23 results on '"Joachim Messing"'
Search Results
2. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize
- Author
-
Changsheng Li, Xiaoli Xiang, Yongcai Huang, Yong Zhou, Dong An, Jiaqiang Dong, Chenxi Zhao, Hongjun Liu, Yubin Li, Qiong Wang, Chunguang Du, Joachim Messing, Brian A. Larkins, Yongrui Wu, and Wenqin Wang
- Subjects
Science - Abstract
The South African quality protein maize (QPM) cultivars have the desired high lysine content and kernel hardness due to o2 mutation and the introgression of modifiers of o2 (Mo2) QTLs, respectively. Here, the authors assemble the genome of a QPM line and identify candidate genes underlying Mo2 QTLs.
- Published
- 2020
- Full Text
- View/download PDF
3. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement
- Author
-
Yin Li, Min Tu, Yaping Feng, Wenqin Wang, and Joachim Messing
- Subjects
Bioenergy ,RNA-seq ,Gene expression ,Transcriptome analysis ,Carbon partitioning ,Sugar accumulation ,Fuel ,TP315-360 ,Biotechnology ,TP248.13-248.65 - Abstract
Abstract Background Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188). Results Field experiments showed that Della and Rio had similar dynamics and internode patterns of sugar concentration, albeit distinct other phenotypes. Interestingly, cellulose synthases for primary cell wall and key genes in starch synthesis and degradation were coordinately upregulated in sweet genotypes. Sweet sorghums maintained active monolignol biosynthesis compared to the non-sweet genotypes. Comparative RNA-seq results support the role of candidate Tonoplast Sugar Transporter gene (TST), but not the Sugars Will Eventually be Exported Transporter genes (SWEETs) in the different sugar accumulations between sweet and non-sweet genotypes. Conclusions Comparisons of the expression dynamics of carbon metabolic genes across the RNA-seq data sets identify several candidate genes with contrasting expression patterns between sweet and non-sweet sorghum lines, including genes required for cellulose and monolignol synthesis (CesA, PTAL, and CCR), starch metabolism (AGPase, SS, SBE, and G6P-translocator SbGPT2), and sucrose metabolism and transport (TPP and TST2). The common transcriptome features of primary metabolism identified here suggest the metabolic networks contributing to carbon sink strength in sorghum internodes, prioritize the candidate genes for manipulating carbon allocation with bioenergy purposes, and provide a comparative and cohesive picture of the complexity of carbon sink strength in sorghum stem.
- Published
- 2019
- Full Text
- View/download PDF
4. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize
- Author
-
Nelson Garcia and Joachim Messing
- Subjects
gene balance hypothesis ,TTT complex ,PIKK ,genome fractionation ,gene body methylation ,Plant culture ,SB1-1110 - Abstract
The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90) to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs). Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.
- Published
- 2017
- Full Text
- View/download PDF
5. Correction to: Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement
- Author
-
Yin Li, Min Tu, Yaping Feng, Wenqin Wang, and Joachim Messing
- Subjects
Fuel ,TP315-360 ,Biotechnology ,TP248.13-248.65 - Abstract
The original version of the article [1] unfortunately contained a mistake in author’s first name. The name of the author has been corrected from Wenqing Wang to Wenqin Wang in this correction article. The original article [1] has been corrected.
- Published
- 2019
- Full Text
- View/download PDF
6. Locus- and Site-Specific DNA Methylation of 19 kDa Zein Genes in Maize.
- Author
-
Jian-Hong Xu, Ruixian Wang, Xinxin Li, Mihai Miclaus, and Joachim Messing
- Subjects
Medicine ,Science - Abstract
An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25-30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences.
