251 results on '"Zobel, M"'
Search Results
2. Do Different Competitive Abilities of Three Fern Species Explain Their Different Regional Abundances?
- Author
-
Rünk, K., Moora, M., and Zobel, M.
- Published
- 2004
3. Species Richness, Alien Species and Plant Traits in Central Argentine Mountain Grasslands
- Author
-
Cantero, J. J., Liira, J., Cisneros, J. M., Gonzalez, J., Nuñez, C., Petryna, L., Cholaky, C., and Zobel, M.
- Published
- 2003
4. Are Invaders Disturbance-Limited? Conservation of Mountain Grasslands in Central Argentina
- Author
-
Petryna, L., Moora, M., Nuñes, C. O., Cantero, J. J., and Zobel, M.
- Published
- 2002
5. Small-Scale Turnover in a Calcareous Grassland, Its Pattern and Components
- Author
-
Otsus, M. and Zobel, M.
- Published
- 2002
6. Is Small-Scale Species Richness Limited by Seed Availability or Microsite Availability?
- Author
-
Zobel, M., Otsus, M., Liira, J., Moora, M., and Mols, T.
- Published
- 2000
- Full Text
- View/download PDF
7. Why Do We Need Permanent Plots in the Study of Long-Term Vegetation Dynamics?
- Author
-
Bakker, J. P., Olff, H., Willems, J. H., and Zobel, M.
- Published
- 1996
8. The Dynamics of Species Richness in an Experimentally Restored Calcareous Grassland
- Author
-
Zobel, M., Suurkask, M., Rosén, E., and Pärtel, M.
- Published
- 1996
9. Global patterns in endemicity and vulnerability of soil fungi
- Author
-
Tedersoo, L, Mikryukov, V, Zizka, A, Bahram, M, Hagh-Doust, N, Anslan, S, Prylutskyi, O, Delgado-Baquerizo, M, Maestre, FT, Pärn, J, Öpik, M, Moora, M, Zobel, M, Espenberg, M, Mander, Ü, Khalid, AN, Corrales, A, Agan, A, Vasco-Palacios, AM, Saitta, A, Rinaldi, AC, Verbeken, A, Sulistyo, BP, Tamgnoue, B, Furneaux, B, Ritter, CD, Nyamukondiwa, C, Sharp, C, Marín, C, Gohar, D, Klavina, D, Sharmah, D, Dai, DQ, Nouhra, E, Biersma, EM, Rähn, E, Cameron, E, De Crop, E, Otsing, E, Davydov, EA, Albornoz, F, Brearley, FQ, Buegger, F, Zahn, G, Bonito, G, Hiiesalu, I, Barrio, IC, Heilmann-Clausen, J, Ankuda, J, Kupagme, JY, Maciá-Vicente, JG, Fovo, JD, Geml, J, Alatalo, JM, Alvarez-Manjarrez, J, Põldmaa, K, Runnel, K, Adamson, K, Bråthen, KA, Pritsch, K, Tchan, KI, Armolaitis, K, Hyde, KD, Newsham, K, Panksep, K, Lateef, AA, Tiirmann, L, Hansson, L, Lamit, LJ, Saba, M, Tuomi, M, Gryzenhout, M, Bauters, M, Piepenbring, M, Wijayawardene, N, Yorou, NS, Kurina, O, Mortimer, PE, Meidl, P, Kohout, P, Nilsson, RH, Puusepp, R, Drenkhan, R, Garibay-Orijel, R, Godoy, R, Alkahtani, S, Rahimlou, S, Dudov, SV, Põlme, S, Ghosh, S, Mundra, S, Ahmed, T, Netherway, T, Henkel, TW, Roslin, T, Nteziryayo, V, Fedosov, VE, Onipchenko, V, Yasanthika, WAE, Lim, YW, Tedersoo, L, Mikryukov, V, Zizka, A, Bahram, M, Hagh-Doust, N, Anslan, S, Prylutskyi, O, Delgado-Baquerizo, M, Maestre, FT, Pärn, J, Öpik, M, Moora, M, Zobel, M, Espenberg, M, Mander, Ü, Khalid, AN, Corrales, A, Agan, A, Vasco-Palacios, AM, Saitta, A, Rinaldi, AC, Verbeken, A, Sulistyo, BP, Tamgnoue, B, Furneaux, B, Ritter, CD, Nyamukondiwa, C, Sharp, C, Marín, C, Gohar, D, Klavina, D, Sharmah, D, Dai, DQ, Nouhra, E, Biersma, EM, Rähn, E, Cameron, E, De Crop, E, Otsing, E, Davydov, EA, Albornoz, F, Brearley, FQ, Buegger, F, Zahn, G, Bonito, G, Hiiesalu, I, Barrio, IC, Heilmann-Clausen, J, Ankuda, J, Kupagme, JY, Maciá-Vicente, JG, Fovo, JD, Geml, J, Alatalo, JM, Alvarez-Manjarrez, J, Põldmaa, K, Runnel, K, Adamson, K, Bråthen, KA, Pritsch, K, Tchan, KI, Armolaitis, K, Hyde, KD, Newsham, K, Panksep, K, Lateef, AA, Tiirmann, L, Hansson, L, Lamit, LJ, Saba, M, Tuomi, M, Gryzenhout, M, Bauters, M, Piepenbring, M, Wijayawardene, N, Yorou, NS, Kurina, O, Mortimer, PE, Meidl, P, Kohout, P, Nilsson, RH, Puusepp, R, Drenkhan, R, Garibay-Orijel, R, Godoy, R, Alkahtani, S, Rahimlou, S, Dudov, SV, Põlme, S, Ghosh, S, Mundra, S, Ahmed, T, Netherway, T, Henkel, TW, Roslin, T, Nteziryayo, V, Fedosov, VE, Onipchenko, V, Yasanthika, WAE, and Lim, YW
- Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
- Published
- 2022
10. Global soil microbiomes: A new frontline of biome‐ecology research
- Author
-
Vasar, M., Davison, J., Sepp, S‐K, Mucina, L., Oja, J., Al‐Quraishy, S., Anslan, S., Bahram, M., Bueno, C.G., Cantero, J.J., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Meng, Y., Moora, M., Onipchenko, V., Öpik, M., Pärtel, M., Vahter, T., Tedersoo, L., Zobel, M., Soininen, J., Vasar, M., Davison, J., Sepp, S‐K, Mucina, L., Oja, J., Al‐Quraishy, S., Anslan, S., Bahram, M., Bueno, C.G., Cantero, J.J., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Meng, Y., Moora, M., Onipchenko, V., Öpik, M., Pärtel, M., Vahter, T., Tedersoo, L., Zobel, M., and Soininen, J.
- Abstract
Aim Organisms on our planet form spatially congruent and functionally distinct communities, which at large geographical scales are called “biomes”. Understanding their pattern and function is vital for sustainable use and protection of biodiversity. Current global terrestrial biome classifications are based primarily on climate characteristics and functional aspects of plant community assembly. These and other existing biome schemes do not take account of soil organisms, including highly diverse and functionally important microbial groups. We aimed to define large-scale structure in the diversity of soil microbes (soil microbiomes), pinpoint the environmental drivers shaping it and identify resemblance and mismatch with existing terrestrial biome schemes. Location Global. Time period Current. Major taxa studied Soil eukaryotes and prokaryotes. Methods We collected soil samples from natural environments world-wide, incorporating most known terrestrial biomes. We used high-throughput sequencing to characterize soil biotic communities and k-means clustering to define soil microbiomes describing the diversity of microbial eukaryotic and prokaryotic groups. We used climatic data and soil variables measured in the field to identify the environmental variables shaping soil microbiome structure. Results We recorded strong correlations among fungal, bacterial, archaeal, plant and animal communities, defined a system of global soil microbiomes (producing seven biome types for microbial eukaryotes and six biome types for prokaryotes) and showed that these are typically structured by pH alongside temperature. None of the soil microbiomes are directly paralleled by any current terrestrial biome scheme, with mismatch most substantial for prokaryotes and for microbial eukaryotes in cold climates; nor do they consistently distinguish grassland and forest ecosystems. Main conclusions Existing terrestrial biome classifications represent a limited surrogate for the large-scale diversi
- Published
- 2022
11. Global taxonomic and phylogenetic assembly of AM fungi
- Author
-
Vasar, M., Davison, J., Sepp, S-K, Oja, J., Al-Quraishy, S., Bueno, C.G., Cantero, J.J., Fabiano, E.C., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Moora, M., Mucina, L., Onipchenko, V., Öpik, M., Pärtel, M., Phosri, C., Vahter, T., Tedersoo, L., Zobel, M., Vasar, M., Davison, J., Sepp, S-K, Oja, J., Al-Quraishy, S., Bueno, C.G., Cantero, J.J., Fabiano, E.C., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Moora, M., Mucina, L., Onipchenko, V., Öpik, M., Pärtel, M., Phosri, C., Vahter, T., Tedersoo, L., and Zobel, M.
