structure control for use in a fault-tolerant control (FC) algorithm, are proposed in this paper. In the first stage, a variable structure observer is proposed as an FD technique for the robot manipulator. The chattering phenomenon associated with the variable structure observer(VSO) is solved using a high-order variable structure observer. Then, the dynamic behavior estimation performance in the high-order variable structure observer is improved by incorporating a neural network algorithm in the FD pipeline. This adaptive technique is also effective in improving the robustness of the fault signal estimation. Moreover, support vector machines (SVMs) that can derive adaptive threshold values are used to categorize faults. To design an effective fault-tolerant controller (FC), an adaptive modern fuzzy backstepping variable structure controller is used in this study. First, a new variable structure controller is designed. Next, to increase robustness and reduce high-frequency oscillations in uncertain conditions, a backstepping algorithm is used in parallel with the variable structure controller to design the backstepping variable structure controller. To design an effective hybrid controller, a fuzzy algorithm is integrated into the backstepping variable structure controller to create a fuzzy backstepping variable structure controller. Then, to improve the robustness and reliability of the FC, a neural adaptive. high-order. variable structure observer is applied to the fuzzy backstepping variable structure controller to design a modern fuzzy backstepping variable structure controller. An adaptive algorithm is used to fine-tune the variable structure coefficients and reduce the effect of faults on the robot manipulator. The effectiveness of the selected algorithm is validated using a PUMA robot manipulator. The neural adaptive. high-order variable structure observer improves the average performance for the identification of various faults by about 27% and 29.2%, compared with the neural high-order variable structure observer and variable structure observer, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Rolling-Element Bearing Fault Diagnosis Using Advanced Machine Learning-Based Observer.
- Author
-
Piltan, Farzin, Prosvirin, Alexander E., Jeong, Inkyu, Im, Kichang, and Kim, Jong-Myon
- Subjects
FAULT diagnosis ,ROTATING machinery ,FUZZY algorithms ,DECISION trees ,MACHINE learning ,BEARS ,ROLLING contact - Abstract
Rotating machines represent a class of nonlinear, uncertain, and multiple-degrees-of-freedom systems that are used in various applications. The complexity of the system's dynamic behavior and uncertainty result in substantial challenges for fault estimation, detection, and identification in rotating machines. To address the aforementioned challenges, this paper proposes a novel technique for fault diagnosis of a rolling-element bearing (REB), founded on a machine-learning-based advanced fuzzy sliding mode observer. First, an ARX-Laguerre algorithm is presented to model the bearing in the presence of noise and uncertainty. In addition, a fuzzy algorithm is applied to the ARX-Laguerre technique to increase the system's modeling accuracy. Next, the conventional sliding mode observer is applied to resolve the problems of fault estimation in a complex system with a high degree of uncertainty, such as rotating machinery. To address the problem of chattering that is inherent in the conventional sliding mode observer, the higher-order super-twisting (advanced) technique is introduced in this study. In addition, the fuzzy method is applied to the advanced sliding mode observer to improve the accuracy of fault estimation in uncertain conditions. As a result, the advanced fuzzy sliding mode observer adaptively improves the reliability, robustness, and estimation accuracy of rolling-element bearing fault estimation. Then, the residual signal delivered by the proposed methodology is split in the windows and each window is characterized by a numerical parameter. Finally, a machine learning technique, called a decision tree, adaptively derives the threshold values that are used for problems of fault detection and fault identification in this study. The effectiveness of the proposed algorithm is validated using a publicly available vibration dataset of Case Western Reverse University. The experimental results show that the machine learning-based advanced fuzzy sliding mode observation methodology significantly improves the reliability and accuracy of the fault estimation, detection, and identification of rolling element bearing faults under variable crack sizes and load conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. Rub-Impact Fault Diagnosis Using an Effective IMF Selection Technique in Ensemble Empirical Mode Decomposition and Hybrid Feature Models.
