190 results on '"Greene, Casey S"'
Search Results
2. Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms
- Author
-
Pividori, Milton, Lu, Sumei, Li, Binglan, Su, Chun, Johnson, Matthew E., Wei, Wei-Qi, Feng, Qiping, Namjou, Bahram, Kiryluk, Krzysztof, Kullo, Iftikhar J., Luo, Yuan, Sullivan, Blair D., Voight, Benjamin F., Skarke, Carsten, Ritchie, Marylyn D., Grant, Struan F. A., and Greene, Casey S.
- Published
- 2023
- Full Text
- View/download PDF
3. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors
- Author
-
Hippen, Ariel A., Omran, Dalia K., Weber, Lukas M., Jung, Euihye, Drapkin, Ronny, Doherty, Jennifer A., Hicks, Stephanie C., and Greene, Casey S.
- Published
- 2023
- Full Text
- View/download PDF
4. Changing word meanings in biomedical literature reveal pandemics and new technologies
- Author
-
Nicholson, David N., Alquaddoomi, Faisal, Rubinetti, Vincent, and Greene, Casey S.
- Published
- 2023
- Full Text
- View/download PDF
5. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously
- Author
-
Foltz, Steven M., Greene, Casey S., and Taroni, Jaclyn N.
- Published
- 2023
- Full Text
- View/download PDF
6. Building a vertically integrated genomic learning health system: The biobank at the Colorado Center for Personalized Medicine
- Author
-
Wiley, Laura K., Shortt, Jonathan A., Roberts, Emily R., Lowery, Jan, Kudron, Elizabeth, Lin, Meng, Mayer, David, Wilson, Melissa, Brunetti, Tonya M., Chavan, Sameer, Phang, Tzu L., Pozdeyev, Nikita, Lesny, Joseph, Wicks, Stephen J., Moore, Ethan T., Morgenstern, Joshua L., Roff, Alanna N., Shalowitz, Elise L., Stewart, Adrian, Williams, Cole, Edelmann, Michelle N., Hull, Madelyne, Patton, J. Tacker, Axell, Lisen, Ku, Lisa, Lee, Yee Ming, Jirikowic, Jean, Tanaka, Anna, Todd, Emily, White, Sarah, Peterson, Brett, Hearst, Emily, Zane, Richard, Greene, Casey S., Mathias, Rasika, Coors, Marilyn, Taylor, Matthew, Ghosh, Debashis, Kahn, Michael G., Brooks, Ian M., Aquilante, Christina L., Kao, David, Rafaels, Nicholas, Crooks, Kristy R., Hess, Steve, Barnes, Kathleen C., and Gignoux, Christopher R.
- Published
- 2024
- Full Text
- View/download PDF
7. OpenPBTA: The Open Pediatric Brain Tumor Atlas
- Author
-
Shapiro, Joshua A., Gaonkar, Krutika S., Spielman, Stephanie J., Savonen, Candace L., Bethell, Chante J., Jin, Run, Rathi, Komal S., Zhu, Yuankun, Egolf, Laura E., Farrow, Bailey K., Miller, Daniel P., Yang, Yang, Koganti, Tejaswi, Noureen, Nighat, Koptyra, Mateusz P., Duong, Nhat, Santi, Mariarita, Kim, Jung, Robins, Shannon, Storm, Phillip B., Mack, Stephen C., Lilly, Jena V., Xie, Hongbo M., Jain, Payal, Raman, Pichai, Rood, Brian R., Lulla, Rishi R., Nazarian, Javad, Kraya, Adam A., Vaksman, Zalman, Heath, Allison P., Kline, Cassie, Scolaro, Laura, Viaene, Angela N., Huang, Xiaoyan, Way, Gregory P., Foltz, Steven M., Zhang, Bo, Poetsch, Anna R., Mueller, Sabine, Ennis, Brian M., Prados, Michael, Diskin, Sharon J., Zheng, Siyuan, Guo, Yiran, Kannan, Shrivats, Waanders, Angela J., Margol, Ashley S., Kim, Meen Chul, Hanson, Derek, Van Kuren, Nicholas, Wong, Jessica, Kaufman, Rebecca S., Coleman, Noel, Blackden, Christopher, Cole, Kristina A., Mason, Jennifer L., Madsen, Peter J., Koschmann, Carl J., Stewart, Douglas R., Wafula, Eric, Brown, Miguel A., Resnick, Adam C., Greene, Casey S., Rokita, Jo Lynne, and Taroni, Jaclyn N.
- Published
- 2023
- Full Text
- View/download PDF
8. SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses
- Author
-
Lee, Alexandra J., Mould, Dallas L., Crawford, Jake, Hu, Dongbo, Powers, Rani K., Doing, Georgia, Costello, James C., Hogan, Deborah A., and Greene, Casey S.
- Published
- 2022
- Full Text
- View/download PDF
9. BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.
- Author
-
Davidson, Natalie R., Zhang, Fan, and Greene, Casey S.
- Subjects
AUTOENCODER ,EXPERIMENTAL design ,COMPARATIVE method ,THERAPEUTICS ,CORPORA - Abstract
While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance). BuDDI utilizes domain adaptation techniques to effectively integrate available corpora of case-control bulk and reference scRNA-seq observations to infer cell-type-specific perturbation effects. BuDDI achieves this by learning independent latent spaces within a single variational autoencoder (VAE) encompassing at least four sources of variability: 1) cell type proportion, 2) perturbation effect, 3) structured experimental variability, and 4) remaining variability. Since each latent space is encouraged to be independent, we simulate perturbation responses by independently composing each latent space to simulate cell-type-specific perturbation responses. We evaluated BuDDI's performance on simulated and real data with experimental designs of increasing complexity. We first validated that BuDDI could learn domain invariant latent spaces on data with matched samples across each source of variability. Then we validated that BuDDI could accurately predict cell-type-specific perturbation response when no single-cell perturbed profiles were used during training; instead, only bulk samples had both perturbed and non-perturbed observations. Finally, we validated BuDDI on predicting sex-specific differences, an experimental design where it is not possible to have matched samples. In each experiment, BuDDI outperformed all other comparative methods and baselines. As more reference atlases are completed, BuDDI provides a path to combine these resources with bulk-profiled treatment or disease signatures to study perturbations, sex differences, or other factors at single-cell resolution. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF
10. Using genome-wide expression compendia to study microorganisms
- Author
-
Lee, Alexandra J., Reiter, Taylor, Doing, Georgia, Oh, Julia, Hogan, Deborah A., and Greene, Casey S.
- Published
- 2022
- Full Text
- View/download PDF
11. Expanding a database-derived biomedical knowledge graph via multi-relation extraction from biomedical abstracts
- Author
-
Nicholson, David N., Himmelstein, Daniel S., and Greene, Casey S.
- Published
- 2022
- Full Text
- View/download PDF
12. GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
- Author
-
Oh, Sehyun, Geistlinger, Ludwig, Ramos, Marcel, Blankenberg, Daniel, van den Beek, Marius, Taroni, Jaclyn N., Carey, Vincent J., Greene, Casey S., Waldron, Levi, and Davis, Sean
- Published
- 2022
- Full Text
- View/download PDF
13. Widespread redundancy in -omics profiles of cancer mutation states
- Author
-
Crawford, Jake, Christensen, Brock C., Chikina, Maria, and Greene, Casey S.
- Published
- 2022
- Full Text
- View/download PDF
14. Characterizing Long COVID: Deep Phenotype of a Complex Condition
- Author
-
Deer, Rachel R, Rock, Madeline A, Vasilevsky, Nicole, Carmody, Leigh, Rando, Halie, Anzalone, Alfred J, Basson, Marc D, Bennett, Tellen D, Bergquist, Timothy, Boudreau, Eilis A, Bramante, Carolyn T, Byrd, James Brian, Callahan, Tiffany J, Chan, Lauren E, Chu, Haitao, Chute, Christopher G, Coleman, Ben D, Davis, Hannah E, Gagnier, Joel, Greene, Casey S, Hillegass, William B, Kavuluru, Ramakanth, Kimble, Wesley D, Koraishy, Farrukh M, Köhler, Sebastian, Liang, Chen, Liu, Feifan, Liu, Hongfang, Madhira, Vithal, Madlock-Brown, Charisse R, Matentzoglu, Nicolas, Mazzotti, Diego R, McMurry, Julie A, McNair, Douglas S, Moffitt, Richard A, Monteith, Teshamae S, Parker, Ann M, Perry, Mallory A, Pfaff, Emily, Reese, Justin T, Saltz, Joel, Schuff, Robert A, Solomonides, Anthony E, Solway, Julian, Spratt, Heidi, Stein, Gary S, Sule, Anupam A, Topaloglu, Umit, Vavougios, George D., Wang, Liwei, Haendel, Melissa A, and Robinson, Peter N
- Published
- 2021
- Full Text
- View/download PDF
15. Analysis of scientific society honors reveals disparities
- Author
-
Le, Trang T., Himmelstein, Daniel S., Hippen, Ariel A., Gazzara, Matthew R., and Greene, Casey S.
- Published
- 2021
- Full Text
- View/download PDF
16. Expanding and Remixing the Metadata Landscape
- Author
-
Hippen, Ariel A. and Greene, Casey S.
- Published
- 2021
- Full Text
- View/download PDF
17. Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality
- Author
-
Dang, Mai T., Gonzalez, Michael V., Gaonkar, Krutika S., Rathi, Komal S., Young, Patricia, Arif, Sherjeel, Zhai, Li, Alam, Zahidul, Devalaraja, Samir, To, Tsun Ki Jerrick, Folkert, Ian W., Raman, Pichai, Rokita, Jo Lynne, Martinez, Daniel, Taroni, Jaclyn N., Shapiro, Joshua A., Greene, Casey S., Savonen, Candace, Mafra, Fernanda, Hakonarson, Hakon, Curran, Tom, and Haldar, Malay
- Published
- 2021
- Full Text
- View/download PDF
18. A publishing infrastructure for Artificial Intelligence (AI)-assisted academic authoring.
- Author
-
Pividori, Milton and Greene, Casey S
- Abstract
Objective Investigate the use of advanced natural language processing models to streamline the time-consuming process of writing and revising scholarly manuscripts. Materials and Methods For this purpose, we integrate large language models into the Manubot publishing ecosystem to suggest revisions for scholarly texts. Our AI-based revision workflow employs a prompt generator that incorporates manuscript metadata into templates, generating section-specific instructions for the language model. The model then generates revised versions of each paragraph for human authors to review. We evaluated this methodology through 5 case studies of existing manuscripts, including the revision of this manuscript. Results Our results indicate that these models, despite some limitations, can grasp complex academic concepts and enhance text quality. All changes to the manuscript are tracked using a version control system, ensuring transparency in distinguishing between human- and machine-generated text. Conclusions Given the significant time researchers invest in crafting prose, incorporating large language models into the scholarly writing process can significantly improve the type of knowledge work performed by academics. Our approach also enables scholars to concentrate on critical aspects of their work, such as the novelty of their ideas, while automating tedious tasks like adhering to specific writing styles. Although the use of AI-assisted tools in scientific authoring is controversial, our approach, which focuses on revising human-written text and provides change-tracking transparency, can mitigate concerns regarding AI's role in scientific writing. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
19. Incorporating biological structure into machine learning models in biomedicine
- Author
-
Crawford, Jake and Greene, Casey S
- Published
- 2020
- Full Text
- View/download PDF
20. Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin
- Author
-
Clay, Michelle E., Hammond, John H., Zhong, Fangfang, Chen, Xiaolei, Kowalski, Caitlin H., Lee, Alexandra J., Porter, Monique S., Hampton, Thomas H., Greene, Casey S., Pletneva, Ekaterina V., and Hogan, Deborah A.
- Published
- 2020
21. Constructing knowledge graphs and their biomedical applications
- Author
-
Nicholson, David N. and Greene, Casey S.