- Abstract
Arbuscular mycorrhizal (AM) fungi are a ubiquitous group of plant symbionts, yet processes underlying their global assembly — in particular the roles of dispersal limitation and historical drivers — remain poorly understood. Because earlier studies have reported niche conservatism in AM fungi, we hypothesized that variation in taxonomic community composition (i.e., unweighted by taxon relatedness) should resemble variation in phylogenetic community composition (i.e., weighted by taxon relatedness) which reflects ancestral adaptations to historical habitat gradients. Because of the presumed strong dispersal ability of AM fungi, we also anticipated that the large-scale structure of AM fungal communities would track environmental conditions without regional discontinuity. We used recently published AM fungal sequence data (small‐subunit ribosomal RNA gene) from soil samples collected worldwide to reconstruct global patterns in taxonomic and phylogenetic community variation. The taxonomic structure of AM fungal communities was primarily driven by habitat conditions, with limited regional differentiation, and there were two well-supported clusters of communities — occurring in cold and warm conditions. Phylogenetic structure was driven by the same factors, though all relationships were markedly weaker. This suggests that niche conservatism with respect to habitat associations is weakly expressed in AM fungal communities. We conclude that the composition of AM fungal communities tracks major climatic and edaphic gradients, with the effects of dispersal limitation and historic factors considerably less apparent than those of climate and soil.
- Published
- 2022
12. Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities
- Author
-
Davison, J., Vasar, M., Sepp, S‐K, Oja, J., Al‐Quraishy, S., Bueno, C.G., Cantero, J.J., Chimbioputo Fabiano, E., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Moora, M., Mucina, L., Onipchenko, V., Öpik, M., Pärtel, M., Phosri, C., Semchenko, M., Vahter, T., Tedersoo, L., Zobel, M., Davison, J., Vasar, M., Sepp, S‐K, Oja, J., Al‐Quraishy, S., Bueno, C.G., Cantero, J.J., Chimbioputo Fabiano, E., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W.N., Koorem, K., Moora, M., Mucina, L., Onipchenko, V., Öpik, M., Pärtel, M., Phosri, C., Semchenko, M., Vahter, T., Tedersoo, L., and Zobel, M.
- Abstract
Classical theory identifies resource competition as the major structuring force of biotic communities and predicts that (i) levels of dominance and richness in communities are inversely related, (ii) narrow niches allow dense “packing” in niche space and thus promote diversity, and (iii) dominants are generalists with wide niches, such that locally abundant taxa also exhibit wide distributions. Current empirical support, however, is mixed. We tested these expectations using published data on arbuscular mycorrhizal (AM) fungal community composition worldwide. We recorded the expected negative relationship between dominance and richness and, to a degree, the positive association between local and global dominance. However, contrary to expectations, dominance was pronounced in communities where more specialists were present and, conversely, richness was higher in communities with more generalists. Thus, resource competition and niche packing appear to be of limited importance in AM fungal community assembly; rather, patterns of dominance and diversity seem more consistent with habitat filtering and stochastic processes.
- Published
- 2022
13. Laboratory Course Neutron Scattering: Lectures
- Author
-
Brückel, T., Förster, Stephan, Kruteva, M., Zobel, M., and Zorn, Reiner
- Published
- 2022
14. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)
- Author
-
Öpik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J. M., Reier, Ü., and Zobel, M.
- Published
- 2010
15. Unravelling the Effects of Temperature, Latitude and Local Environment on the Reproduction of Forest Herbs
- Author
-
De Frenne, P., Kolb, A., Verheyen, K., Brunet, J., Chabrerie, O., Decocq, G., Diekmann, M., Eriksson, O., Heinken, T., Hermy, M., Jõgar, Ü., Stanton, S., Quataert, P., Zindel, R., Zobel, M., and Graae, B. J.
