6 results on '"David W. MacFarlane"'
Search Results
2. Functional Relationships Between Branch and Stem Wood Density for Temperate Tree Species in North America
- Author
-
David W. MacFarlane
- Subjects
tree physiology ,canopy position ,deciduous ,evergreen ,angiosperms ,gymnosperms ,Forestry ,SD1-669.5 ,Environmental sciences ,GE1-350 - Abstract
Wood density is strongly related to key aspects of tree physiological performance. While many studies have examined wood density in different parts of trees, for a variety of reasons, there are very few studies that have compared within-tree density variation across many trees, of many species, drawn from a large geographic area. Here, a large data set representing thousands of trees of 78 species/genera, drawn from hundreds of sites in the Eastern United States, was compiled and analyzed to explore branch to main stem wood basic density relationships. It was expected that differences in stem vs. branch wood density among trees would be due to both genetic constraints and plastic responses in wood properties, due to tree growth responses to external environments. The results show a wide tree-to-tree variation in average branch density, relative to main stem density. However, there was a general pattern for overstory tree species to have high tree branch density relative to stem density at lower stem densities, and a declining branch to stem wood density ratio as stem density increased. Evergreen gymnosperms showed the strongest change in branch to stem wood density ratios over the range of stem wood densities and deciduous angiosperms the least; deciduous gymnosperms showed an intermediate pattern, but with generally higher branch- than stem- wood densities. More cold-hearty, shade-tolerant/drought-intolerant, evergreen gymnosperms, growing at higher latitudes, showed higher branch to stem density ratios than more shade-intolerant/drought tolerant evergreen gymnosperms growing at lower latitudes. Across all trees, canopy position had a significant influence on branch to stem density relationships, with higher branch to stem density ratios for canopy dominant trees and successively lower branch to stem density ratios for trees in successively inferior canopy positions (in terms of light availability). Understory tree species, which remain in the forest understory at maximum height, showed generally lower branch than stem densities over a wide range of stem densities. The results suggested that tradeoffs between mechanical safety and whole-tree hydraulic conductance are driving within-tree differences in wood density and highlighted the need for more detailed examinations of within-tree density variation at the whole-tree level.
- Published
- 2020
- Full Text
- View/download PDF
3. Woody Surface Area Measurements with Terrestrial Laser Scanning Relate to the Anatomical and Structural Complexity of Urban Trees
- Author
-
Georgios Arseniou, David W. MacFarlane, and Dominik Seidel
- Subjects
terrestrial laser scanning ,woody surface area ,crown surface area ,urban ecology ,Gleditsia triacanthos ,Quercus macrocarpa ,Science - Abstract
Urban forests are part of the global forest network, providing important benefits to human societies. Advances in remote-sensing technology can create detailed 3D images of trees, giving novel insights into tree structure and function. We used terrestrial laser scanning and quantitative structural models to provide comprehensive characterizations of the woody surface area allometry of urban trees and relate them to urban tree anatomy, physiology, and structural complexity. Fifty-six trees of three species (Gleditsia triacanthos L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were sampled on the Michigan State University campus. Variations in surface area allocation to non-photosynthesizing components (main stem, branches) are related to the fractal dimension of tree architecture, in terms of structural complexity (box-dimension metric) and the distribution of “path” lengths from the tree base to every branch tip. The total woody surface area increased with the box-dimension metric, but it was most strongly correlated with the 25th percentile of path lengths. These urban trees mainly allocated the woody surface area to branches, which changed with branch order, branch-base diameter, and branch-base height. The branch-to-stem area ratio differed among species and increased with the box-dimension metric. Finally, the woody surface area increased with the crown surface area of the study trees across all species combined and within each species. The results of this study provide novel data and new insights into the surface area properties of urban tree species and the links with structural complexity and constraints on tree morphology.
- Published
- 2021
- Full Text
- View/download PDF
4. Measuring the Contribution of Leaves to the Structural Complexity of Urban Tree Crowns with Terrestrial Laser Scanning
- Author
-
Georgios Arseniou, David W. MacFarlane, and Dominik Seidel
- Subjects
terrestrial laser scanning ,fractal dimension ,box-dimension ,foliage ,urban ecology ,Gleditsia triacanthos ,Science - Abstract
Trees have a fractal-like branching architecture that determines their structural complexity. We used terrestrial laser scanning technology to study the role of foliage in the structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied their structural complexity by calculating the box-dimension (Db) metric from point clouds generated for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species. Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and different metrics of the length of paths through the branch network of the trees, indicating that the contribution of leaves decreases as branch network complexity increases. Underestimation of the Db of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These results enhance our understanding of tree structural complexity by disentangling the contribution of leaves from that of the woody structures. The study also highlighted important methodological considerations for studying tree structure, with and without leaves, from laser-derived point clouds.