- Published
- 2020
- Full Text
- View/download PDF
22. Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing
- Author
-
Allen, William E., Altae-Tran, Han, Briggs, James, Jin, Xin, McGee, Glen, Shi, Andy, Raghavan, Rumya, Kamariza, Mireille, Nova, Nicole, Pereta, Albert, Danford, Chris, Kamel, Amine, Gothe, Patrik, Milam, Evrhet, Aurambault, Jean, Primke, Thorben, Li, Weijie, Inkenbrandt, Josh, Huynh, Tuan, Chen, Evan, Lee, Christina, Croatto, Michael, Bentley, Helen, Lu, Wendy, Murray, Robert, Travassos, Mark, Coull, Brent A., Openshaw, John, Greene, Casey S., Shalem, Ophir, King, Gary, Probasco, Ryan, Cheng, David R., Silbermann, Ben, Zhang, Feng, and Lin, Xihong
- Published
- 2020
- Full Text
- View/download PDF
23. Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual
- Author
-
Cousminer, Diana L., Wagley, Yadav, Pippin, James A., Elhakeem, Ahmed, Way, Gregory P., Pahl, Matthew C., McCormack, Shana E., Chesi, Alessandra, Mitchell, Jonathan A., Kindler, Joseph M., Baird, Denis, Hartley, April, Howe, Laura, Kalkwarf, Heidi J., Lappe, Joan M., Lu, Sumei, Leonard, Michelle E., Johnson, Matthew E., Hakonarson, Hakon, Gilsanz, Vicente, Shepherd, John A., Oberfield, Sharon E., Greene, Casey S., Kelly, Andrea, Lawlor, Deborah A., Voight, Benjamin F., Wells, Andrew D., Zemel, Babette S., Hankenson, Kurt D., and Grant, Struan F. A.
- Published
- 2021
- Full Text
- View/download PDF
24. Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma
- Author
-
Lin, Yu-Hsiu T., Way, Gregory P., Barwick, Benjamin G., Mariano, Margarette C., Marcoulis, Makeba, Ferguson, Ian D., Driessen, Christoph, Boise, Lawrence H., Greene, Casey S., and Wiita, Arun P.
- Published
- 2019
- Full Text
- View/download PDF
25. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design
- Author
-
Rokita, Jo Lynne, Rathi, Komal S., Cardenas, Maria F., Upton, Kristen A., Jayaseelan, Joy, Cross, Katherine L., Pfeil, Jacob, Egolf, Laura E., Way, Gregory P., Farrel, Alvin, Kendsersky, Nathan M., Patel, Khushbu, Gaonkar, Krutika S., Modi, Apexa, Berko, Esther R., Lopez, Gonzalo, Vaksman, Zalman, Mayoh, Chelsea, Nance, Jonas, McCoy, Kristyn, Haber, Michelle, Evans, Kathryn, McCalmont, Hannah, Bendak, Katerina, Böhm, Julia W., Marshall, Glenn M., Tyrrell, Vanessa, Kalletla, Karthik, Braun, Frank K., Qi, Lin, Du, Yunchen, Zhang, Huiyuan, Lindsay, Holly B., Zhao, Sibo, Shu, Jack, Baxter, Patricia, Morton, Christopher, Kurmashev, Dias, Zheng, Siyuan, Chen, Yidong, Bowen, Jay, Bryan, Anthony C., Leraas, Kristen M., Coppens, Sara E., Doddapaneni, HarshaVardhan, Momin, Zeineen, Zhang, Wendong, Sacks, Gregory I., Hart, Lori S., Krytska, Kateryna, Mosse, Yael P., Gatto, Gregory J., Sanchez, Yolanda, Greene, Casey S., Diskin, Sharon J., Vaske, Olena Morozova, Haussler, David, Gastier-Foster, Julie M., Kolb, E. Anders, Gorlick, Richard, Li, Xiao-Nan, Reynolds, C. Patrick, Kurmasheva, Raushan T., Houghton, Peter J., Smith, Malcolm A., Lock, Richard B., Raman, Pichai, Wheeler, David A., and Maris, John M.
- Published
- 2019
- Full Text
- View/download PDF
26. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease
- Author
-
Taroni, Jaclyn N., Grayson, Peter C., Hu, Qiwen, Eddy, Sean, Kretzler, Matthias, Merkel, Peter A., and Greene, Casey S.
- Published
- 2019
- Full Text
- View/download PDF
27. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution
- Author
-
Taylor, Deanne M., Aronow, Bruce J., Tan, Kai, Bernt, Kathrin, Salomonis, Nathan, Greene, Casey S., Frolova, Alina, Henrickson, Sarah E., Wells, Andrew, Pei, Liming, Jaiswal, Jyoti K., Whitsett, Jeffrey, Hamilton, Kathryn E., MacParland, Sonya A., Kelsen, Judith, Heuckeroth, Robert O., Potter, S. Steven, Vella, Laura A., Terry, Natalie A., Ghanem, Louis R., Kennedy, Benjamin C., Helbig, Ingo, Sullivan, Kathleen E., Castelo-Soccio, Leslie, Kreigstein, Arnold, Herse, Florian, Nawijn, Martijn C., Koppelman, Gerard H., Haendel, Melissa, Harris, Nomi L., Rokita, Jo Lynne, Zhang, Yuanchao, Regev, Aviv, Rozenblatt-Rosen, Orit, Rood, Jennifer E., Tickle, Timothy L., Vento-Tormo, Roser, Alimohamed, Saif, Lek, Monkol, Mar, Jessica C., Loomes, Kathleen M., Barrett, David M., Uapinyoying, Prech, Beggs, Alan H., Agrawal, Pankaj B., Chen, Yi-Wen, Muir, Amanda B., Garmire, Lana X., Snapper, Scott B., Nazarian, Javad, Seeholzer, Steven H., Fazelinia, Hossein, Singh, Larry N., Faryabi, Robert B., Raman, Pichai, Dawany, Noor, Xie, Hongbo Michael, Devkota, Batsal, Diskin, Sharon J., Anderson, Stewart A., Rappaport, Eric F., Peranteau, William, Wikenheiser-Brokamp, Kathryn A., Teichmann, Sarah, Wallace, Douglas, Peng, Tao, Ding, Yang-yang, Kim, Man S., Xing, Yi, Kong, Sek Won, Bönnemann, Carsten G., Mandl, Kenneth D., and White, Peter S.
- Published
- 2019
- Full Text
- View/download PDF
28. Molecular Subtypes of High-Grade Serous Ovarian Cancer across Racial Groups and Gene Expression Platforms.
- Author
-
Davidson, Natalie R., Barnard, Mollie E., Hippen, Ariel A., Campbell, Amy, Johnson, Courtney E., Way, Gregory P., Dalley, Brian K., Berchuck, Andrew, Salas, Lucas A., Peres, Lauren C., Marks, Jeffrey R., Schildkraut, Joellen M., Greene, Casey S., and Doherty, Jennifer A.
- Abstract
Background: High-grade serous carcinoma (HGSC) gene expression subtypes are associated with differential survival. We characterized HGSC gene expression in Black individuals and considered whether gene expression differences by self-identified race may contribute to poorer HGSC survival among Black versus White individuals. Methods: We included newly generated RNA sequencing data from Black and White individuals and array-based genotyping data from four existing studies of White and Japanese individuals. We used K-means clustering, a method with no predefined number of clusters or dataset-specific features, to assign subtypes. Cluster- and dataset-specific gene expression patterns were summarized by moderated t-scores. We compared cluster-specific gene expression patterns across datasets by calculating the correlation between the summarized vectors of moderated t-scores. After mapping to The Cancer Genome Atlas-derived HGSC subtypes, we used Cox proportional hazards models to estimate subtype-specific survival by dataset. Results: Cluster-specific gene expression was similar across gene expression platforms and racial groups. Comparing the Black population with the White and Japanese populations, the immunoreactive subtype was more common (39% vs. 23%-28%) and the differentiated subtype was less common (7% vs. 22%-31%). Patterns of subtype-specific survival were similar between the Black and White populations with RNA sequencing data; compared with mesenchymal cases, the risk of death was similar for proliferative and differentiated cases and suggestively lower for immunoreactive cases [Black population HR = 0.79 (0.55, 1.13); White population HR = 0.86 (0.62, 1.19)]. Conclusions: Although the prevalence of HGSC subtypes varied by race, subtype-specific survival was similar. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
29. MousiPLIER: A Mouse Pathway-Level Information Extractor Model.
- Author
-
Shuo Zhang, Heil, Benjamin J., Weiguang Mao, Chikina, Maria, Greene, Casey S., and Heller, Elizabeth A.
- Published
- 2024
- Full Text
- View/download PDF
30. Enter the Matrix: Factorization Uncovers Knowledge from Omics
- Author
-
Stein-O’Brien, Genevieve L., Arora, Raman, Culhane, Aedin C., Favorov, Alexander V., Garmire, Lana X., Greene, Casey S., Goff, Loyal A., Li, Yifeng, Ngom, Aloune, Ochs, Michael F., Xu, Yanxun, and Fertig, Elana J.