- Published
- 2009
- Full Text
- View/download PDF
16. Large-Scale Parallel 454 Sequencing Reveals Host Ecological Group Specificity of Arbuscular Mycorrhizal Fungi in a Boreonemoral Forest
- Author
-
Öpik, M., Metsis, M., Daniell, T. J., Zobel, M., and Moora, M.
- Published
- 2009
- Full Text
- View/download PDF
17. Indicators for Biodiversity in Agricultural Landscapes: A Pan-European Study
- Author
-
Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M. J. M., Speelmans, M., Simova, P., Verboom, J., van Wingerden, W. K. R. E., Zobel, M., and Edwards, P. J.
- Published
- 2008
- Full Text
- View/download PDF
18. Change in Pattern Diversity during Secondary Succession in Estonian Forests
- Author
-
Zobel, K., Zobel, M., and Peet, R. K.
- Published
- 1993
19. sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots
- Author
-
Sabatini, F.M., Lenoir, J., Hattab, T., Arnst, E., Chytrý, M., Dengler, J., De Ruffray, P., Hennekens, S.M., Jandt, U., Jansen, F., Jimenez‐Alfaro, B., Kattge, J., Levesley, A., Pillar, V.D., Purschke, O., Sandel, B., Sultana, F., Aavik, T., Aćić, S., Acosta, A.T.R., Agrillo, E., Álvarez, M., Apostolova, I., Arfin Khan, M.A.S., Arroyo, L., Attorre, F., Aubin, I., Banerjee, A., Bauters, M., Bergeron, Y., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Bonari, G., Bondareva, V., Brunet, J., Čarni, A., Casella, L., Cayuela, L., Černý, T., Chepinoga, V., Csiky, J., Ćušterevska, R., De Bie, E., Gasper, A.L., De Sanctis, M., Dimopoulos, P., Dolezal, J., Dziuba, T., El‐Sheikh, M.A.El‐R.M., Enquist, B., Ewald, J., Fazayeli, F., Field, R., Finckh, M., Gachet, S., Galán‐de‐Mera, A., Garbolino, E., Gholizadeh, H., Giorgis, M., Golub, V., Alsos, I.G., Grytnes, J‐A, Guerin, G.R., Gutiérrez, A.G., Haider, S., Hatim, M.Z., Hérault, B., Hinojos Mendoza, G., Hölzel, N., Homeier, J., Hubau, W., Indreica, A., Janssen, J.A.M., Jedrzejek, B., Jentsch, A., Jürgens, N., Kącki, Z., Kapfer, J., Karger, D.N., Kavgacı, A., Kearsley, E., Kessler, M., Khanina, L., Killeen, T., Korolyuk, A., Kreft, H., Kühl, H.S., Kuzemko, A., Landucci, F., Lengyel, A., Lens, F., Lingner, D.V., Liu, H., Lysenko, T., Mahecha, M.D., Marcenò, C., Martynenko, V., Moeslund, J.E., Monteagudo Mendoza, A., Mucina, L., Müller, J.V., Munzinger, J., Naqinezhad, A., Noroozi, J., Nowak, A., Onyshchenko, V., Overbeck, G.E., Pärtel, M., Pauchard, A., Peet, R.K., Penuelas, J., Pérez‐Haase, A., Peterka, T., Petřík, P., Peyre, G., Phillips, O.L., Prokhorov, V., Rašomavičius, V., Revermann, R., Rivas‐Torres, G., Rodwell, J.S., Ruprecht, E., Rūsiņa, S., Samimi, C., Schmidt, M., Schrodt, F., Shan, H., Shirokikh, P., Šibík, J., Šilc, U., Sklenář, P., Škvorc, Ž., Sparrow, B., Sperandii, M.G., Stančić, Z., Svenning, J‐C, Tang, Z., Tang, C.Q., Tsiripidis, I., Vanselow, K.A., Vásquez