- Author
-
Prosvirin, Alexander E., Islam, Manjurul, Jaeyoung Kim, and Jong-Myon Kim
- Abstract
The complex nature of rubbing faults makes it difficult to use traditional signal analysis methods for feature extraction. Various time-frequency analysis approaches based on signal decomposition, such as empirical mode decomposition (EMD) and ensemble EMD (EEMD), have been widely utilized recently to analyze rub-impact faults. However, traditional EMD suffers from “mode-mixing”, and in both EMD and EEMD the relevance of the extracted components to rubbing processes must be determined. In this paper, we introduce a new informative intrinsic mode function (IMF) selection method for EEMD and a hybrid feature model for diagnosing rub-impact faults of various intensities. Our method uses a novel selection procedure that combines the degree-of-presence ratio of rub impact and a Kullback–Leibler divergence-based similarity measure into an IMF quality metric with adaptive threshold-based selection to pick the meaningful signal-dominant modes. Signals reconstructed using the selected IMFs contained explicit information about the rubbing faults and are used for hybrid feature extraction. Experimental results demonstrated that the proposed approach effectively defines meaningful IMFs for rubbing processes, and the presented hybrid feature model allows for the classification of rub-impact faults of various intensities with good accuracy. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
7. Data-driven prognostic scheme for rolling-element bearings using a new health index and variants of least-square support vector machines.
- Author
-
Manjurul Islam, M.M., Prosvirin, Alexander E., and Kim, Jong-Myon
- Subjects
- *
SUPPORT vector machines , *ROLLER bearings , *ANOMALY detection (Computer security) , *NOMOGRAPHY (Mathematics) , *MACHINE theory - Abstract
This paper presents a data-driven prognostic framework for rolling-element bearings (REBs). This framework infers a bearing's health index by defining a degree-of-defectiveness (DD) metric in the frequency domain of bearing raw signal, named DD-based health index (DDHI). Then, we systematically apply least-square support vector machines (LSSVMs) in the forms of Bayesian inference-aided one-class LSSVM (Bayesian-OCLSSVM) for anomaly detection in order to define the time-to-start (TTS) point of RUL prediction and the recurrent least-square support vector regression (Recurrent-LSSVR) model for predicting future values of DDHI for calculating the RUL. In addition, this paper addresses several pertinent challenges, such as failure threshold determination during anomaly detection and RUL estimation, by developing adaptive thresholds. We conduct extensive experiments on publicly available two benchmark datasets using a run-to-failure experiment. The results demonstrate the efficacy of the proposed framework compared to state-of-the-art methods in terms of the accuracy and convergence of the RUL estimation of bearings. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
8. Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection.
- Author
-
Maliuk, Andrei S., Prosvirin, Alexander E., Ahmad, Zahoor, Kim, Cheol Hong, and Kim, Jong-Myon
- Subjects
- *
FEATURE extraction , *SIGNAL processing , *GAUSSIAN mixture models , *K-nearest neighbor classification , *FAULT location (Engineering) , *FAULT diagnosis , *ELECTRIC fault location - Abstract
This paper proposes a Gaussian mixture model-based (GMM) bearing fault band selection (GMM-WBBS) method for signal processing. The proposed method benefits reliable feature extraction using fault frequency oriented Gaussian mixture model (GMM) window series. Selecting exclusively bearing fault frequency harmonics, it eliminates the interference of bearing normal vibrations in the lower frequencies, bearing natural frequencies, and the higher frequency contents that prove to be useful only for anomaly detection but do not provide any insight into the bearing fault location. The features are extracted from time- and frequency- domain signals that exclusively contain the bearing fault frequency harmonics. Classification is done using the Weighted KNN algorithm. The experiments performed with the data containing the vibrations recorded from artificially damaged bearings show the positive effect of utilizing the proposed GMM-WBBS signal processing to filter out the discriminative data of uncertain origin. All comparison methods retrofitted with the proposed method demonstrated classification performance improvements when provided with vibration data with suppressed bearing natural frequencies and higher frequency contents. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
9. Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network.