- Published
- 2018
- Full Text
- View/download PDF
31. Oncogenic Signaling Pathways in The Cancer Genome Atlas
- Author
-
Caesar-Johnson, Samantha J., Demchok, John A., Felau, Ina, Kasapi, Melpomeni, Ferguson, Martin L., Hutter, Carolyn M., Sofia, Heidi J., Tarnuzzer, Roy, Wang, Zhining, Yang, Liming, Zenklusen, Jean C., Zhang, Jiashan (Julia), Chudamani, Sudha, Liu, Jia, Lolla, Laxmi, Naresh, Rashi, Pihl, Todd, Sun, Qiang, Wan, Yunhu, Wu, Ye, Cho, Juok, DeFreitas, Timothy, Frazer, Scott, Gehlenborg, Nils, Getz, Gad, Heiman, David I., Kim, Jaegil, Lawrence, Michael S., Lin, Pei, Meier, Sam, Noble, Michael S., Saksena, Gordon, Voet, Doug, Zhang, Hailei, Bernard, Brady, Chambwe, Nyasha, Dhankani, Varsha, Knijnenburg, Theo, Kramer, Roger, Leinonen, Kalle, Liu, Yuexin, Miller, Michael, Reynolds, Sheila, Shmulevich, Ilya, Thorsson, Vesteinn, Zhang, Wei, Akbani, Rehan, Broom, Bradley M., Hegde, Apurva M., Ju, Zhenlin, Kanchi, Rupa S., Korkut, Anil, Li, Jun, Liang, Han, Ling, Shiyun, Liu, Wenbin, Lu, Yiling, Mills, Gordon B., Ng, Kwok-Shing, Rao, Arvind, Ryan, Michael, Wang, Jing, Weinstein, John N., Zhang, Jiexin, Abeshouse, Adam, Armenia, Joshua, Chakravarty, Debyani, Chatila, Walid K., de Bruijn, Ino, Gao, Jianjiong, Gross, Benjamin E., Heins, Zachary J., Kundra, Ritika, La, Konnor, Ladanyi, Marc, Luna, Augustin, Nissan, Moriah G., Ochoa, Angelica, Phillips, Sarah M., Reznik, Ed, Sanchez-Vega, Francisco, Sander, Chris, Schultz, Nikolaus, Sheridan, Robert, Sumer, S. Onur, Sun, Yichao, Taylor, Barry S., Wang, Jioajiao, Zhang, Hongxin, Anur, Pavana, Peto, Myron, Spellman, Paul, Benz, Christopher, Stuart, Joshua M., Wong, Christopher K., Yau, Christina, Hayes, D. Neil, Parker, Joel S., Wilkerson, Matthew D., Ally, Adrian, Balasundaram, Miruna, Bowlby, Reanne, Brooks, Denise, Carlsen, Rebecca, Chuah, Eric, Dhalla, Noreen, Holt, Robert, Jones, Steven J.M., Kasaian, Katayoon, Lee, Darlene, Ma, Yussanne, Marra, Marco A., Mayo, Michael, Moore, Richard A., Mungall, Andrew J., Mungall, Karen, Robertson, A. Gordon, Sadeghi, Sara, Schein, Jacqueline E., Sipahimalani, Payal, Tam, Angela, Thiessen, Nina, Tse, Kane, Wong, Tina, Berger, Ashton C., Beroukhim, Rameen, Cherniack, Andrew D., Cibulskis, Carrie, Gabriel, Stacey B., Gao, Galen F., Ha, Gavin, Meyerson, Matthew, Schumacher, Steven E., Shih, Juliann, Kucherlapati, Melanie H., Kucherlapati, Raju S., Baylin, Stephen, Cope, Leslie, Danilova, Ludmila, Bootwalla, Moiz S., Lai, Phillip H., Maglinte, Dennis T., Van Den Berg, David J., Weisenberger, Daniel J., Auman, J. Todd, Balu, Saianand, Bodenheimer, Tom, Fan, Cheng, Hoadley, Katherine A., Hoyle, Alan P., Jefferys, Stuart R., Jones, Corbin D., Meng, Shaowu, Mieczkowski, Piotr A., Mose, Lisle E., Perou, Amy H., Perou, Charles M., Roach, Jeffrey, Shi, Yan, Simons, Janae V., Skelly, Tara, Soloway, Matthew G., Tan, Donghui, Veluvolu, Umadevi, Fan, Huihui, Hinoue, Toshinori, Laird, Peter W., Shen, Hui, Zhou, Wanding, Bellair, Michelle, Chang, Kyle, Covington, Kyle, Creighton, Chad J., Dinh, Huyen, Doddapaneni, HarshaVardhan, Donehower, Lawrence A., Drummond, Jennifer, Gibbs, Richard A., Glenn, Robert, Hale, Walker, Han, Yi, Hu, Jianhong, Korchina, Viktoriya, Lee, Sandra, Lewis, Lora, Li, Wei, Liu, Xiuping, Morgan, Margaret, Morton, Donna, Muzny, Donna, Santibanez, Jireh, Sheth, Margi, Shinbrot, Eve, Wang, Linghua, Wang, Min, Wheeler, David A., Xi, Liu, Zhao, Fengmei, Hess, Julian, Appelbaum, Elizabeth L., Bailey, Matthew, Cordes, Matthew G., Ding, Li, Fronick, Catrina C., Fulton, Lucinda A., Fulton, Robert S., Kandoth, Cyriac, Mardis, Elaine R., McLellan, Michael D., Miller, Christopher A., Schmidt, Heather K., Wilson, Richard K., Crain, Daniel, Curley, Erin, Gardner, Johanna, Lau, Kevin, Mallery, David, Morris, Scott, Paulauskis, Joseph, Penny, Robert, Shelton, Candace, Shelton, Troy, Sherman, Mark, Thompson, Eric, Yena, Peggy, Bowen, Jay, Gastier-Foster, Julie M., Gerken, Mark, Leraas, Kristen M., Lichtenberg, Tara M., Ramirez, Nilsa C., Wise, Lisa, Zmuda, Erik, Corcoran, Niall, Costello, Tony, Hovens, Christopher, Carvalho, Andre L., de Carvalho, Ana C., Fregnani, José H., Longatto-Filho, Adhemar, Reis, Rui M., Scapulatempo-Neto, Cristovam, Silveira, Henrique C.S., Vidal, Daniel O., Burnette, Andrew, Eschbacher, Jennifer, Hermes, Beth, Noss, Ardene, Singh, Rosy, Anderson, Matthew L., Castro, Patricia D., Ittmann, Michael, Huntsman, David, Kohl, Bernard, Le, Xuan, Thorp, Richard, Andry, Chris, Duffy, Elizabeth R., Lyadov, Vladimir, Paklina, Oxana, Setdikova, Galiya, Shabunin, Alexey, Tavobilov, Mikhail, McPherson, Christopher, Warnick, Ronald, Berkowitz, Ross, Cramer, Daniel, Feltmate, Colleen, Horowitz, Neil, Kibel, Adam, Muto, Michael, Raut, Chandrajit P., Malykh, Andrei, Barnholtz-Sloan, Jill S., Barrett, Wendi, Devine, Karen, Fulop, Jordonna, Ostrom, Quinn T., Shimmel, Kristen, Wolinsky, Yingli, Sloan, Andrew E., De Rose, Agostino, Giuliante, Felice, Goodman, Marc, Karlan, Beth Y., Hagedorn, Curt H., Eckman, John, Harr, Jodi, Myers, Jerome, Tucker, Kelinda, Zach, Leigh Anne, Deyarmin, Brenda, Hu, Hai, Kvecher, Leonid, Larson, Caroline, Mural, Richard J., Somiari, Stella, Vicha, Ales, Zelinka, Tomas, Bennett, Joseph, Iacocca, Mary, Rabeno, Brenda, Swanson, Patricia, Latour, Mathieu, Lacombe, Louis, Têtu, Bernard, Bergeron, Alain, McGraw, Mary, Staugaitis, Susan M., Chabot, John, Hibshoosh, Hanina, Sepulveda, Antonia, Su, Tao, Wang, Timothy, Potapova, Olga, Voronina, Olga, Desjardins, Laurence, Mariani, Odette, Roman-Roman, Sergio, Sastre, Xavier, Stern, Marc-Henri, Cheng, Feixiong, Signoretti, Sabina, Berchuck, Andrew, Bigner, Darell, Lipp, Eric, Marks, Jeffrey, McCall, Shannon, McLendon, Roger, Secord, Angeles, Sharp, Alexis, Behera, Madhusmita, Brat, Daniel J., Chen, Amy, Delman, Keith, Force, Seth, Khuri, Fadlo, Magliocca, Kelly, Maithel, Shishir, Olson, Jeffrey J., Owonikoko, Taofeek, Pickens, Alan, Ramalingam, Suresh, Shin, Dong M., Sica, Gabriel, Van Meir, Erwin G., Zhang, Hongzheng, Eijckenboom, Wil, Gillis, Ad, Korpershoek, Esther, Looijenga, Leendert, Oosterhuis, Wolter, Stoop, Hans, van Kessel, Kim E., Zwarthoff, Ellen C., Calatozzolo, Chiara, Cuppini, Lucia, Cuzzubbo, Stefania, DiMeco, Francesco, Finocchiaro, Gaetano, Mattei, Luca, Perin, Alessandro, Pollo, Bianca, Chen, Chu, Houck, John, Lohavanichbutr, Pawadee, Hartmann, Arndt, Stoehr, Christine, Stoehr, Robert, Taubert, Helge, Wach, Sven, Wullich, Bernd, Kycler, Witold, Murawa, Dawid, Wiznerowicz, Maciej, Chung, Ki, Edenfield, W. Jeffrey, Martin, Julie, Baudin, Eric, Bubley, Glenn, Bueno, Raphael, De Rienzo, Assunta, Richards, William G., Kalkanis, Steven, Mikkelsen, Tom, Noushmehr, Houtan, Scarpace, Lisa, Girard, Nicolas, Aymerich, Marta, Campo, Elias, Giné, Eva, Guillermo, Armando López, Van Bang, Nguyen, Hanh, Phan Thi, Phu, Bui Duc, Tang, Yufang, Colman, Howard, Evason, Kimberley, Dottino, Peter R., Martignetti, John A., Gabra, Hani, Juhl, Hartmut, Akeredolu, Teniola, Stepa, Serghei, Hoon, Dave, Ahn, Keunsoo, Kang, Koo Jeong, Beuschlein, Felix, Breggia, Anne, Birrer, Michael, Bell, Debra, Borad, Mitesh, Bryce, Alan H., Castle, Erik, Chandan, Vishal, Cheville, John, Copland, John A., Farnell, Michael, Flotte, Thomas, Giama, Nasra, Ho, Thai, Kendrick, Michael, Kocher, Jean-Pierre, Kopp, Karla, Moser, Catherine, Nagorney, David, O’Brien, Daniel, O’Neill, Brian Patrick, Patel, Tushar, Petersen, Gloria, Que, Florencia, Rivera, Michael, Roberts, Lewis, Smallridge, Robert, Smyrk, Thomas, Stanton, Melissa, Thompson, R. Houston, Torbenson, Michael, Yang, Ju Dong, Zhang, Lizhi, Brimo, Fadi, Ajani, Jaffer A., Gonzalez, Ana Maria Angulo, Behrens, Carmen, Bondaruk, Jolanta, Broaddus, Russell, Czerniak, Bogdan, Esmaeli, Bita, Fujimoto, Junya, Gershenwald, Jeffrey, Guo, Charles, Lazar, Alexander J., Logothetis, Christopher, Meric-Bernstam, Funda, Moran, Cesar, Ramondetta, Lois, Rice, David, Sood, Anil, Tamboli, Pheroze, Thompson, Timothy, Troncoso, Patricia, Tsao, Anne, Wistuba, Ignacio, Carter, Candace, Haydu, Lauren, Hersey, Peter, Jakrot, Valerie, Kakavand, Hojabr, Kefford, Richard, Lee, Kenneth, Long, Georgina, Mann, Graham, Quinn, Michael, Saw, Robyn, Scolyer, Richard, Shannon, Kerwin, Spillane, Andrew, Stretch, Jonathan, Synott, Maria, Thompson, John, Wilmott, James, Al-Ahmadie, Hikmat, Chan, Timothy A., Ghossein, Ronald, Gopalan, Anuradha, Levine, Douglas A., Reuter, Victor, Singer, Samuel, Singh, Bhuvanesh, Tien, Nguyen Viet, Broudy, Thomas, Mirsaidi, Cyrus, Nair, Praveen, Drwiega, Paul, Miller, Judy, Smith, Jennifer, Zaren, Howard, Park, Joong-Won, Hung, Nguyen Phi, Kebebew, Electron, Linehan, W. Marston, Metwalli, Adam R., Pacak, Karel, Pinto, Peter A., Schiffman, Mark, Schmidt, Laura S., Vocke, Cathy