Martínez, R., Vassilev, K., Vélez‐Martin, E., Venanzoni, R., Vibrans, A.C., Violle, C., Virtanen, R., Wehrden, H., Wagner, V., Walker, D.A., Waller, D.M., Wang, H‐F, Wesche, K., Whitfeld, T.J.S., Willner, W., Wiser, S.K., Wohlgemuth, T., Yamalov, S., Zobel, M., Bruelheide, H., Bates, A., Sabatini, F.M., Lenoir, J., Hattab, T., Arnst, E., Chytrý, M., Dengler, J., De Ruffray, P., Hennekens, S.M., Jandt, U., Jansen, F., Jimenez‐Alfaro, B., Kattge, J., Levesley, A., Pillar, V.D., Purschke, O., Sandel, B., Sultana, F., Aavik, T., Aćić, S., Acosta, A.T.R., Agrillo, E., Álvarez, M., Apostolova, I., Arfin Khan, M.A.S., Arroyo, L., Attorre, F., Aubin, I., Banerjee, A., Bauters, M., Bergeron, Y., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Bonari, G., Bondareva, V., Brunet, J., Čarni, A., Casella, L., Cayuela, L., Černý, T., Chepinoga, V., Csiky, J., Ćušterevska, R., De Bie, E., Gasper, A.L., De Sanctis, M., Dimopoulos, P., Dolezal, J., Dziuba, T., El‐Sheikh, M.A.El‐R.M., Enquist, B., Ewald, J., Fazayeli, F., Field, R., Finckh, M., Gachet, S., Galán‐de‐Mera, A., Garbolino, E., Gholizadeh, H., Giorgis, M., Golub, V., Alsos, I.G., Grytnes, J‐A, Guerin, G.R., Gutiérrez, A.G., Haider, S., Hatim, M.Z., Hérault, B., Hinojos Mendoza, G., Hölzel, N., Homeier, J., Hubau, W., Indreica, A., Janssen, J.A.M., Jedrzejek, B., Jentsch, A., Jürgens, N., Kącki, Z., Kapfer, J., Karger, D.N., Kavgacı, A., Kearsley, E., Kessler, M., Khanina, L., Killeen, T., Korolyuk, A., Kreft, H., Kühl, H.S., Kuzemko, A., Landucci, F., Lengyel, A., Lens, F., Lingner, D.V., Liu, H., Lysenko, T., Mahecha, M.D., Marcenò, C., Martynenko, V., Moeslund, J.E., Monteagudo Mendoza, A., Mucina, L., Müller, J.V., Munzinger, J., Naqinezhad, A., Noroozi, J., Nowak, A., Onyshchenko, V., Overbeck, G.E., Pärtel, M., Pauchard, A., Peet, R.K., Penuelas, J., Pérez‐Haase, A., Peterka, T., Petřík, P., Peyre, G., Phillips, O.L., Prokhorov, V., Rašomavičius, V., Revermann, R., Rivas‐Torres, G., Rodwell, J.S., Ruprecht, E., Rūsiņa, S., Samimi, C., Schmidt, M., Schrodt, F., Shan, H., Shirokikh, P., Šibík, J., Šilc, U., Sklenář, P., Škvorc, Ž., Sparrow, B., Sperandii, M.G., Stančić, Z., Svenning, J‐C, Tang, Z., Tang, C.Q., Tsiripidis, I., Vanselow, K.A., Vásquez Martínez, R., Vassilev, K., Vélez‐Martin, E., Venanzoni, R., Vibrans, A.C., Violle, C., Virtanen, R., Wehrden, H., Wagner, V., Walker, D.A., Waller, D.M., Wang, H‐F, Wesche, K., Whitfeld, T.J.S., Willner, W., Wiser, S.K., Wohlgemuth, T., Yamalov, S., Zobel, M., Bruelheide, H., and Bates, A.
- Abstract
Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring.
