11 results on '"GÖRMEZ, Yasin"'
Search Results
2. Evrişimsel Sinir Ağları Tabanlı Derin Öğrenme Yöntemiyle Müşteri Şikayetlerinin Sınıflandırılması.
- Author
-
TUNA, Murat Fatih and GÖRMEZ, Yasin
- Abstract
Copyright of Bingol University Journal of Economics & Administrative Science is the property of Bingol University Journal of Economics & Administrative Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2024
- Full Text
- View/download PDF
3. Customized deep learning based Turkish automatic speech recognition system supported by language model.
- Author
-
Görmez, Yasin
- Subjects
DEEP learning ,AUTOMATIC speech recognition ,LANGUAGE models ,CONVOLUTIONAL neural networks ,ERROR rates ,SPEECH - Abstract
Background: In today's world, numerous applications integral to various facets of daily life include automatic speech recognition methods. Thus, the development of a successful automatic speech recognition system can significantly augment the convenience of people's daily routines. While many automatic speech recognition systems have been established for widely spoken languages like English, there has been insufficient progress in developing such systems for less common languages such as Turkish. Moreover, due to its agglutinative structure, designing a speech recognition system for Turkish presents greater challenges compared to other language groups. Therefore, our study focused on proposing deep learning models for automatic speech recognition in Turkish, complemented by the integration of a language model. Methods: In our study, deep learning models were formulated by incorporating convolutional neural networks, gated recurrent units, long short-term memories, and transformer layers. The Zemberek library was employed to craft the language model to improve system performance. Furthermore, the Bayesian optimization method was applied to fine-tune the hyper-parameters of the deep learning models. To evaluate the model's performance, standard metrics widely used in automatic speech recognition systems, specifically word error rate and character error rate scores, were employed. Results: Upon reviewing the experimental results, it becomes evident that when optimal hyper-parameters are applied to models developed with various layers, the scores are as follows: Without the use of a language model, the Turkish Microphone Speech Corpus dataset yields scores of 22.2 -word error rate and 14.05-character error rate, while the Turkish Speech Corpus dataset results in scores of 11.5 -word error rate and 4.15 character error rate. Upon incorporating the language model, notable improvements were observed. Specifically, for the Turkish Microphone Speech Corpus dataset, the word error rate score decreased to 9.85, and the character error rate score lowered to 5.35. Similarly, the word error rate score improved to 8.4, and the character error rate score decreased to 2.7 for the Turkish Speech Corpus dataset. These results demonstrate that our model outperforms the studies found in the existing literature. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Türkçe Metinlerde Duygu Analizi: Derin Öğrenme Yaklaşımlarının ve Ön İşlem Süreçlerinin Model Performansına Etkisi.
- Author
-
GÖRMEZ, Yasin, ARSLAN, Halil, and ATAK, Bilal
- Abstract
Nowadays, with the increased use of computers, a surge in data production has emerged, making data access more convenient. In this context, a substantial amount of textual data is generated on e-commerce sites, social media, and various electronic platforms. Analyzing and extracting meaningful insights from this amassed data proves valuable for numerous institutions, organizations, and individuals. Sentiment analysis is a commonly employed technique to derive sentiments from textual data, and contemporary sentiment analysis models often leverage the high performance offered by deep learning approaches. Prior to model training, several pre-processing steps are typically applied to the text data. In this study, three distinct deep learning approaches were proposed for sentiment analysis. These models were analyzed on two different datasets: winvoker and Beyazperde. Hyper-parameters and depth of models were optimized using the Bayesian optimization method to enhance the accuracy of model. Additionally, the impact of various pre-processing techniques on model performance were assessed. When non-preprocessed data is utilized, the models trained on the winvoker dataset achieve an accuracy of 94.16%, while those trained on the Beyazperde dataset reach 86.64%. With the application of pre-processing, these accuracies improve to 94.64% for the winvoker dataset and 89.08% for the Beyazperde dataset. Based on these findings, it was concluded that the effect of pre-processing decreased and the accuracy was higher for the winvoker data set with a higher number of samples. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. A novel hybrid model for bluetooth low energy-based indoor localization using machine learning in the internet of things.
- Author
-
GÖRMEZ, Yasin, ARSLAN, Halil, IŞIK, Yunus Emre, and TOMAÇ, Sercan
- Subjects
- *
MACHINE learning , *INTERNET of things , *ARTIFICIAL neural networks , *SUPPORT vector machines , *KALMAN filtering , *NATURAL ventilation , *K-nearest neighbor classification - Abstract
Indoor localization involves pinpointing the location of an object in an interior space and has several applications, including navigation, asset tracking, and shift management. However, this technology has not yet been perfected, and many methods, such as triangulation, Kalman filters, and machine learning models have been proposed to address indoor localization problems. Unfortunately, these methods still have a large degree of error that makes them ill-suited for difficult cases in real-time. In this study, we propose a hybrid model for Bluetooth low energy-based indoor localization. In this model, the triangulation method is combined with several machine learning methods (naïve Bayes, k-nearest neighbor, logistic regression, support vector machines, and artificial neural networks) that are optimized and tested in three different environments. In the experiment, the proposed model performed similarly to the solo triangulation model in easy and medium cases; however, the proposed model obtained a much smaller degree of error for hard cases than either solo triangulation or machine learning models alone. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Developing Novel Deep Learning Models to Detect Insider Threats and Comparing the Models from Different Perspectives.
