1. Nitrogen Reduction Reaction Catalyzed by Diatomic Metals Supported by N-Doped Graphite
- Author
-
Jinrong Huo, Haocong Wei, Kai Zhang, Chenxu Zhao, and Chaozheng He
- Subjects
bimetallic catalyst ,N-doping graphene ,nitrogen reduction reaction ,Chemical technology ,TP1-1185 ,Chemistry ,QD1-999 - Abstract
In this article, for the transition metal-nitrogen ligand Mn-M@N6-C (M = Ag, Bi, Cd, Co, Cr, Cu, Fe, Hf, Ir, Mo, Nb, Ni, Os, Pd, Pt, Re, Rh, Ru, Sc, Ta, Tc, V, Y, Zn, Zr, Ti, W), by comparing the amount of change in the length of the N-N triple-bond, and calculating the adsorption energy of N2 and the change of charge around N2, it is shown that the activation effect of Sc, Ti, Y, Nb-Mn@N6-C on the single-atomic layer of graphite substrate is relatively good. The calculation of structural stability shows that the Mn-M@N6-C (M = Sc, Ti, Y) load is relatively stable when it is on the single-atomic layer of the graphite substrate. Through calculations, a series of data such as the adsorption free energy and reaction path are obtained, and the final results show that the preferred reaction mechanism of NRR is the alternating path on Mn-Ti@N6-C, and the reaction limit potential is only 0.16 eV, Mn-Ti@N6-C and has good NRR activity. In addition, the vertical path on Mn-Y@N6-C has a reaction limit potential of 0.39 eV. Mn-Y@N6-C also has good NRR catalyzing activity.
- Published
- 2022
- Full Text
- View/download PDF