D., Wentzensen, Nicolas, Worrell, Robert, Yang, Hannah, Moncrieff, Marc, Goparaju, Chandra, Melamed, Jonathan, Pass, Harvey, Botnariuc, Natalia, Caraman, Irina, Cernat, Mircea, Chemencedji, Inga, Clipca, Adrian, Doruc, Serghei, Gorincioi, Ghenadie, Mura, Sergiu, Pirtac, Maria, Stancul, Irina, Tcaciuc, Diana, Albert, Monique, Alexopoulou, Iakovina, Arnaout, Angel, Bartlett, John, Engel, Jay, Gilbert, Sebastien, Parfitt, Jeremy, Sekhon, Harman, Thomas, George, Rassl, Doris M., Rintoul, Robert C., Bifulco, Carlo, Tamakawa, Raina, Urba, Walter, Hayward, Nicholas, Timmers, Henri, Antenucci, Anna, Facciolo, Francesco, Grazi, Gianluca, Marino, Mirella, Merola, Roberta, de Krijger, Ronald, Gimenez-Roqueplo, Anne-Paule, Piché, Alain, Chevalier, Simone, McKercher, Ginette, Birsoy, Kivanc, Barnett, Gene, Brewer, Cathy, Farver, Carol, Naska, Theresa, Pennell, Nathan A., Raymond, Daniel, Schilero, Cathy, Smolenski, Kathy, Williams, Felicia, Morrison, Carl, Borgia, Jeffrey A., Liptay, Michael J., Pool, Mark, Seder, Christopher W., Junker, Kerstin, Omberg, Larsson, Dinkin, Mikhail, Manikhas, George, Alvaro, Domenico, Bragazzi, Maria Consiglia, Cardinale, Vincenzo, Carpino, Guido, Gaudio, Eugenio, Chesla, David, Cottingham, Sandra, Dubina, Michael, Moiseenko, Fedor, Dhanasekaran, Renumathy, Becker, Karl-Friedrich, Janssen, Klaus-Peter, Slotta-Huspenina, Julia, Abdel-Rahman, Mohamed H., Aziz, Dina, Bell, Sue, Cebulla, Colleen M., Davis, Amy, Duell, Rebecca, Elder, J. Bradley, Hilty, Joe, Kumar, Bahavna, Lang, James, Lehman, Norman L., Mandt, Randy, Nguyen, Phuong, Pilarski, Robert, Rai, Karan, Schoenfield, Lynn, Senecal, Kelly, Wakely, Paul, Hansen, Paul, Lechan, Ronald, Powers, James, Tischler, Arthur, Grizzle, William E., Sexton, Katherine C., Kastl, Alison, Henderson, Joel, Porten, Sima, Waldmann, Jens, Fassnacht, Martin, Asa, Sylvia L., Schadendorf, Dirk, Couce, Marta, Graefen, Markus, Huland, Hartwig, Sauter, Guido, Schlomm, Thorsten, Simon, Ronald, Tennstedt, Pierre, Olabode, Oluwole, Nelson, Mark, Bathe, Oliver, Carroll, Peter R., Chan, June M., Disaia, Philip, Glenn, Pat, Kelley, Robin K., Landen, Charles N., Phillips, Joanna, Prados, Michael, Simko, Jeffry, Smith-McCune, Karen, VandenBerg, Scott, Roggin, Kevin, Fehrenbach, Ashley, Kendler, Ady, Sifri, Suzanne, Steele, Ruth, Jimeno, Antonio, Carey, Francis, Forgie, Ian, Mannelli, Massimo, Carney, Michael, Hernandez, Brenda, Campos, Benito, Herold-Mende, Christel, Jungk, Christin, Unterberg, Andreas, von Deimling, Andreas, Bossler, Aaron, Galbraith, Joseph, Jacobus, Laura, Knudson, Michael, Knutson, Tina, Ma, Deqin, Milhem, Mohammed, Sigmund, Rita, Godwin, Andrew K., Madan, Rashna, Rosenthal, Howard G., Adebamowo, Clement, Adebamowo, Sally N., Boussioutas, Alex, Beer, David, Giordano, Thomas, Mes-Masson, Anne-Marie, Saad, Fred, Bocklage, Therese, Landrum, Lisa, Mannel, Robert, Moore, Kathleen, Moxley, Katherine, Postier, Russel, Walker, Joan, Zuna, Rosemary, Feldman, Michael, Valdivieso, Federico, Dhir, Rajiv, Luketich, James, Pinero, Edna M. Mora, Quintero-Aguilo, Mario, Carlotti, Carlos Gilberto, Jr., Dos Santos, Jose Sebastião, Kemp, Rafael, Sankarankuty, Ajith, Tirapelli, Daniela, Catto, James, Agnew, Kathy, Swisher, Elizabeth, Creaney, Jenette, Robinson, Bruce, Shelley, Carl Simon, Godwin, Eryn M., Kendall, Sara, Shipman, Cassaundra, Bradford, Carol, Carey, Thomas, Haddad, Andrea, Moyer, Jeffey, Peterson, Lisa, Prince, Mark, Rozek, Laura, Wolf, Gregory, Bowman, Rayleen, Fong, Kwun M., Yang, Ian, Korst, Robert, Rathmell, W. Kimryn, Fantacone-Campbell, J. Leigh, Hooke, Jeffrey A., Kovatich, Albert J., Shriver, Craig D., DiPersio, John, Drake, Bettina, Govindan, Ramaswamy, Heath, Sharon, Ley, Timothy, Van Tine, Brian, Westervelt, Peter, Rubin, Mark A., Lee, Jung Il, Aredes, Natália D., Mariamidze, Armaz, Mina, Marco, La, Konnor C., Dimitriadoy, Sofia, Liu, David L., Kantheti, Havish S., Saghafinia, Sadegh, Daian, Foysal, Gao, Qingsong, Bailey, Matthew H., Liang, Wen-Wei, Foltz, Steven M., Heins, Zachary, Gross, Benjamin, Bahceci, Istemi, Dervishi, Leonard, Dogrusoz, Ugur, Way, Gregory P., Greene, Casey S., Xiao, Yonghong, Wang, Chen, Iavarone, Antonio, Berger, Alice H., Bivona, Trever G., Hammer, Gary D., Kwong, Lawrence N., McArthur, Grant, Huang, Chenfei, Tward, Aaron D., Frederick, Mitchell J., McCormick, Frank, Van Allen, Eliezer M., and Ciriello, Giovanni
- Published
- 2018
- Full Text
- View/download PDF
32. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas
- Author
-
Caesar-Johnson, Samantha J., Demchok, John A., Felau, Ina, Kasapi, Melpomeni, Ferguson, Martin L., Hutter, Carolyn M., Sofia, Heidi J., Tarnuzzer, Roy, Wang, Zhining, Yang, Liming, Zenklusen, Jean C., Zhang, Jiashan (Julia), Chudamani, Sudha, Liu, Jia, Lolla, Laxmi, Naresh, Rashi, Pihl, Todd, Sun, Qiang, Wan, Yunhu, Wu, Ye, Cho, Juok, DeFreitas, Timothy, Frazer, Scott, Gehlenborg, Nils, Getz, Gad, Heiman, David I., Kim, Jaegil, Lawrence, Michael S., Lin, Pei, Meier, Sam, Noble, Michael S., Saksena, Gordon, Voet, Doug, Zhang, Hailei, Bernard, Brady, Chambwe, Nyasha, Dhankani, Varsha, Knijnenburg, Theo, Kramer, Roger, Leinonen, Kalle, Liu, Yuexin, Miller, Michael, Reynolds, Sheila, Shmulevich, Ilya, Thorsson, Vesteinn, Zhang, Wei, Akbani, Rehan, Broom, Bradley M., Hegde, Apurva M., Ju, Zhenlin, Kanchi, Rupa S., Korkut, Anil, Li, Jun, Liang, Han, Ling, Shiyun, Liu, Wenbin, Lu, Yiling, Mills, Gordon B., Ng, Kwok-Shing, Rao, Arvind, Ryan, Michael, Wang, Jing, Weinstein, John N., Zhang, Jiexin, Abeshouse, Adam, Armenia, Joshua, Chakravarty, Debyani, Chatila, Walid K., de Bruijn, Ino, Gao, Jianjiong, Gross, Benjamin E., Heins, Zachary J., Kundra, Ritika, La, Konnor, Ladanyi, Marc, Luna, Augustin, Nissan, Moriah G., Ochoa, Angelica, Phillips, Sarah M., Reznik, Ed, Sanchez-Vega, Francisco, Sander, Chris, Schultz, Nikolaus, Sheridan, Robert, Sumer, S. Onur, Sun, Yichao, Taylor, Barry S., Wang, Jioajiao, Zhang, Hongxin, Anur, Pavana, Peto, Myron, Spellman, Paul, Benz, Christopher, Stuart, Joshua M., Wong, Christopher K., Yau, Christina, Hayes, D. Neil, Parker, Joel S., Wilkerson, Matthew D., Ally, Adrian, Balasundaram, Miruna, Bowlby, Reanne, Brooks, Denise, Carlsen, Rebecca, Chuah, Eric, Dhalla, Noreen, Holt, Robert, Jones, Steven J.M., Kasaian, Katayoon, Lee, Darlene, Ma, Yussanne, Marra, Marco A., Mayo, Michael, Moore, Richard A., Mungall, Andrew J., Mungall, Karen, Robertson, A. Gordon, Sadeghi, Sara, Schein, Jacqueline E., Sipahimalani, Payal, Tam, Angela, Thiessen, Nina, Tse, Kane, Wong, Tina, Berger, Ashton C., Beroukhim, Rameen, Cherniack, Andrew D., Cibulskis, Carrie, Gabriel, Stacey B., Gao, Galen F., Ha, Gavin, Meyerson, Matthew, Schumacher, Steven E., Shih, Juliann, Kucherlapati, Melanie H., Kucherlapati, Raju S., Baylin, Stephen, Cope, Leslie, Danilova, Ludmila, Bootwalla, Moiz S., Lai, Phillip H., Maglinte, Dennis T., Van Den Berg, David J., Weisenberger, Daniel J., Auman, J. Todd, Balu, Saianand, Bodenheimer, Tom, Fan, Cheng, Hoadley, Katherine A., Hoyle, Alan P., Jefferys, Stuart R., Jones, Corbin D., Meng, Shaowu, Mieczkowski, Piotr A., Mose, Lisle E., Perou, Amy H., Perou, Charles M., Roach, Jeffrey, Shi, Yan, Simons, Janae V., Skelly, Tara, Soloway, Matthew G., Tan, Donghui, Veluvolu, Umadevi, Fan, Huihui, Hinoue, Toshinori, Laird, Peter W., Shen, Hui, Zhou, Wanding, Bellair, Michelle, Chang, Kyle, Covington, Kyle, Creighton, Chad J., Dinh, Huyen, Doddapaneni, HarshaVardhan, Donehower, Lawrence A., Drummond, Jennifer, Gibbs, Richard A., Glenn, Robert, Hale, Walker, Han, Yi, Hu, Jianhong, Korchina, Viktoriya, Lee, Sandra, Lewis, Lora, Li, Wei, Liu, Xiuping, Morgan, Margaret, Morton, Donna, Muzny, Donna, Santibanez, Jireh, Sheth, Margi, Shinbrot, Eve, Wang, Linghua, Wang, Min, Wheeler, David A., Xi, Liu, Zhao, Fengmei, Hess, Julian, Appelbaum, Elizabeth L., Bailey, Matthew, Cordes, Matthew G., Ding, Li, Fronick, Catrina C., Fulton, Lucinda A., Fulton, Robert S., Kandoth, Cyriac, Mardis, Elaine R., McLellan, Michael D., Miller, Christopher A., Schmidt, Heather K., Wilson, Richard K., Crain, Daniel, Curley, Erin, Gardner, Johanna, Lau, Kevin, Mallery, David, Morris, Scott, Paulauskis, Joseph, Penny, Robert, Shelton, Candace, Shelton, Troy, Sherman, Mark, Thompson, Eric, Yena, Peggy, Bowen, Jay, Gastier-Foster, Julie M., Gerken, Mark, Leraas, Kristen M., Lichtenberg, Tara M., Ramirez, Nilsa C., Wise, Lisa, Zmuda, Erik, Corcoran, Niall, Costello, Tony, Hovens, Christopher, Carvalho, Andre L., de Carvalho, Ana C., Fregnani, José H., Longatto-Filho, Adhemar, Reis, Rui M., Scapulatempo-Neto, Cristovam, Silveira, Henrique C.S., Vidal, Daniel O., Burnette, Andrew, Eschbacher, Jennifer, Hermes, Beth, Noss, Ardene, Singh, Rosy, Anderson, Matthew L., Castro, Patricia D., Ittmann, Michael, Huntsman, David, Kohl, Bernard, Le, Xuan, Thorp, Richard, Andry, Chris, Duffy, Elizabeth R., Lyadov, Vladimir, Paklina, Oxana, Setdikova, Galiya, Shabunin, Alexey, Tavobilov, Mikhail, McPherson, Christopher, Warnick, Ronald, Berkowitz, Ross, Cramer, Daniel, Feltmate, Colleen, Horowitz, Neil, Kibel, Adam, Muto, Michael, Raut, Chandrajit