- Author
-
Görmez, Yasin, Arslan, Halil, Işık, Yunus Emre, and Gündüz, Veysel
- Abstract
Copyright of International Journal of InformaticsTechnologies is the property of Institute of Informatics, Gazi University and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2024
- Full Text
- View/download PDF
7. Machine Learning and Text Mining based Real-Time Semi-Autonomous Staff Assignment System.
- Author
-
Arslan, Halil, Işık, Yunus Emre, Görmez, Yasin, and Temiz, Mustafa
- Abstract
The growing demand for information systems has significantly increased the workload of consulting and software development firms, requiring them to manage multiple projects simultaneously. Usually, these firms rely on a shared pool of staff to carry out multiple projects that require different skills and expertise. However, since the number of employees is limited, the assignment of staff to projects should be carefully decided to increase the efficiency in job-sharing. Therefore, assigning tasks to the most appropriate personnel is one of the challenges of multiproject management. Assigning a staff to the project by team leaders or researchers is a very demanding process. For this reason, researchers are working on automatic assignment, but most of these studies are done using historical data. It is of great importance for companies that personnel assignment systems work with real-time data. However, a model designed with historical data has the risk of getting unsuccessful results in real-time data. In this study, unlike the literature, a machine learning-based decision support system that works with real-time data is proposed. The proposed system analyses the description of newly requested tasks using textmining and machine-learning approaches and then, predicts the optimal available staff that meets the needs of the project task. Moreover, personnel qualifications are iteratively updated after each completed task, ensuring up-to-date information on staff capabilities. In addition, because our system was developed as a microservice architecture, it can be easily integrated into companies' existing enterprise resource planning (ERP) or portal systems. In a real-world implementation at Detaysoft, the system demonstrated high assignment accuracy, achieving up to 80% accuracy in matching tasks with appropriate personnel. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Kişiselleştirilmiş Yabancı Dil Öğrenimi İçin Makine Öğrenmesi Yöntemleriyle İlgi Alanı Tahmini.
- Author
-
GÖRMEZ, Yasin, OKUMUŞ DAĞDELER, Kübra, and KAVUKLU, Merve
- Subjects
RANDOM forest algorithms ,ARTIFICIAL neural networks ,K-nearest neighbor classification ,MACHINE learning ,MATHEMATICAL forms - Abstract
Copyright of Journal of Higher Education & Science / Yüksekögretim ve Bilim Dergisi is the property of Zonguldak Bulent Ecevit Universitesi and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2022
- Full Text
- View/download PDF
9. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
- Author
-
Görmez, Yasin, Sabzekar, Mostafa, and Aydın, Zafer
- Abstract
There is a close relationship between the tertiary structure and the function of a protein. One of the important steps to determine the tertiary structure is protein secondary structure prediction (PSSP). For this reason, predicting secondary structure with higher accuracy will give valuable information about the tertiary structure. Recently, deep learning techniques have obtained promising improvements in several machine learning applications including PSSP. In this article, a novel deep learning model, based on convolutional neural network and graph convolutional network is proposed. PSIBLAST PSSM, HHMAKE PSSM, physico‐chemical properties of amino acids are combined with structural profiles to generate a rich feature set. Furthermore, the hyper‐parameters of the proposed network are optimized using Bayesian optimization. The proposed model IGPRED obtained 89.19%, 86.34%, 87.87%, 85.76%, and 86.54% Q3 accuracies for CullPDB, EVAset, CASP10, CASP11, and CASP12 datasets, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Dimensionality reduction for protein secondary structure and solvent accesibility prediction.
- Author
-
Aydin, Zafer, Kaynar, Oğuz, and Görmez, Yasin
- Subjects
DIMENSION reduction (Statistics) ,PROTEIN structure ,SOLVENTS ,SUPPORT vector machines ,ACCURACY - Abstract
Secondary structure and solvent accessibility prediction provide valuable information for estimating the three dimensional structure of a protein. As new feature extraction methods are developed the dimensionality of the input feature space increases steadily. Reducing the number of dimensions provides several advantages such as faster model training, faster prediction and noise elimination. In this work, several dimensionality reduction techniques have been employed including various feature selection methods, autoencoders and PCA for protein secondary structure and solvent accessibility prediction. The reduced feature set is used to train a support vector machine at the second stage of a hybrid classifier. Cross-validation experiments on two difficult benchmarks demonstrate that the dimension of the input space can be reduced substantially while maintaining the prediction accuracy. This will enable the incorporation of additional informative features derived for predicting the structural properties of proteins without reducing the accuracy due to overfitting. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
11. Makine Öğrenmesi ve Öznitelik Seçim Yöntemleriyle Saldırı Tespiti.
- Author
-
KAYNAR, Oğuz, ARSLAN, Halil, GÖRMEZ, Yasin, and IŞIK, Yunus Emre
- Abstract
Copyright of International Journal of InformaticsTechnologies is the property of Institute of Informatics, Gazi University and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.