- Author
-
Nguyen, Cong Dai, Prosvirin, Alexander E., Kim, Cheol Hong, and Kim, Jong-Myon
- Subjects
- *
FAULT diagnosis , *NOISE control , *ADAPTIVE control systems , *GEARBOXES , *NATURAL language processing - Abstract
Gearbox fault diagnosis based on the analysis of vibration signals has been a major research topic for a few decades due to the advantages of vibration characteristics. Such characteristics are used for early fault detection to guarantee the enhanced safety of complex systems and their cost-effective operation. There exist many fault diagnosis models that have been developed for classifying various fault types in gearboxes. However, the classification results of the conventional fault classification models degrade when they are applied to gearbox systems with multi-level tooth cut gear (MTCG) faults operating under variable shaft speeds. These conditions cause difficulty in discriminating the gear fault types. Due to the improved computational capabilities of modern systems, the application of deep neural networks (DNNs) is getting popular in a variety of research fields, such as image and natural language processing. DNNs are capable of improving the classification results even when addressing complex problems such as diagnosing gearbox MTCG faults. In this research, an adaptive noise control (ANC) and a stacked sparse autoencoder–based deep neural network (SSA-DNN) are used to construct a sensitive fault diagnosis model that can diagnose a gearbox system with MTCG fault types under varying shaft rotation speeds, despite its complicatedness. An ANC is applied to gear vibration characteristics to remove a significant level of noise along the frequency spectrum of vibration signals to fix the most fault-informative components of each fault case. Next, the autoencoder learns the gear faults characteristic features from these fault-informative components to separate the fault types considered in this study. Furthermore, the implementation of the SSA-DNN is substituted for feature extraction, feature selection, and the classification processes in traditional fault diagnosis schemes by high-performance unity. The experimental results show that the proposed model outperforms conventional methodologies with higher classification accuracy. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Blade Rub-Impact Fault Identification Using Autoencoder-Based Nonlinear Function Approximation and a Deep Neural Network.
- Author
-
Prosvirin, Alexander E., Piltan, Farzin, and Kim, Jong-Myon
- Subjects
- *
NONLINEAR functions , *FAULT diagnosis , *NONLINEAR systems , *ALGORITHMS , *IDENTIFICATION - Abstract
A blade rub-impact fault is one of the complex and frequently appearing faults in turbines. Due to their nonlinear and nonstationary nature, complex signal analysis techniques, which are expensive in terms of computation time, are required to extract valuable fault information from the vibration signals collected from rotor systems. In this work, a novel method for diagnosing the blade rub-impact faults of different severity levels is proposed. Specifically, the deep undercomplete denoising autoencoder is first used for estimating the nonlinear function of the system under normal operating conditions. Next, the residual signals obtained as the difference between the original signals and their estimates by the autoencoder are computed. Finally, these residual signals are used as inputs to a deep neural network to determine the current state of the rotor system. The experimental results demonstrate that the amplitudes of the residual signals reflect the changes in states of the rotor system and the fault severity levels. Furthermore, these residual signals in combination with the deep neural network demonstrated promising fault identification results when applied to a complex nonlinear fault, such as a blade-rubbing fault. To test the effectiveness of the proposed nonlinear-based fault diagnosis algorithm, this technique is compared with the autoregressive with external input Laguerre proportional-integral observer that is a linear-based fault diagnosis observation technique. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
11. Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers.
- Author
-
Toma, Rafia Nishat, Prosvirin, Alexander E., and Kim, Jong-Myon
- Subjects
- *
FAULT diagnosis , *INDUCTION machinery , *GENETIC algorithms , *MACHINE learning , *CLASSIFICATION algorithms , *BRAIN-computer interfaces , *FEATURE selection - Abstract
Efficient fault diagnosis of electrical and mechanical anomalies in induction motors (IMs) is challenging but necessary to ensure safety and economical operation in industries. Research has shown that bearing faults are the most frequently occurring faults in IMs. The vibration signals carry rich information about bearing health conditions and are commonly utilized for fault diagnosis in bearings. However, collecting these signals is expensive and sometimes impractical because it requires the use of external sensors. The external sensors demand enough space and are difficult to install in inaccessible sites. To overcome these disadvantages, motor current signal-based bearing fault diagnosis methods offer an attractive solution. As such, this paper proposes a hybrid motor-current data-driven approach that utilizes statistical features, genetic algorithm (GA) and machine learning models for bearing fault diagnosis. First, the statistical features are extracted from the motor current signals. Second, the GA is utilized to reduce the number of features and select the most important ones from the feature database. Finally, three different classification algorithms namely KNN, decision tree, and random forest, are trained and tested using these features in order to evaluate the bearing faults. This combination of techniques increases the accuracy and reduces the computational complexity. The experimental results show that the three classifiers achieve an accuracy of more than 97%. In addition, the evaluation parameters such as precision, F1-score, sensitivity, and specificity show better performance. Finally, to validate the efficiency of the proposed model, it is compared with some recently adopted techniques. The comparison results demonstrate that the suggested technique is promising for diagnosis of IM bearing faults. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.