P., Malykh, Andrei, Barnholtz-Sloan, Jill S., Barrett, Wendi, Devine, Karen, Fulop, Jordonna, Ostrom, Quinn T., Shimmel, Kristen, Wolinsky, Yingli, Sloan, Andrew E., De Rose, Agostino, Giuliante, Felice, Goodman, Marc, Karlan, Beth Y., Hagedorn, Curt H., Eckman, John, Harr, Jodi, Myers, Jerome, Tucker, Kelinda, Zach, Leigh Anne, Deyarmin, Brenda, Hu, Hai, Kvecher, Leonid, Larson, Caroline, Mural, Richard J., Somiari, Stella, Vicha, Ales, Zelinka, Tomas, Bennett, Joseph, Iacocca, Mary, Rabeno, Brenda, Swanson, Patricia, Latour, Mathieu, Lacombe, Louis, Têtu, Bernard, Bergeron, Alain, McGraw, Mary, Staugaitis, Susan M., Chabot, John, Hibshoosh, Hanina, Sepulveda, Antonia, Su, Tao, Wang, Timothy, Potapova, Olga, Voronina, Olga, Desjardins, Laurence, Mariani, Odette, Roman-Roman, Sergio, Sastre, Xavier, Stern, Marc-Henri, Cheng, Feixiong, Signoretti, Sabina, Berchuck, Andrew, Bigner, Darell, Lipp, Eric, Marks, Jeffrey, McCall, Shannon, McLendon, Roger, Secord, Angeles, Sharp, Alexis, Behera, Madhusmita, Brat, Daniel J., Chen, Amy, Delman, Keith, Force, Seth, Khuri, Fadlo, Magliocca, Kelly, Maithel, Shishir, Olson, Jeffrey J., Owonikoko, Taofeek, Pickens, Alan, Ramalingam, Suresh, Shin, Dong M., Sica, Gabriel, Van Meir, Erwin G., Zhang, Hongzheng, Eijckenboom, Wil, Gillis, Ad, Korpershoek, Esther, Looijenga, Leendert, Oosterhuis, Wolter, Stoop, Hans, van Kessel, Kim E., Zwarthoff, Ellen C., Calatozzolo, Chiara, Cuppini, Lucia, Cuzzubbo, Stefania, DiMeco, Francesco, Finocchiaro, Gaetano, Mattei, Luca, Perin, Alessandro, Pollo, Bianca, Chen, Chu, Houck, John, Lohavanichbutr, Pawadee, Hartmann, Arndt, Stoehr, Christine, Stoehr, Robert, Taubert, Helge, Wach, Sven, Wullich, Bernd, Kycler, Witold, Murawa, Dawid, Wiznerowicz, Maciej, Chung, Ki, Edenfield, W. Jeffrey, Martin, Julie, Baudin, Eric, Bubley, Glenn, Bueno, Raphael, De Rienzo, Assunta, Richards, William G., Kalkanis, Steven, Mikkelsen, Tom, Noushmehr, Houtan, Scarpace, Lisa, Girard, Nicolas, Aymerich, Marta, Campo, Elias, Giné, Eva, Guillermo, Armando López, Van Bang, Nguyen, Hanh, Phan Thi, Phu, Bui Duc, Tang, Yufang, Colman, Howard, Evason, Kimberley, Dottino, Peter R., Martignetti, John A., Gabra, Hani, Juhl, Hartmut, Akeredolu, Teniola, Stepa, Serghei, Hoon, Dave, Ahn, Keunsoo, Kang, Koo Jeong, Beuschlein, Felix, Breggia, Anne, Birrer, Michael, Bell, Debra, Borad, Mitesh, Bryce, Alan H., Castle, Erik, Chandan, Vishal, Cheville, John, Copland, John A., Farnell, Michael, Flotte, Thomas, Giama, Nasra, Ho, Thai, Kendrick, Michael, Kocher, Jean-Pierre, Kopp, Karla, Moser, Catherine, Nagorney, David, O’Brien, Daniel, O’Neill, Brian Patrick, Patel, Tushar, Petersen, Gloria, Que, Florencia, Rivera, Michael, Roberts, Lewis, Smallridge, Robert, Smyrk, Thomas, Stanton, Melissa, Thompson, R. Houston, Torbenson, Michael, Yang, Ju Dong, Zhang, Lizhi, Brimo, Fadi, Ajani, Jaffer A., Gonzalez, Ana Maria Angulo, Behrens, Carmen, Bondaruk, Jolanta, Broaddus, Russell, Czerniak, Bogdan, Esmaeli, Bita, Fujimoto, Junya, Gershenwald, Jeffrey, Guo, Charles, Lazar, Alexander J., Logothetis, Christopher, Meric-Bernstam, Funda, Moran, Cesar, Ramondetta, Lois, Rice, David, Sood, Anil, Tamboli, Pheroze, Thompson, Timothy, Troncoso, Patricia, Tsao, Anne, Wistuba, Ignacio, Carter, Candace, Haydu, Lauren, Hersey, Peter, Jakrot, Valerie, Kakavand, Hojabr, Kefford, Richard, Lee, Kenneth, Long, Georgina, Mann, Graham, Quinn, Michael, Saw, Robyn, Scolyer, Richard, Shannon, Kerwin, Spillane, Andrew, Stretch, Jonathan, Synott, Maria, Thompson, John, Wilmott, James, Al-Ahmadie, Hikmat, Chan, Timothy A., Ghossein, Ronald, Gopalan, Anuradha, Levine, Douglas A., Reuter, Victor, Singer, Samuel, Singh, Bhuvanesh, Tien, Nguyen Viet, Broudy, Thomas, Mirsaidi, Cyrus, Nair, Praveen, Drwiega, Paul, Miller, Judy, Smith, Jennifer, Zaren, Howard, Park, Joong-Won, Hung, Nguyen Phi, Kebebew, Electron, Linehan, W. Marston, Metwalli, Adam R., Pacak, Karel, Pinto, Peter A., Schiffman, Mark, Schmidt, Laura S., Vocke, Cathy D., Wentzensen, Nicolas, Worrell, Robert, Yang, Hannah, Moncrieff, Marc, Goparaju, Chandra, Melamed, Jonathan, Pass, Harvey, Botnariuc, Natalia, Caraman, Irina, Cernat, Mircea, Chemencedji, Inga, Clipca, Adrian, Doruc, Serghei, Gorincioi, Ghenadie, Mura, Sergiu, Pirtac, Maria, Stancul, Irina, Tcaciuc, Diana, Albert, Monique, Alexopoulou, Iakovina, Arnaout, Angel, Bartlett, John, Engel, Jay, Gilbert, Sebastien, Parfitt, Jeremy, Sekhon, Harman, Thomas, George, Rassl, Doris M., Rintoul, Robert C., Bifulco, Carlo, Tamakawa, Raina, Urba, Walter, Hayward, Nicholas, Timmers, Henri, Antenucci, Anna, Facciolo, Francesco, Grazi, Gianluca, Marino, Mirella, Merola, Roberta, de Krijger, Ronald, Gimenez-Roqueplo, Anne-Paule, Piché, Alain, Chevalier, Simone, McKercher, Ginette, Birsoy, Kivanc, Barnett, Gene, Brewer, Cathy, Farver, Carol, Naska, Theresa, Pennell, Nathan A., Raymond, Daniel, Schilero, Cathy, Smolenski, Kathy, Williams, Felicia, Morrison, Carl, Borgia, Jeffrey A., Liptay, Michael J., Pool, Mark, Seder, Christopher W., Junker, Kerstin, Omberg, Larsson, Dinkin, Mikhail, Manikhas, George, Alvaro, Domenico, Bragazzi, Maria Consiglia, Cardinale, Vincenzo, Carpino, Guido, Gaudio, Eugenio, Chesla, David, Cottingham, Sandra, Dubina, Michael, Moiseenko, Fedor, Dhanasekaran, Renumathy, Becker, Karl-Friedrich, Janssen, Klaus-Peter, Slotta-Huspenina, Julia, Abdel-Rahman, Mohamed H., Aziz, Dina, Bell, Sue, Cebulla, Colleen M., Davis, Amy, Duell, Rebecca, Elder, J. Bradley, Hilty, Joe, Kumar, Bahavna, Lang, James, Lehman, Norman L., Mandt, Randy, Nguyen, Phuong, Pilarski, Robert, Rai, Karan, Schoenfield, Lynn, Senecal, Kelly, Wakely, Paul, Hansen, Paul, Lechan, Ronald, Powers, James, Tischler, Arthur, Grizzle, William E., Sexton, Katherine C., Kastl, Alison, Henderson, Joel, Porten, Sima, Waldmann, Jens, Fassnacht, Martin, Asa, Sylvia L., Schadendorf, Dirk, Couce, Marta, Graefen, Markus, Huland, Hartwig, Sauter, Guido, Schlomm, Thorsten, Simon, Ronald, Tennstedt, Pierre, Olabode, Oluwole, Nelson, Mark, Bathe, Oliver, Carroll, Peter R., Chan, June M., Disaia, Philip, Glenn, Pat, Kelley, Robin K., Landen, Charles N., Phillips, Joanna, Prados, Michael, Simko, Jeffry, Smith-McCune, Karen, VandenBerg, Scott, Roggin, Kevin, Fehrenbach, Ashley, Kendler, Ady, Sifri, Suzanne, Steele, Ruth, Jimeno, Antonio, Carey, Francis, Forgie, Ian, Mannelli, Massimo, Carney, Michael, Hernandez, Brenda, Campos, Benito, Herold-Mende, Christel, Jungk, Christin, Unterberg, Andreas, von Deimling, Andreas, Bossler, Aaron, Galbraith, Joseph, Jacobus, Laura, Knudson, Michael, Knutson, Tina, Ma, Deqin, Milhem, Mohammed, Sigmund, Rita, Godwin, Andrew K., Madan, Rashna, Rosenthal, Howard G., Adebamowo, Clement, Adebamowo, Sally N., Boussioutas, Alex, Beer, David, Giordano, Thomas, Mes-Masson, Anne-Marie, Saad, Fred, Bocklage, Therese, Landrum, Lisa, Mannel, Robert, Moore, Kathleen, Moxley, Katherine, Postier, Russel, Walker, Joan, Zuna, Rosemary, Feldman, Michael, Valdivieso, Federico, Dhir, Rajiv, Luketich, James, Pinero, Edna M. Mora, Quintero-Aguilo, Mario, Carlotti, Carlos Gilberto, Jr., Dos Santos, Jose Sebastião, Kemp, Rafael, Sankarankuty, Ajith, Tirapelli, Daniela, Catto, James, Agnew, Kathy, Swisher, Elizabeth, Creaney, Jenette, Robinson, Bruce, Shelley, Carl Simon, Godwin, Eryn M., Kendall, Sara, Shipman, Cassaundra, Bradford, Carol, Carey, Thomas, Haddad, Andrea, Moyer, Jeffey, Peterson, Lisa, Prince, Mark, Rozek, Laura, Wolf, Gregory, Bowman, Rayleen, Fong, Kwun M., Yang, Ian, Korst, Robert, Rathmell, W. Kimryn, Fantacone-Campbell, J. Leigh, Hooke, Jeffrey A., Kovatich, Albert J., Shriver, Craig D., DiPersio, John, Drake, Bettina, Govindan, Ramaswamy, Heath, Sharon, Ley, Timothy, Van Tine, Brian, Westervelt, Peter, Rubin, Mark A., Lee, Jung Il, Aredes, Natália D., Mariamidze, Armaz, Knijnenburg, Theo A., Zimmermann, Michael T., Way, Gregory P., Greene, Casey S., Feng, Bin, Miller, Chase, Shen, Yang, Karimi, Mostafa, Chen, Haoran, Kim, Pora, Jia, Peilin, Zhang, Shaojun, Liu, Jianfang, Bailey, Matthew H., Wolf, Denise, Zhao, Zhongming, Li, Lei, Monnat, Raymond J., Jr., Xiao, Yonghong, and Wang, Chen
- Published
- 2018
- Full Text
- View/download PDF
33. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas
- Author
-