- Published
- 2021
20. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi
- Author
-
Davison, J., Moora, M., Semchenko, M., Adenan, S.B., Ahmed, T., Akhmetzhanova, A.A., Alatalo, J.M., Al‐Quraishy, S., Andriyanova, E., Anslan, S., Bahram, M., Batbaatar, A., Brown, C., Bueno, C.G., Cahill, J., Cantero, J.J., Casper, B.B., Cherosov, M., Chideh, S., Coelho, A.P., Coghill, M., Decocq, G., Dudov, S., Fabiano, E.C., Fedosov, V.E., Fraser, L., Glassman, S.I., Helm, A., Henry, H.A.L., Hérault, B., Hiiesalu, I., Hozzein, W.N., Kohout, P., Kõljalg, U., Koorem, K., Laanisto, L., Mander, Ü., Mucina, L., Munyampundu, J‐P, Neuenkamp, L., Niinemets, Ü., Nyamukondiwa, C., Oja, J., Onipchenko, V., Pärtel, M., Phosri, C., Polme, S., Püssa, K., Ronk, A., Saitta, A., Semboli, O., Sepp, S‐K, Seregin, A., Sudheer, S., Peña‐Venegas, C.P., Paz, C., Vahter, T., Vasar, M., Veraart, A.J., Tedersoo, L., Zobel, M., Öpik, M., Davison, J., Moora, M., Semchenko, M., Adenan, S.B., Ahmed, T., Akhmetzhanova, A.A., Alatalo, J.M., Al‐Quraishy, S., Andriyanova, E., Anslan, S., Bahram, M., Batbaatar, A., Brown, C., Bueno, C.G., Cahill, J., Cantero, J.J., Casper, B.B., Cherosov, M., Chideh, S., Coelho, A.P., Coghill, M., Decocq, G., Dudov, S., Fabiano, E.C., Fedosov, V.E., Fraser, L., Glassman, S.I., Helm, A., Henry, H.A.L., Hérault, B., Hiiesalu, I., Hozzein, W.N., Kohout, P., Kõljalg, U., Koorem, K., Laanisto, L., Mander, Ü., Mucina, L., Munyampundu, J‐P, Neuenkamp, L., Niinemets, Ü., Nyamukondiwa, C., Oja, J., Onipchenko, V., Pärtel, M., Phosri, C., Polme, S., Püssa, K., Ronk, A., Saitta, A., Semboli, O., Sepp, S‐K, Seregin, A., Sudheer, S., Peña‐Venegas, C.P., Paz, C., Vahter, T., Vasar, M., Veraart, A.J., Tedersoo, L., Zobel, M., and Öpik, M.
- Abstract
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
- Published
- 2021
21. sPlotOpen:an environmentally balanced, open-access, global dataset of vegetation plots
- Author
-
Sabatini, F. M. (Francesco Maria), Lenoir, J. (Jonathan), Hattab, T. (Tarek), Arnst, E. A. (Elise Aimee), Chytry, M. (Milan), Dengler, J. (Juergen), De Ruffray, P. (Patrice), Hennekens, S. M. (Stephan M.), Jandt, U. (Ute), Jansen, F. (Florian), Jimenez-Alfaro, B. (Borja), Kattge, J. (Jens), Levesley, A. (Aurora), Pillar, V. D. (Valerio D.), Purschke, O. (Oliver), Sandel, B. (Brody), Sultana, F. (Fahmida), Aavik, T. (Tsipe), Acic, S. (Svetlana), Acosta, A. T. (Alicia T. R.), Agrillo, E. (Emiliano), Alvarez, M. (Miguel), Apostolova, I. (Iva), Arfin Khan, M. A. (Mohammed A. S.), Arroyo, L. (Luzmila), Attorre, F. (Fabio), Aubin, I. (Isabelle), Banerjee, A. (Arindam), Bauters, M. (Marijn), Bergeron, Y. (Yves), Bergmeier, E. (Erwin), Biurrun, I. (Idoia), Bjorkman, A. D. (Anne D.), Bonari, G. (Gianmaria), Bondareva, V. (Viktoria), Brunet, J. (Jorg), Carni, A. (Andraz), Casella, L. (Laura), Cayuela, L. (Luis), Cerny, T. (Tomas), Chepinoga, V. (Victor), Csiky, J. (Janos), Custerevska, R. (Renata), De Bie, E. (Els), de Gasper, A. L. (Andre Luis), De Sanctis, M. (Michele), Dimopoulos, P. (Panayotis), Dolezal, J. (Jiri), Dziuba, T. (Tetiana), El-Sheikh, M. A. (Mohamed Abd El-Rouf Mousa), Enquist, B. (Brian), Ewald, J. (Joerg), Fazayeli, F. (Farideh), Field, R. (Richard), Finckh, M. (Manfred), Gachet, S. (Sophie), Galan-de-Mera, A. (Antonio), Garbolino, E. (Emmanuel), Gholizadeh, H. (Hamid), Giorgis, M. (Melisa), Golub, V. (Valentin), Alsos, I. G. (Inger Greve), Grytnes, J.-A. (John-Arvid), Guerin, G. R. (Gregory Richard), Gutierrez, A. G. (Alvaro G.), