Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Rückle T, Woo M, Manning Fox JE, MacDonald PE, Pigeau, Gary M, Kolic, Jelena, Ball, Brandon J, Hoppa, Michael B, Wang, Ying W, Rückle, Thomas, Woo, Minna, Manning Fox, Jocelyn E, and MacDonald, Patrick E
Objective: Phosphatidylinositol 3-OH kinase (PI3K) has a long-recognized role in beta-cell mass regulation and gene transcription and is implicated in the modulation of insulin secretion. The role of nontyrosine kinase receptor-activated PI3K isoforms is largely unexplored. We therefore investigated the role of the G-protein-coupled PI3Kgamma and its catalytic subunit p110gamma in the regulation of insulin granule recruitment and exocytosis.Research Design and Methods: The expression of p110gamma was knocked down by small-interfering RNA, and p110gamma activity was selectively inhibited with AS605240 (40 nmol/l). Exocytosis and granule recruitment was monitored by islet perifusion, whole-cell capacitance, total internal reflection fluorescence microscopy, and electron microscopy in INS-1 and human beta-cells. Cortical F-actin was examined in INS-1 cells and human islets and in mouse beta-cells lacking the phosphatase and tensin homolog (PTEN).Results: Knockdown or inhibition of p110gamma markedly blunted depolarization-induced insulin secretion and exocytosis and ablated the exocytotic response to direct Ca(2+) infusion. This resulted from reduced granule localization to the plasma membrane and was associated with increased cortical F-actin. Inhibition of p110gamma had no effect on F-actin in beta-cells lacking PTEN. Finally, the effect of p110gamma inhibition on granule localization and exocytosis could be rapidly reversed by agents that promote actin depolymerization.Conclusions: The G-protein-coupled PI3Kgamma is an important determinant of secretory granule trafficking to the plasma membrane, at least in part through the negative regulation of cortical F-actin. Thus, p110gamma activity plays an important role in maintaining a membrane-docked, readily releasable pool of secretory granules in insulinoma and human beta-cells. [ABSTRACT FROM AUTHOR]