- Published
- 2021
- Full Text
- View/download PDF
5. Explaining variation in adult Anopheles indoor resting abundance: the relative effects of larval habitat proximity and insecticide-treated bed net use
- Author
-
Robert S. McCann, Joseph P. Messina, David W. MacFarlane, M. Nabie Bayoh, John E. Gimnig, Emanuele Giorgi, and Edward D. Walker
- Subjects
Spatial heterogeneity ,Larval habitats ,Malaria vectors ,Anopheles gambiae ,Anopheles arabiensis ,Anopheles funestus ,Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Spatial determinants of malaria risk within communities are associated with heterogeneity of exposure to vector mosquitoes. The abundance of adult malaria vectors inside people’s houses, where most transmission takes place, should be associated with several factors: proximity of houses to larval habitats, structural characteristics of houses, indoor use of vector control tools containing insecticides, and human behavioural and environmental factors in and near houses. While most previous studies have assessed the association of larval habitat proximity in landscapes with relatively low densities of larval habitats, in this study these relationships were analysed in a region of rural, lowland western Kenya with high larval habitat density. Methods 525 houses were sampled for indoor-resting mosquitoes across an 8 by 8 km study area using the pyrethrum spray catch method. A predictive model of larval habitat location in this landscape, previously verified, provided derivations of indices of larval habitat proximity to houses. Using geostatistical regression models, the association of larval habitat proximity, long-lasting insecticidal nets (LLIN) use, house structural characteristics (wall type, roof type), and peridomestic variables (cooking in the house, cattle near the house, number of people sleeping in the house) with mosquito abundance in houses was quantified. Results Vector abundance was low (mean, 1.1 adult Anopheles per house). Proximity of larval habitats was a strong predictor of Anopheles abundance. Houses without an LLIN had more female Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus than houses where some people used an LLIN (rate ratios, 95% CI 0.87, 0.85–0.89; 0.84, 0.82–0.86; 0.38, 0.37–0.40) and houses where everyone used an LLIN (RR, 95% CI 0.49, 0.48–0.50; 0.39, 0.39–0.40; 0.60, 0.58–0.61). Cooking in the house also reduced Anopheles abundance across all species. The number of people sleeping in the house, presence of cattle near the house, and house structure modulated Anopheles abundance, but the effect varied with Anopheles species and sex. Conclusions Variation in the abundance of indoor-resting Anopheles in rural houses of western Kenya varies with clearly identifiable factors. Results suggest that LLIN use continues to function in reducing vector abundance, and that larval source management in this region could lead to further reductions in malaria risk by reducing the amount of an obligatory resource for mosquitoes near people’s homes.
- Published
- 2017
- Full Text
- View/download PDF
6. Frequency and behavior of Melipona stingless bees and orchid bees (Hymenoptera: Apidae) in relation to floral characteristics of vanilla in the Yucatán region of Mexico.
- Author
-
José Javier G Quezada-Euán, Roger O Guerrero-Herrera, Raymundo M González-Ramírez, and David W MacFarlane
- Subjects
Medicine ,Science - Abstract
Vanilla planifolia is native to the Mexican tropics. Despite its worldwide economic importance as a source of vanilla for flavoring and other uses, almost all vanilla is produced by expensive hand-pollination, and minimal documentation exists for its natural pollination and floral visitors. There is a claim that vanilla is pollinated by Melipona stingless bees, but vanilla is more likely pollinated by orchid bees. Natural pollination has not been tested in the Yucatán region of Mexico, where both vanilla and potential native bee pollinators are endemic. We document for the first time the flowering process, nectar production and natural pollination of V. planiflora, using bagged flower experiments in a commercial planting. We also assessed the frequency and visitation rates of stingless bees and orchid bees on flowers. Our results showed low natural pollination rates of V. planifolia (~ 5%). Only small stingless bees (Trigona fulviventris and Nannotrigona perilampoides) were seen on flowers, but no legitimate visits were witnessed. We verified that there were abundant Euglossa and fewer Eulaema male orchid bees around the vanilla plants, but neither visited the flowers. The introduction of a colony of the stingless bee Melipona beecheii and the application of chemical lures to attract orchid bees failed to induce floral visitations. Melipona beecheii, and male orchid bees of Euglossa viridissima and E. dilemma may not be natural pollinators of vanilla, due to lack of attraction to flowers. It seems that the lack of nectar in V. planifolia flowers reduces the spectrum of potential pollinators. In addition, there may be a mismatch between the attractiveness of vanilla floral fragrances to the species of orchid bees registered in the studied area. Chemical studies with controlled experiments in different regions would be important to further elucidate the potential pollinators of vanilla in southern Mexico.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.