- Published
- 2016
- Full Text
- View/download PDF
7. RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species.
- Author
-
Wenqin Wang, Wei Zhang, Yongrui Wu, Pal Maliga, and Joachim Messing
- Subjects
Medicine ,Science - Abstract
RNA editing is the post-transcriptional conversion from C to U before translation, providing a unique feature in the regulation of gene expression. Here, we used a robust and efficient method based on RNA-seq from non-ribosomal total RNA to simultaneously measure chloroplast-gene expression and RNA editing efficiency in the Greater Duckweed, Spirodela polyrhiza, a species that provides a new reference for the phylogenetic studies of monocotyledonous plants. We identified 66 editing sites at the genome-wide level, with an average editing efficiency of 76%. We found that the expression levels of chloroplast genes were relatively constant, but 11 RNA editing sites show significant changes in editing efficiency, when fronds turn into turions. Thus, RNA editing efficiency contributes more to the yield of translatable transcripts than steady state mRNA levels. Comparison of RNA editing sites in coconut, Spirodela, maize, and rice suggests that RNA editing originated from a common ancestor.
- Published
- 2015
- Full Text
- View/download PDF
8. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm.
- Author
-
Yongrui Wu and Joachim Messing
- Subjects
Medicine ,Science - Abstract
BackgroundOne of the goals of plant breeding is to create crops to provide better nutrition for humans and livestock. Insufficient intake of protein is one of the most severe factors affecting the growth and development of children in developing countries. More than a century ago, in 1896, Hopkins initiated the well-known Illinois long-term selection for maize seed protein concentration, yielding four protein strains. By continuously accumulating QTLs, Illinois High Protein (IHP) reached a protein level 2.5-fold higher than normal maize, with the most increased fraction being the zein protein, which was shown to contain no lysine soon after the long-term selection program initiated. Therefore, IHP is of little value for feeding humans and monogastric animals. Although high-lysine lines of non-vitreous mutants were based on reduced zeins, the kernel soft texture precluded their practical use. Kernel hardness in opaque 2 (o2) could be restored in quality protein maize (QPM) with quantitative trait loci called o2 modifiers (Mo2s), but those did not increase total protein levels.MethodsThe most predominant zeins are the 22- and 19-kDa α-zeins. To achieve a combination of desired traits, we used RNA interference (RNAi) against both α-zeins in IHP and evaluated the silencing effect by SDS-PAGE. Total protein, amino acid composition and kernel texture were analyzed.ConclusionsThe α-zeins were dramatically reduced, but the high total seed protein level remained unchanged by complementary increase of non-zein proteins. Moreover, the residual zein levels still allowed for a vitreous hard seed. Such dramatic rebalancing of the nitrogen sink could have a major impact in world food supply.
- Published
- 2012
- Full Text
- View/download PDF
9. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.
- Author
-
Wenqin Wang, Yongrui Wu, and Joachim Messing
- Subjects
Medicine ,Science - Abstract
BackgroundSpirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.MethodsSpirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.ConclusionsThis is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.
- Published
- 2012
- Full Text
- View/download PDF
10. Correction: RNA Interference Can Rebalance the Nitrogen Sink of Maize Seeds without Losing Hard Endosperm.
- Author
-
Yongrui Wu and Joachim Messing
- Subjects
Medicine ,Science - Published
- 2012
- Full Text
- View/download PDF
11. Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes.
- Author
-
Mihai Miclaus, Jian-Hong Xu, and Joachim Messing
- Subjects
Genetics ,QH426-470 - Abstract
Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80-500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members.
- Published
- 2011
- Full Text
- View/download PDF
12. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA.
- Author
-
Wenqin Wang and Joachim Messing
- Subjects
Medicine ,Science - Abstract
BackgroundChloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth.MethodsWe sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs) using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform.ConclusionsThis combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.
- Published
- 2011
- Full Text
- View/download PDF
13. Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA.
- Author
-
Wolfgang Goettel and Joachim Messing
- Subjects
Genetics ,QH426-470 - Abstract
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
- Published
- 2009
- Full Text
- View/download PDF
14. Physical and genetic structure of the maize genome reflects its complex evolutionary history.
- Author
-
Fusheng Wei, Ed Coe, William Nelson, Arvind K Bharti, Fred Engler, Ed Butler, HyeRan Kim, Jose Luis Goicoechea, Mingsheng Chen, Seunghee Lee, Galina Fuks, Hector Sanchez-Villeda, Steven Schroeder, Zhiwei Fang, Michael McMullen, Georgia Davis, John E Bowers, Andrew H Paterson, Mary Schaeffer, Jack Gardiner, Karen Cone, Joachim Messing, Carol Soderlund, and Rod A Wing
- Subjects
Genetics ,QH426-470 - Abstract
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.
- Published
- 2007
- Full Text
- View/download PDF
15. In Memory of Joachim Messing, a Pioneer in Molecular Genetics and Genomics.
- Author
-
Students and Postdocs of Joachim Messing
- Published
- 2019
- Full Text
- View/download PDF
16. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis.
- Author
-
Zhiyong Zhang, Xixi Zheng, Jun Yang, Joachim Messing, and Yongrui Wu
- Subjects
STARCH synthesis ,FLOWER seeds ,ENDOSPERM ,GLUCANS ,TRANSCRIPTION factors - Abstract
The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and O2 mutants was reduced by ~5% and 11%, respectively, compared with normal genotypes. In the doublemutant PbfRNAi;O2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and proteinmetabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the twomain starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the O2 mutant and are further decreased in the double mutant, indicating that O2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI. These findings show that three important traits--nutritional quality, calories, and yield-- are linked through the same transcription factors. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
17. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed).
- Author
-
Wenqin Wang and Joachim Messing
- Subjects
- *
PYROPHOSPHORYLASES , *GLUCOSE , *GENE expression , *ABSCISIC acid , *SPIRODELA , *DUCKWEEDS , *AQUATIC plants - Abstract
Background: Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. Results: To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA), a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM) of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs). All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs) into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP) and allosteric activator (3-PGA) to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and APL3 were highly expressed in earlier stages of turion development, while APL1 expression was reduced throughout turion development. Conclusions: These results suggest that the differential expression of APLs could be used to enhance energy flow from photosynthesis to storage of carbon in aquatic plants, making duckweeds a useful alternative biofuel feedstock. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
18. DNA barcoding of the Lemnaceae, a family of aquatic monocots.
- Author
-
Wenqin Wang, Yongrui Wu, Yiheng Yan, Marina Ermakova, Randall Kerstetter, and Joachim Messing
- Subjects
DUCKWEEDS ,DNA ,GENETIC polymorphisms ,GENES ,PHYLOGENY - Abstract
Background: Members of the aquatic monocot family Lemnaceae (commonly called duckweeds) represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results: We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life) plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK) and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA) based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intraand inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions: Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
19. Diverged Copies of the Seed Regulatory Opaque-2 Gene by a Segmental Duplication in the Progenitor Genome of Rice, Sorghum, and Maize.
- Author
-
Jian-Hong Xu and Joachim Messing
- Subjects
- *
GENOMES , *EUKARYOTIC cells , *GENETIC transcription , *PROTEINS , *CHROMOSOMAL translocation - Abstract
Comparative analyses of the sequence of entire genomes have shown that gene duplications, chromosomal segmental duplications, or even whole genome duplications (WGD) have played prominent roles in the evolution of many eukaryotic species. Here, we used the ancient duplication of a well known transcription factor in maize, encoded by the Opaque-2 (O2) locus, to examine the general features of divergences of chromosomal segmental duplications in a lineage-specific manner. We took advantage of contiguous chromosomal sequence information in rice (Oryza sativa, Nipponbare), sorghum (Sorghum bicolor, Btx623), and maize (Zea mays, B73) that were aligned by conserved gene order (synteny). This analysis showed that the maize O2 locus is contained within a 1.25 million base-pair (Mb) segment on chromosome 7, which was duplicated ≈56 million years ago (mya) before the split of rice and maize 50 mya. The duplicated region on chromosome 1 is only half the size and contains the maize OHP gene, which does not restore the o2 mutation although it encodes a protein with the same DNA and protein binding properties in endosperm. The segmental duplication is not only found in rice, but also in sorghum, which split from maize 11.9 mya. A detailed analysis of the duplicated regions provided examples for complex rearrangements including deletions, duplications, conversions, inversions, and translocations. Furthermore, the rice and sorghum genomes appeared to be more stable than the maize genome, probably because maize underwent allotetraploidization and then diploidization. [ABSTRACT FROM PUBLISHER]
- Published
- 2008
- Full Text
- View/download PDF
20. Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses.
- Author
-
David Rotter, Arvind Bharti, Huaijun Li, Chongyuan Luo, Stacy Bonos, Suleiman Bughrara, Geunhwa Jung, Joachim Messing, William Meyer, Stephen Rudd, Scott Warnke, and Faith Belanger
- Subjects
PLANT genomes ,GRASSES ,GENOMICS ,POLYPLOIDY ,MESSENGER RNA ,ENVIRONMENTAL engineering - Abstract
Abstract Advances in plant genomics have permitted the analysis of several members of the grass family, including the major domesticated species, and provided new insights into the evolution of the major crops on earth. Two members, colonial bentgrass (Agrostis capillaris L.) and creeping bentgrass (A. stolonifera L.) have only recently been domesticated and provide an interesting case of polyploidy and comparison to crops that have undergone human selection for thousands of years. As an initial step of characterizing these genomes, we have sampled roughly 10% of their gene content, thereby also serving as a starting point for the construction of their physical and genetic maps. Sampling mRNA from plants subjected to environmental stress showed a remarkable increase in transcription of transposable elements. Both colonial and creeping bentgrass are allotetraploids and are considered to have one genome in common, designated the A2 genome. Analysis of conserved genes present among the ESTs suggests the colonial and creeping bentgrass A2 genomes diverged from a common ancestor approximately 2.2 million years ago (MYA), thereby providing an enhanced evolutionary zoom in respect to the origin of maize, which formed 4.8 MYA, and tetraploid wheat, which formed only 0.5 MYA and is the progenitor of domesticated hexaploid wheat. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
21. Structure and Architecture of the Maize Genome.
- Author
-
Georg Haberer, Sarah Young, Arvind K. Bharti, Heidrun Gundlach, Christina Raymond, Galina Fuks, Ed Butler, Rod A. Wing, Steve Rounsley, Bruce Birren, Chad Nusbaum, Klaus F.X. Mayer, and Joachim Messing
- Subjects
PLANT genomes ,GENOMES ,CORN ,ARABIDOPSIS ,ARABIDOPSIS thaliana ,PLANT physiology ,PLANTS - Abstract
Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%–63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
22. The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm.
- Author
-
Zhen Liu, Xinxin Li, Tingzhang Wang, Joachim Messing, and Jian-Hong Xu
- Subjects
- *
RETROTRANSPOSONS , *PLANT germplasm ,CORN genetics - Abstract
TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
23. Genomic Resources for Gene Discovery, Functional Genome Annotation, and Evolutionary Studies of Maize and Its Close Relatives.
- Author
-
Chao Wang, Xue Shi, Lin Liu, Haiyan Li, Ammiraju, Jetty S. S., Kudma, David A., Wentao Xiong, Hao Wang, Zhaozhao Dai, Yonglian Zheng, Jinsheng Lai, Weiwei Jin, Joachim Messing, Bennetzen, Jeffrey L., Wing, Rod A., and Meizhong Luo
- Subjects
- *
DEVELOPMENTAL biology , *GENOMICS , *GENETICALLY modified foods , *GENETIC research , *FOOD crops ,CORN genetics - Abstract
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.