Simon Stähler, Raphaël F. Garcia, Jules Marti, Sabrina Menina, Nicholas Schmerr, William B. Banerdt, Nicolas Compaire, Grégory Sainton, Mélanie Drilleau, Martin van Driel, Sebastián Carrasco, Domenico Giardini, Ludovic Margerin, Marie Calvet, Philippe Lognonné, Matthieu Plasman, Taichi Kawamura, Brigitte Knapmeyer-Endrun, Foivos Karakostas, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Maryland [College Park], University of Maryland System, Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Universität zu Köln, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Universität zu Köln = University of Cologne, NASA-California Institute of Technology (CALTECH), and ANR-19-CE31-0008,MAGIS,MArs Geophysical InSight(2019)
Since its deployment at the surface of Mars, the Seismic Experiment for Interior Structure (SEIS) instrument of the InSight mission has detected hundreds of small-magnitude seismic events. In this work, we highlight some features of two specific families: high-frequency (HF) and very-high-frequency (VF) events. We characterize the shape of the energy envelopes of HF and VF events with two parameters: (1) the delay time td between the onset and the peak of the dominant arrival; and (2) the quality factor Qc, which quantifies the energy decay rate in the coda. We observe that the envelope of HF and VF events is frequency independent. As a consequence, a single delay time suffices to characterize envelope broadening in the 2.5–7.5 Hz band. The typical coda decay time is also frequency independent, as attested by the close to linear increase of Qc with frequency. Finally, we use elastic radiative transfer theory to perform a series of inversion of seismogram envelopes for the attenuation properties of the Martian lithosphere. The good fit between synthetic and observed envelopes confirms that multiple scattering of elastic waves released by internal sources is a plausible explanation of the events characteristics. We quantify scattering and attenuation properties of Mars and highlight the differences and similarities with the Earth and the Moon. The albedo, that is, the contribution of scattering to the total attenuation, derived from VF events is very high, which we interpret as a signature of a mostly dry medium. Our results also suggest a stratification of the scattering and attenuation properties.