Caesar-Johnson, Samantha J., Demchok, John A., Felau, Ina, Kasapi, Melpomeni, Ferguson, Martin L., Hutter, Carolyn M., Sofia, Heidi J., Tarnuzzer, Roy, Wang, Zhining, Yang, Liming, Zenklusen, Jean C., Zhang, Jiashan (Julia), Chudamani, Sudha, Liu, Jia, Lolla, Laxmi, Naresh, Rashi, Pihl, Todd, Sun, Qiang, Wan, Yunhu, Wu, Ye, Cho, Juok, DeFreitas, Timothy, Frazer, Scott, Gehlenborg, Nils, Getz, Gad, Heiman, David I., Kim, Jaegil, Lawrence, Michael S., Lin, Pei, Meier, Sam, Noble, Michael S., Saksena, Gordon, Voet, Doug, Zhang, Hailei, Bernard, Brady, Chambwe, Nyasha, Dhankani, Varsha, Knijnenburg, Theo, Kramer, Roger, Leinonen, Kalle, Liu, Yuexin, Miller, Michael, Reynolds, Sheila, Shmulevich, Ilya, Thorsson, Vesteinn, Zhang, Wei, Akbani, Rehan, Broom, Bradley M., Hegde, Apurva M., Ju, Zhenlin, Kanchi, Rupa S., Korkut, Anil, Li, Jun, Liang, Han, Ling, Shiyun, Liu, Wenbin, Lu, Yiling, Mills, Gordon B., Ng, Kwok-Shing, Rao, Arvind, Ryan, Michael, Wang, Jing, Weinstein, John N., Zhang, Jiexin, Abeshouse, Adam, Armenia, Joshua, Chakravarty, Debyani, Chatila, Walid K., de Bruijn, Ino, Gao, Jianjiong, Gross, Benjamin E., Heins, Zachary J., Kundra, Ritika, La, Konnor, Ladanyi, Marc, Luna, Augustin, Nissan, Moriah G., Ochoa, Angelica, Phillips, Sarah M., Reznik, Ed, Sanchez-Vega, Francisco, Sander, Chris, Schultz, Nikolaus, Sheridan, Robert, Sumer, S. Onur, Sun, Yichao, Taylor, Barry S., Wang, Jioajiao, Zhang, Hongxin, Anur, Pavana, Peto, Myron, Spellman, Paul, Benz, Christopher, Stuart, Joshua M., Wong, Christopher K., Yau, Christina, Hayes, D. Neil, Parker, Joel S., Wilkerson, Matthew D., Ally, Adrian, Balasundaram, Miruna, Bowlby, Reanne, Brooks, Denise, Carlsen, Rebecca, Chuah, Eric, Dhalla, Noreen, Holt, Robert, Jones, Steven J.M., Kasaian, Katayoon, Lee, Darlene, Ma, Yussanne, Marra, Marco A., Mayo, Michael, Moore, Richard A., Mungall, Andrew J., Mungall, Karen, Robertson, A. Gordon, Sadeghi, Sara, Schein, Jacqueline E., Sipahimalani, Payal, Tam, Angela, Thiessen, Nina, Tse, Kane, Wong, Tina, Berger, Ashton C., Beroukhim, Rameen, Cherniack, Andrew D., Cibulskis, Carrie, Gabriel, Stacey B., Gao, Galen F., Ha, Gavin, Meyerson, Matthew, Schumacher, Steven E., Shih, Juliann, Kucherlapati, Melanie H., Kucherlapati, Raju S., Baylin, Stephen, Cope, Leslie, Danilova, Ludmila, Bootwalla, Moiz S., Lai, Phillip H., Maglinte, Dennis T., Van Den Berg, David J., Weisenberger, Daniel J., Auman, J. Todd, Balu, Saianand, Bodenheimer, Tom, Fan, Cheng, Hoadley, Katherine A., Hoyle, Alan P., Jefferys, Stuart R., Jones, Corbin D., Meng, Shaowu, Mieczkowski, Piotr A., Mose, Lisle E., Perou, Amy H., Perou, Charles M., Roach, Jeffrey, Shi, Yan, Simons, Janae V., Skelly, Tara, Soloway, Matthew G., Tan, Donghui, Veluvolu, Umadevi, Fan, Huihui, Hinoue, Toshinori, Laird, Peter W., Shen, Hui, Zhou, Wanding, Bellair, Michelle, Chang, Kyle, Covington, Kyle, Creighton, Chad J., Dinh, Huyen, Doddapaneni, HarshaVardhan, Donehower, Lawrence A., Drummond, Jennifer, Gibbs, Richard A., Glenn, Robert, Hale, Walker, Han, Yi, Hu, Jianhong, Korchina, Viktoriya, Lee, Sandra, Lewis, Lora, Li, Wei, Liu, Xiuping, Morgan, Margaret, Morton, Donna, Muzny, Donna, Santibanez, Jireh, Sheth, Margi, Shinbrot, Eve, Wang, Linghua, Wang, Min, Wheeler, David A., Xi, Liu, Zhao, Fengmei, Hess, Julian, Appelbaum, Elizabeth L., Bailey, Matthew, Cordes, Matthew G., Ding, Li, Fronick, Catrina C., Fulton, Lucinda A., Fulton, Robert S., Kandoth, Cyriac, Mardis, Elaine R., McLellan, Michael D., Miller, Christopher A., Schmidt, Heather K., Wilson, Richard K., Crain, Daniel, Curley, Erin, Gardner, Johanna, Lau, Kevin, Mallery, David, Morris, Scott, Paulauskis, Joseph, Penny, Robert, Shelton, Candace, Shelton, Troy, Sherman, Mark, Thompson, Eric, Yena, Peggy, Bowen, Jay, Gastier-Foster, Julie M., Gerken, Mark, Leraas, Kristen M., Lichtenberg, Tara M., Ramirez, Nilsa C., Wise, Lisa, Zmuda, Erik, Corcoran, Niall, Costello, Tony, Hovens, Christopher, Carvalho, Andre L., de Carvalho, Ana C., Fregnani, José H., Longatto-Filho, Adhemar, Reis, Rui M., Scapulatempo-Neto, Cristovam, Silveira, Henrique C.S., Vidal, Daniel O., Burnette, Andrew, Eschbacher, Jennifer, Hermes, Beth, Noss, Ardene, Singh, Rosy, Anderson, Matthew L., Castro, Patricia D., Ittmann, Michael, Huntsman, David, Kohl, Bernard, Le, Xuan, Thorp, Richard, Andry, Chris, Duffy, Elizabeth R., Lyadov, Vladimir, Paklina, Oxana, Setdikova, Galiya, Shabunin, Alexey, Tavobilov, Mikhail, McPherson, Christopher, Warnick, Ronald, Berkowitz, Ross, Cramer, Daniel, Feltmate, Colleen, Horowitz, Neil, Kibel, Adam, Muto, Michael, Raut, Chandrajit P., Malykh, Andrei, Barnholtz-Sloan, Jill S., Barrett, Wendi, Devine, Karen, Fulop, Jordonna, Ostrom, Quinn T., Shimmel, Kristen, Wolinsky, Yingli, Sloan, Andrew E., De Rose, Agostino, Giuliante, Felice, Goodman, Marc, Karlan, Beth Y., Hagedorn, Curt H., Eckman, John, Harr, Jodi, Myers, Jerome, Tucker, Kelinda, Zach, Leigh Anne, Deyarmin, Brenda, Hu, Hai, Kvecher, Leonid, Larson, Caroline, Mural, Richard J., Somiari, Stella, Vicha, Ales, Zelinka, Tomas, Bennett, Joseph, Iacocca, Mary, Rabeno, Brenda, Swanson, Patricia, Latour, Mathieu, Lacombe, Louis, Têtu, Bernard, Bergeron, Alain, McGraw, Mary, Staugaitis, Susan M., Chabot, John, Hibshoosh, Hanina, Sepulveda, Antonia, Su, Tao, Wang, Timothy, Potapova, Olga, Voronina, Olga, Desjardins, Laurence, Mariani, Odette, Roman-Roman, Sergio, Sastre, Xavier, Stern, Marc-Henri, Cheng, Feixiong, Signoretti, Sabina, Berchuck, Andrew, Bigner, Darell, Lipp, Eric, Marks, Jeffrey, McCall, Shannon, McLendon, Roger, Secord, Angeles, Sharp, Alexis, Behera, Madhusmita, Brat, Daniel J., Chen, Amy, Delman, Keith, Force, Seth, Khuri, Fadlo, Magliocca, Kelly, Maithel, Shishir, Olson, Jeffrey J., Owonikoko, Taofeek, Pickens, Alan, Ramalingam, Suresh, Shin, Dong M., Sica, Gabriel, Van Meir, Erwin G., Zhang, Hongzheng, Eijckenboom, Wil, Gillis, Ad, Korpershoek, Esther, Looijenga, Leendert, Oosterhuis, Wolter, Stoop, Hans, van Kessel, Kim E., Zwarthoff, Ellen C., Calatozzolo, Chiara, Cuppini, Lucia, Cuzzubbo, Stefania, DiMeco, Francesco, Finocchiaro, Gaetano, Mattei, Luca, Perin, Alessandro, Pollo, Bianca, Chen, Chu, Houck, John, Lohavanichbutr, Pawadee, Hartmann, Arndt, Stoehr, Christine, Stoehr, Robert, Taubert, Helge, Wach, Sven, Wullich, Bernd, Kycler, Witold, Murawa, Dawid, Wiznerowicz, Maciej, Chung, Ki, Edenfield, W. Jeffrey, Martin, Julie, Baudin, Eric, Bubley, Glenn, Bueno, Raphael, De Rienzo, Assunta, Richards, William G., Kalkanis, Steven, Mikkelsen, Tom, Noushmehr, Houtan, Scarpace, Lisa, Girard, Nicolas, Aymerich, Marta, Campo, Elias, Giné, Eva, Guillermo, Armando López, Van Bang, Nguyen, Hanh, Phan Thi, Phu, Bui Duc, Tang, Yufang, Colman, Howard, Evason, Kimberley, Dottino, Peter R., Martignetti, John A., Gabra, Hani, Juhl, Hartmut, Akeredolu, Teniola, Stepa, Serghei, Hoon, Dave, Ahn, Keunsoo, Kang, Koo Jeong, Beuschlein, Felix, Breggia, Anne, Birrer, Michael, Bell, Debra, Borad, Mitesh, Bryce, Alan H., Castle, Erik, Chandan, Vishal, Cheville, John, Copland, John A., Farnell, Michael, Flotte, Thomas, Giama, Nasra, Ho, Thai, Kendrick, Michael, Kocher, Jean-Pierre, Kopp, Karla, Moser, Catherine, Nagorney, David, O’Brien, Daniel, O’Neill, Brian Patrick, Patel, Tushar, Petersen, Gloria, Que, Florencia, Rivera, Michael, Roberts, Lewis, Smallridge, Robert, Smyrk, Thomas, Stanton, Melissa, Thompson, R. Houston, Torbenson, Michael, Yang, Ju Dong, Zhang, Lizhi, Brimo, Fadi, Ajani, Jaffer A., Gonzalez, Ana Maria Angulo, Behrens, Carmen, Bondaruk, Jolanta, Broaddus, Russell, Czerniak, Bogdan, Esmaeli, Bita, Fujimoto, Junya, Gershenwald, Jeffrey, Guo, Charles, Lazar, Alexander J., Logothetis, Christopher, Meric-Bernstam, Funda, Moran, Cesar, Ramondetta, Lois, Rice, David, Sood, Anil, Tamboli, Pheroze, Thompson, Timothy, Troncoso, Patricia, Tsao, Anne, Wistuba, Ignacio, Carter, Candace, Haydu, Lauren, Hersey, Peter, Jakrot, Valerie, Kakavand, Hojabr, Kefford, Richard, Lee, Kenneth, Long, Georgina, Mann, Graham, Quinn, Michael, Saw, Robyn, Scolyer, Richard, Shannon, Kerwin, Spillane, Andrew, Stretch, Jonathan, Synott, Maria, Thompson, John, Wilmott, James, Al-Ahmadie, Hikmat, Chan, Timothy A., Ghossein, Ronald, Gopalan, Anuradha, Levine, Douglas A., Reuter, Victor, Singer, Samuel, Singh, Bhuvanesh, Tien, Nguyen Viet, Broudy, Thomas, Mirsaidi, Cyrus, Nair, Praveen, Drwiega, Paul, Miller, Judy, Smith, Jennifer, Zaren, Howard, Park, Joong-Won, Hung, Nguyen Phi, Kebebew, Electron, Linehan, W. Marston, Metwalli, Adam R., Pacak, Karel, Pinto, Peter A., Schiffman, Mark, Schmidt, Laura S., Vocke, Cathy D., Wentzensen, Nicolas, Worrell, Robert, Yang, Hannah, Moncrieff, Marc, Goparaju, Chandra, Melamed, Jonathan, Pass, Harvey, Botnariuc, Natalia, Caraman, Irina, Cernat, Mircea, Chemencedji, Inga, Clipca, Adrian, Doruc, Serghei, Gorincioi, Ghenadie, Mura, Sergiu, Pirtac, Maria, Stancul, Irina, Tcaciuc, Diana, Albert, Monique, Alexopoulou, Iakovina, Arnaout, Angel, Bartlett, John, Engel, Jay, Gilbert, Sebastien, Parfitt, Jeremy, Sekhon, Harman, Thomas, George, Rassl, Doris M., Rintoul, Robert C., Bifulco, Carlo, Tamakawa, Raina, Urba, Walter, Hayward, Nicholas, Timmers, Henri, Antenucci, Anna, Facciolo, Francesco, Grazi, Gianluca, Marino, Mirella, Merola, Roberta, de Krijger, Ronald, Gimenez-Roqueplo, Anne-Paule, Piché, Alain, Chevalier, Simone, McKercher, Ginette, Birsoy, Kivanc, Barnett, Gene, Brewer, Cathy, Farver, Carol, Naska, Theresa, Pennell, Nathan A., Raymond, Daniel, Schilero, Cathy, Smolenski, Kathy, Williams, Felicia, Morrison, Carl, Borgia, Jeffrey A., Liptay, Michael J., Pool, Mark, Seder, Christopher W., Junker, Kerstin, Omberg, Larsson, Dinkin, Mikhail, Manikhas, George, Alvaro, Domenico, Bragazzi, Maria Consiglia, Cardinale, Vincenzo, Carpino, Guido, Gaudio, Eugenio, Chesla, David, Cottingham, Sandra, Dubina, Michael, Moiseenko, Fedor, Dhanasekaran, Renumathy, Becker, Karl-Friedrich, Janssen, Klaus-Peter, Slotta-Huspenina, Julia, Abdel-Rahman, Mohamed H., Aziz, Dina, Bell, Sue, Cebulla, Colleen M., Davis, Amy, Duell, Rebecca, Elder, J. Bradley, Hilty, Joe, Kumar, Bahavna, Lang, James, Lehman, Norman L., Mandt, Randy, Nguyen, Phuong, Pilarski, Robert, Rai, Karan, Schoenfield, Lynn, Senecal, Kelly, Wakely, Paul, Hansen, Paul, Lechan, Ronald, Powers, James, Tischler, Arthur, Grizzle, William E., Sexton, Katherine C., Kastl, Alison, Henderson, Joel, Porten, Sima, Waldmann, Jens, Fassnacht, Martin, Asa, Sylvia L., Schadendorf, Dirk, Couce, Marta, Graefen, Markus, Huland, Hartwig, Sauter, Guido, Schlomm, Thorsten, Simon, Ronald, Tennstedt, Pierre, Olabode, Oluwole, Nelson, Mark, Bathe, Oliver, Carroll, Peter R., Chan, June M., Disaia, Philip, Glenn, Pat, Kelley, Robin K., Landen, Charles N., Phillips, Joanna, Prados, Michael, Simko, Jeffry, Smith-McCune, Karen, VandenBerg, Scott, Roggin, Kevin, Fehrenbach, Ashley, Kendler, Ady, Sifri, Suzanne, Steele, Ruth, Jimeno, Antonio, Carey, Francis, Forgie, Ian, Mannelli, Massimo, Carney, Michael, Hernandez, Brenda, Campos, Benito, Herold-Mende, Christel, Jungk, Christin, Unterberg, Andreas, von Deimling, Andreas, Bossler, Aaron, Galbraith, Joseph, Jacobus, Laura, Knudson, Michael, Knutson, Tina, Ma, Deqin, Milhem, Mohammed, Sigmund, Rita, Godwin, Andrew K., Madan, Rashna, Rosenthal, Howard G., Adebamowo, Clement, Adebamowo, Sally N., Boussioutas, Alex, Beer, David, Giordano, Thomas, Mes-Masson, Anne-Marie, Saad, Fred, Bocklage, Therese, Landrum, Lisa, Mannel, Robert, Moore, Kathleen, Moxley, Katherine, Postier, Russel, Walker, Joan, Zuna, Rosemary, Feldman, Michael, Valdivieso, Federico, Dhir, Rajiv, Luketich, James, Pinero, Edna M. Mora, Quintero-Aguilo, Mario, Carlotti, Carlos Gilberto, Jr., Dos Santos, Jose Sebastião, Kemp, Rafael, Sankarankuty, Ajith, Tirapelli, Daniela, Catto, James, Agnew, Kathy, Swisher, Elizabeth, Creaney, Jenette, Robinson, Bruce, Shelley, Carl Simon, Godwin, Eryn M., Kendall, Sara, Shipman, Cassaundra, Bradford, Carol, Carey, Thomas, Haddad, Andrea, Moyer, Jeffey, Peterson, Lisa, Prince, Mark, Rozek, Laura, Wolf, Gregory, Bowman, Rayleen, Fong, Kwun M., Yang, Ian, Korst, Robert, Rathmell, W. Kimryn, Fantacone-Campbell, J. Leigh, Hooke, Jeffrey A., Kovatich, Albert J., Shriver, Craig D., DiPersio, John, Drake, Bettina, Govindan, Ramaswamy, Heath, Sharon, Ley, Timothy, Van Tine, Brian, Westervelt, Peter, Rubin, Mark A., Lee, Jung Il, Aredes, Natália D., Mariamidze, Armaz, Way, Gregory P., Mina, Marco, Ciriello, Giovanni, Sanchez, Yolanda, and Greene, Casey S.
- Published
- 2018
- Full Text
- View/download PDF
34. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations
- Author
-
Way, Gregory P., Zietz, Michael, Rubinetti, Vincent, Himmelstein, Daniel S., and Greene, Casey S.
- Published
- 2020
- Full Text
- View/download PDF
35. Analysis of science journalism reveals gender and regional disparities in coverage.
- Author
-
Davidson, Natalie R. and Greene, Casey S.
- Subjects
- *
SCIENCE journalism , *REGIONAL disparities , *GENDER inequality , *CITIZEN journalism , *OBJECTIVITY in journalism , *REGIONAL economic disparities - Abstract
Science journalism is a critical way for the public to learn about and benefit from scientific findings. Such journalism shapes the public's view of the current state of science and legitimizes experts. Journalists can only cite and quote a limited number of sources, who they may discover in their research, including recommendations by other scientists. Biases in either process may influence who is identified and ultimately included as a source. To examine potential biases in science journalism, we analyzed 22,001 non-research articles published by Nature and compared these with Nature-published research articles with respect to predicted gender and name origin. We extracted cited authors' names and those of quoted speakers. While citations and quotations within a piece do not reflect the entire information-gathering process, they can provide insight into the demographics of visible sources. We then predicted gender and name origin of the cited authors and speakers. We compared articles with a comparator set made up of first and last authors within primary research articles in Nature and a subset of Springer Nature articles in the same time period. In our analysis, we found a skew toward quoting men in Nature science journalism. However, quotation is trending toward equal representation at a faster rate than authorship rates in academic publishing. Gender disparity in Nature quotes was dependent on the article type. We found a significant over-representation of names with predicted Celtic/English origin and under-representation of names with a predicted East Asian origin in both in extracted quotes and journal citations but dampened in citations. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
36. Semi-supervised learning of the electronic health record for phenotype stratification
- Author
-
Beaulieu-Jones, Brett K. and Greene, Casey S.
- Published
- 2016
- Full Text
- View/download PDF
37. Immune landscapes associated with different glioblastoma molecular subtypes
- Author
-
Martinez-Lage, Maria, Lynch, Timothy M., Bi, Yingtao, Cocito, Carolina, Way, Gregory P., Pal, Sharmistha, Haller, Josephine, Yan, Rachel E., Ziober, Amy, Nguyen, Aivi, Kandpal, Manoj, O’Rourke, Donald M., Greenfield, Jeffrey P., Greene, Casey S., Davuluri, Ramana V., and Dahmane, Nadia
- Published
- 2019
- Full Text
- View/download PDF
38. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens
- Author
-
Zhou, Naihui, Jiang, Yuxiang, Bergquist, Timothy R., Lee, Alexandra J., Kacsoh, Balint Z., Crocker, Alex W., Lewis, Kimberley A., Georghiou, George, Nguyen, Huy N., Hamid, Md Nafiz, Davis, Larry, Dogan, Tunca, Atalay, Volkan, Rifaioglu, Ahmet S., Dalkıran, Alperen, Cetin Atalay, Rengul, Zhang, Chengxin, Hurto, Rebecca L., Freddolino, Peter L., Zhang, Yang, Bhat, Prajwal, Supek, Fran, Fernández, José M., Gemovic, Branislava, Perovic, Vladimir R., Davidović, Radoslav S., Sumonja, Neven, Veljkovic, Nevena, Asgari, Ehsaneddin, Mofrad, Mohammad R.K., Profiti, Giuseppe, Savojardo, Castrense, Martelli, Pier Luigi, Casadio, Rita, Boecker, Florian, Schoof, Heiko, Kahanda, Indika, Thurlby, Natalie, McHardy, Alice C., Renaux, Alexandre, Saidi, Rabie, Gough, Julian, Freitas, Alex A., Antczak, Magdalena, Fabris, Fabio, Wass, Mark N., Hou, Jie, Cheng, Jianlin, Wang, Zheng, Romero, Alfonso E., Paccanaro, Alberto, Yang, Haixuan, Goldberg, Tatyana, Zhao, Chenguang, Holm, Liisa, Törönen, Petri, Medlar, Alan J., Zosa, Elaine, Borukhov, Itamar, Novikov, Ilya, Wilkins, Angela, Lichtarge, Olivier, Chi, Po-Han, Tseng, Wei-Cheng, Linial, Michal, Rose, Peter W., Dessimoz, Christophe, Vidulin, Vedrana, Dzeroski, Saso, Sillitoe, Ian, Das, Sayoni, Lees, Jonathan Gill, Jones, David T., Wan, Cen, Cozzetto, Domenico, Fa, Rui, Torres, Mateo, Warwick Vesztrocy, Alex, Rodriguez, Jose Manuel, Tress, Michael L., Frasca, Marco, Notaro, Marco, Grossi, Giuliano, Petrini, Alessandro, Re, Matteo, Valentini, Giorgio, Mesiti, Marco, Roche, Daniel B., Reeb, Jonas, Ritchie, David W., Aridhi, Sabeur, Alborzi, Seyed Ziaeddin, Devignes, Marie-Dominique, Koo, Da Chen Emily, Bonneau, Richard, Gligorijević, Vladimir, Barot, Meet, Fang, Hai, Toppo, Stefano, Lavezzo, Enrico, Falda, Marco, Berselli, Michele, Tosatto, Silvio C.E., Carraro, Marco, Piovesan, Damiano, Ur Rehman, Hafeez, Mao, Qizhong, Zhang, Shanshan, Vucetic, Slobodan, Black, Gage S., Jo, Dane, Suh, Erica, Dayton, Jonathan B., Larsen, Dallas J., Omdahl, Ashton R., McGuffin, Liam J., Brackenridge, Danielle A., Babbitt, Patricia C., Yunes, Jeffrey M., Fontana, Paolo, Zhang, Feng, Zhu, Shanfeng, You, Ronghui, Zhang, Zihan, Dai, Suyang, Yao, Shuwei, Tian, Weidong, Cao, Renzhi, Chandler, Caleb, Amezola, Miguel, Johnson, Devon, Chang, Jia-Ming, Liao, Wen-Hung, Liu, Yi-Wei, Pascarelli, Stefano, Frank, Yotam, Hoehndorf, Robert, Kulmanov, Maxat, Boudellioua, Imane, Politano, Gianfranco, Di Carlo, Stefano, Benso, Alfredo, Hakala, Kai, Ginter, Filip, Mehryary, Farrokh, Kaewphan, Suwisa, Björne, Jari, Moen, Hans, Tolvanen, Martti E.E., Salakoski, Tapio, Kihara, Daisuke, Jain, Aashish, Šmuc, Tomislav, Altenhoff, Adrian, Ben-Hur, Asa, Rost, Burkhard, Brenner, Steven E., Orengo, Christine A., Jeffery, Constance J., Bosco, Giovanni, Hogan, Deborah A., Martin, Maria J., O’Donovan, Claire, Mooney, Sean D., Greene, Casey S., Radivojac, Predrag, and Friedberg, Iddo
