7 results on '"Gijs de Boer"'
Search Results
2. Vegetation type is an important predictor of the arctic summer land surface energy budget
- Author
-
Jacqueline Oehri, Gabriela Schaepman-Strub, Jin-Soo Kim, Raleigh Grysko, Heather Kropp, Inge Grünberg, Vitalii Zemlianskii, Oliver Sonnentag, Eugénie S. Euskirchen, Merin Reji Chacko, Giovanni Muscari, Peter D. Blanken, Joshua F. Dean, Alcide di Sarra, Richard J. Harding, Ireneusz Sobota, Lars Kutzbach, Elena Plekhanova, Aku Riihelä, Julia Boike, Nathaniel B. Miller, Jason Beringer, Efrén López-Blanco, Paul C. Stoy, Ryan C. Sullivan, Marek Kejna, Frans-Jan W. Parmentier, John A. Gamon, Mikhail Mastepanov, Christian Wille, Marcin Jackowicz-Korczynski, Dirk N. Karger, William L. Quinton, Jaakko Putkonen, Dirk van As, Torben R. Christensen, Maria Z. Hakuba, Robert S. Stone, Stefan Metzger, Baptiste Vandecrux, Gerald V. Frost, Martin Wild, Birger Hansen, Daniela Meloni, Florent Domine, Mariska te Beest, Torsten Sachs, Aram Kalhori, Adrian V. Rocha, Scott N. Williamson, Sara Morris, Adam L. Atchley, Richard Essery, Benjamin R. K. Runkle, David Holl, Laura D. Riihimaki, Hiroki Iwata, Edward A. G. Schuur, Christopher J. Cox, Andrey A. Grachev, Joseph P. McFadden, Robert S. Fausto, Mathias Göckede, Masahito Ueyama, Norbert Pirk, Gijs de Boer, M. Syndonia Bret-Harte, Matti Leppäranta, Konrad Steffen, Thomas Friborg, Atsumu Ohmura, Colin W. Edgar, Johan Olofsson, and Scott D. Chambers
- Subjects
Science - Abstract
An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.
- Published
- 2022
- Full Text
- View/download PDF
3. A central arctic extreme aerosol event triggered by a warm air-mass intrusion
- Author
-
Lubna Dada, Hélène Angot, Ivo Beck, Andrea Baccarini, Lauriane L. J. Quéléver, Matthew Boyer, Tiia Laurila, Zoé Brasseur, Gina Jozef, Gijs de Boer, Matthew D. Shupe, Silvia Henning, Silvia Bucci, Marina Dütsch, Andreas Stohl, Tuukka Petäjä, Kaspar R. Daellenbach, Tuija Jokinen, and Julia Schmale
- Subjects
Science - Abstract
Warm and moist air-mass intrusions into the Arctic are more frequent than the past decades. Here, the authors show that warm air mass intrusions from northern Eurasia inject record amounts of aerosols into the central Arctic Ocean strongly impacting atmospheric chemistry and cloud properties.
- Published
- 2022
- Full Text
- View/download PDF
4. Observing the Central Arctic Atmosphere and Surface with University of Colorado uncrewed aircraft systems
- Author
-
Gijs de Boer, Radiance Calmer, Gina Jozef, John J. Cassano, Jonathan Hamilton, Dale Lawrence, Steven Borenstein, Abhiram Doddi, Christopher Cox, Julia Schmale, Andreas Preußer, and Brian Argrow
- Subjects
Science - Abstract
Abstract Over a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.
- Published
- 2022
- Full Text
- View/download PDF
5. Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign
- Author
-
Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, and Gijs de Boer
- Subjects
sUAS ,unmanned aircraft systems ,unmanned aerial vehicles ,UAV ,sensor intercomparison ,atmospheric measurements ,Chemical technology ,TP1-1185 - Abstract
Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.
- Published
- 2019
- Full Text
- View/download PDF
6. Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs)
- Author
-
Peter J. Nolan, James Pinto, Javier González-Rocha, Anders Jensen, Christina N. Vezzi, Sean C. C. Bailey, Gijs de Boer, Constantin Diehl, Roger Laurence, Craig W. Powers, Hosein Foroutan, Shane D. Ross, and David G. Schmale
- Subjects
Unmanned Aircraft System (UAS) ,Lagrangian Coherent Structure (LCS) ,Weather Research and Forecasting (WRF) ,Chemical technology ,TP1-1185 - Abstract
Concentrations of airborne chemical and biological agents from a hazardous release are not spread uniformly. Instead, there are regions of higher concentration, in part due to local atmospheric flow conditions which can attract agents. We equipped a ground station and two rotary-wing unmanned aircraft systems (UASs) with ultrasonic anemometers. Flights reported here were conducted 10 to 15 m above ground level (AGL) at the Leach Airfield in the San Luis Valley, Colorado as part of the Lower Atmospheric Process Studies at Elevation—a Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE) campaign in 2018. The ultrasonic anemometers were used to collect simultaneous measurements of wind speed, wind direction, and temperature in a fixed triangle pattern; each sensor was located at one apex of a triangle with ∼100 to 200 m on each side, depending on the experiment. A WRF-LES model was used to determine the wind field across the sampling domain. Data from the ground-based sensors and the two UASs were used to detect attracting regions (also known as Lagrangian Coherent Structures, or LCSs), which have the potential to transport high concentrations of agents. This unique framework for detection of high concentration regions is based on estimates of the horizontal wind gradient tensor. To our knowledge, our work represents the first direct measurement of an LCS indicator in the atmosphere using a team of sensors. Our ultimate goal is to use environmental data from swarms of sensors to drive transport models of hazardous agents that can lead to real-time proper decisions regarding rapid emergency responses. The integration of real-time data from unmanned assets, advanced mathematical techniques for transport analysis, and predictive models can help assist in emergency response decisions in the future.
- Published
- 2018
- Full Text
- View/download PDF
7. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE
- Author
-
Mikhail Ovchinnikov, Ben Shipway, Yali Luo, Jerry Y. Harrington, Tempei Hashino, Jiwen Fan, Ann M. Fridlind, Gijs de Boer, Alexander Avramov, Andrew S. Ackerman, Hugh Morrison, and Paquita Zuidema
- Subjects
Mixed-Phase Clouds ,Cloud Microphysics ,Arctic Clouds ,Physical geography ,GB3-5030 ,Oceanography ,GC1-1581 - Abstract
An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.