1. Recovered carbon black from tires as carbon carrier in metal oxide catalytic systems
- Author
-
Marina Krasnovskikh, Ivan Mokrushin, Konstantin Novoselov, Yuliya Kulikova, Monica Toderaş, Mohamed Bassyouni, and Olga Babich
- Subjects
Carbon-metal oxide catalytic systems ,Recovered carbon black ,End-of-life tires ,Pyrolysis ,Chemical engineering ,TP155-156 - Abstract
Pyrolysis is one of the most common methods of end-of-life tires (ELTs) recycling. This study considered the use of carbon black from pyrolysis of ELTs as a carbon carrier for metals (Co, Ni, Cu, Fe) and their oxides to produce catalytic systems. The synchronous thermal analysis showed the positive effect of metal oxides/recovered carbon black (MOs/rCB) on ammonium perchlorate thermolysis. It was selected as a model catalytic reaction. Metal oxides/recovered carbon black (MOs/rCB) catalysts facilitated a reduction in the thermal decomposition phases of ammonium perchlorate, resulting in a significant narrowing of the decomposition interval. The greatest narrowing (22.7 °C) was observed at 103.5 °C for non-catalytic process. All tri-metallic catalytic systems showed high catalytic efficiency, providing a narrowing of the decomposition interval on average 2.5 times more in comparison with mono-metallic catalysts. Trioxide catalyst CuO/CoO/FeO/rCB showed the most significant shift in the high-temperature decomposition stage by 13% (from 334.0 °C to 293.2 °C). The activity of di-, tri-, and tetra-metallic catalytic systems was further enhanced by the synergistic effect induced by the addition of a second (or more) metal to the system. Efficient use of rCB for impregnated catalyst systems production could improve the economic efficiency of ELTs pyrolysis.
- Published
- 2024
- Full Text
- View/download PDF