- Published
- 2019
- Full Text
- View/download PDF
39. The probability of edge existence due to node degree: a baseline for network-based predictions.
- Author
-
Zietz, Michael, Himmelstein, Daniel S, Kloster, Kyle, Williams, Christopher, Nagle, Michael W, and Greene, Casey S
- Subjects
KNOWLEDGE graphs ,PYTHON programming language ,DRUG repositioning ,RESEARCH personnel ,PRIOR learning ,BIOLOGICAL networks - Abstract
Important tasks in biomedical discovery such as predicting gene functions, gene–disease associations, and drug repurposing opportunities are often framed as network edge prediction. The number of edges connecting to a node, termed degree , can vary greatly across nodes in real biomedical networks, and the distribution of degrees varies between networks. If degree strongly influences edge prediction, then imbalance or bias in the distribution of degrees could lead to nonspecific or misleading predictions. We introduce a network permutation framework to quantify the effects of node degree on edge prediction. Our framework decomposes performance into the proportions attributable to degree and the network's specific connections using network permutation to generate features that depend only on degree. We discover that performance attributable to factors other than degree is often only a small portion of overall performance. Researchers seeking to predict new or missing edges in biological networks should use our permutation approach to obtain a baseline for performance that may be nonspecific because of degree. We released our methods as an open-source Python package (https://github.com/hetio/xswap/). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
40. Optimizer's dilemma: optimization strongly influences model selection in transcriptomic prediction.
- Author
-
Crawford, Jake, Chikina, Maria, and Greene, Casey S
- Subjects
GENE expression ,MODEL validation ,GENETIC mutation ,TRANSCRIPTOMES ,GENES ,LOGISTIC regression analysis ,REGULARIZATION parameter - Abstract
Motivation Most models can be fit to data using various optimization approaches. While model choice is frequently reported in machine-learning-based research, optimizers are not often noted. We applied two different implementations of LASSO logistic regression implemented in Python's scikit-learn package, using two different optimization approaches (coordinate descent, implemented in the liblinear library, and stochastic gradient descent, or SGD), to predict mutation status and gene essentiality from gene expression across a variety of pan-cancer driver genes. For varying levels of regularization, we compared performance and model sparsity between optimizers. Results After model selection and tuning, we found that liblinear and SGD tended to perform comparably. liblinear models required more extensive tuning of regularization strength, performing best for high model sparsities (more nonzero coefficients), but did not require selection of a learning rate parameter. SGD models required tuning of the learning rate to perform well, but generally performed more robustly across different model sparsities as regularization strength decreased. Given these tradeoffs, we believe that the choice of optimizers should be clearly reported as a part of the model selection and validation process, to allow readers and reviewers to better understand the context in which results have been generated. Availability and implementation The code used to carry out the analyses in this study is available at https://github.com/greenelab/pancancer-evaluation/tree/master/01%5fstratified%5fclassification. Performance/regularization strength curves for all genes in the Vogelstein et al. (2013) dataset are available at https://doi.org/10.6084/m9.figshare.22728644. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
41. PathCORE-T: identifying and visualizing globally co-occurring pathways in large transcriptomic compendia
- Author
-
Chen, Kathleen M., Tan, Jie, Way, Gregory P., Doing, Georgia, Hogan, Deborah A., and Greene, Casey S.
- Published
- 2018
- Full Text
- View/download PDF
42. Examining linguistic shifts between preprints and publications
- Author
-
Nicholson, David N., Rubinetti, Vincent, Hu, Dongbo, Thielk, Marvin, Hunter, Lawrence E., and Greene, Casey S.
- Subjects
Science and Technology Workforce ,Computer and Information Sciences ,Viral Diseases ,Biomedical Research ,Science Policy ,Bioinformatics ,Social Sciences ,Research and Analysis Methods ,Careers in Research ,Database and Informatics Methods ,Mathematical and Statistical Techniques ,Medical Conditions ,Terminology as Topic ,Medicine and Health Sciences ,Statistical Methods ,Scientific Publishing ,Data Management ,Language ,Metadata ,Principal Component Analysis ,Grammar ,Statistics ,Publications ,Linguistics ,Covid 19 ,Research Assessment ,Professions ,Infectious Diseases ,Preprints as Topic ,People and Places ,Multivariate Analysis ,Physical Sciences ,Meta-Research Article ,Scientists ,Population Groupings ,Mathematics - Abstract
Preprints allow researchers to make their findings available to the scientific community before they have undergone peer review. Studies on preprints within bioRxiv have been largely focused on article metadata and how often these preprints are downloaded, cited, published, and discussed online. A missing element that has yet to be examined is the language contained within the bioRxiv preprint repository. We sought to compare and contrast linguistic features within bioRxiv preprints to published biomedical text as a whole as this is an excellent opportunity to examine how peer review changes these documents. The most prevalent features that changed appear to be associated with typesetting and mentions of supporting information sections or additional files. In addition to text comparison, we created document embeddings derived from a preprint-trained word2vec model. We found that these embeddings are able to parse out different scientific approaches and concepts, link unannotated preprint–peer-reviewed article pairs, and identify journals that publish linguistically similar papers to a given preprint. We also used these embeddings to examine factors associated with the time elapsed between the posting of a first preprint and the appearance of a peer-reviewed publication. We found that preprints with more versions posted and more textual changes took longer to publish. Lastly, we constructed a web application (https://greenelab.github.io/preprint-similarity-search/) that allows users to identify which journals and articles that are most linguistically similar to a bioRxiv or medRxiv preprint as well as observe where the preprint would be positioned within a published article landscape., Preprints allow researchers to make their findings available to the scientific community before they have undergone peer review This study analyzes the full text content of the bioRxiv preprint repository, identifying field-specific patterns and changes that occur during publication, and providing a search tool that can identify the published papers that are most similar to a given bioRxiv or medRxiv preprint.
- Published
- 2022
43. Identification and Development of Therapeutics for COVID-19
- Author
-
Rando, Halie M., Wellhausen, Nils, Ghosh, Soumita, Lee, Alexandra J., Dattoli, Anna Ada, Hu, Fengling, Byrd, James Brian, Rafizadeh, Diane N., Lordan, Ronan, Qi, Yanjun, Sun, Yuchen, Brueffer, Christian, Field, Jeffrey M., Guebila, Marouen Ben, Jadavji, Nafisa M., Skelly, Ashwin N., Ramsundar, Bharath, Wang, Jinhui, Goel, Rishi Raj, Park, YoSon, Consortium, the COVID-19 Review, Boca, Simina M., Gitter, Anthony, and Greene, Casey S.
- Subjects
medicine.medical_specialty ,Coronavirus disease 2019 (COVID-19) ,Physiology ,Psychological intervention ,review ,Disease ,medicine.disease_cause ,Quantitative Biology - Quantitative Methods ,Biochemistry ,Microbiology ,Article ,03 medical and health sciences ,0302 clinical medicine ,Pandemic ,Genetics ,therapeutics ,Medicine ,030212 general & internal medicine ,Intensive care medicine ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,Quantitative Methods (q-bio.QM) ,030304 developmental biology ,Coronavirus ,0303 health sciences ,business.industry ,Public health ,COVID-19 ,medicine.disease ,Editor's Pick ,QR1-502 ,3. Good health ,Computer Science Applications ,Modeling and Simulation ,FOS: Biological sciences ,Middle East respiratory syndrome ,Identification (biology) ,business - Abstract
After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
- Published
- 2021
- Full Text
- View/download PDF
44. The Coming of Age of Nucleic Acid Vaccines during COVID-19.
- Author
-
Rando, Halie M., Lordan, Ronan, Kolla, Likhitha, Sell, Elizabeth, Lee, Alexandra J., Wellhausen, Nils, Naik, Amruta, Kamil, Jeremy P., and Greene, Casey S.
- Published
- 2023
- Full Text
- View/download PDF
45. Application of Traditional Vaccine Development Strategies to SARS-CoV-2.
- Author
-
Rando, Halie M., Lordan, Ronan, Lee, Alexandra J., Naik, Amruta, Wellhausen, Nils, Sell, Elizabeth, Kolla, Likhitha, Gitter, Anthony, and Greene, Casey S.
- Published
- 2023
- Full Text
- View/download PDF
46. The effect of non-linear signal in classification problems using gene expression.
- Author
-
Heil, Benjamin J., Crawford, Jake, and Greene, Casey S.
- Subjects
ARTIFICIAL neural networks ,DEEP learning ,SIGNAL classification ,GENE expression ,BIOLOGICAL systems ,PREDICTION models - Abstract
Those building predictive models from transcriptomic data are faced with two conflicting perspectives. The first, based on the inherent high dimensionality of biological systems, supposes that complex non-linear models such as neural networks will better match complex biological systems. The second, imagining that complex systems will still be well predicted by simple dividing lines prefers linear models that are easier to interpret. We compare multi-layer neural networks and logistic regression across multiple prediction tasks on GTEx and Recount3 datasets and find evidence in favor of both possibilities. We verified the presence of non-linear signal when predicting tissue and metadata sex labels from expression data by removing the predictive linear signal with Limma, and showed the removal ablated the performance of linear methods but not non-linear ones. However, we also found that the presence of non-linear signal was not necessarily sufficient for neural networks to outperform logistic regression. Our results demonstrate that while multi-layer neural networks may be useful for making predictions from gene expression data, including a linear baseline model is critical because while biological systems are high-dimensional, effective dividing lines for predictive models may not be. Author summary: If we could consistently predict biological conditions from mRNA levels, it could help discover biomarkers for disease diagnosis. Deep learning has become widely used for many tasks including biomarker discovery. It is unclear whether the complexity of these models is helpful. We evaluate whether or not more complex non-linear models have an advantage over simpler linear ones for a set of prediction tasks. We find that, at least for tissue prediction and prediction of metadata-derived sex prediction, linear models perform just as well as non-linear ones. However, we also demonstrate the presence of a predictive signal in the data that only the non-linear models can use. Our results suggest that the non-linear signals may be redundant with linear ones or that current deep neural networks are not able to successfully use the signal when linear signals are present. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
47. Biomonitoring and precision health in deep space supported by artificial intelligence.
- Author
-
Scott, Ryan T., Sanders, Lauren M., Antonsen, Erik L., Hastings, Jaden J. A., Park, Seung-min, Mackintosh, Graham, Reynolds, Robert J., Hoarfrost, Adrienne L., Sawyer, Aenor, Greene, Casey S., Glicksberg, Benjamin S., Theriot, Corey A., Berrios, Daniel C., Miller, Jack, Babdor, Joel, Barker, Richard, Baranzini, Sergio E., Beheshti, Afshin, Chalk, Stuart, and Delgado-Aparicio, Guillermo M.
- Published
- 2023
- Full Text
- View/download PDF
48. Integrative Systems Biology for Data-Driven Knowledge Discovery
- Author
-
Greene, Casey S. and Troyanskaya, Olga G.
- Published
- 2010
- Full Text
- View/download PDF
49. Adapting bioinformatics curricula for big data
- Author
-
Greene, Anna C., Giffin, Kristine A., Greene, Casey S., and Moore, Jason H.
- Published
- 2016
- Full Text
- View/download PDF
50. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery
- Author
-
Gonzalez, Graciela H., Tahsin, Tasnia, Goodale, Britton C., Greene, Anna C., and Greene, Casey S.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.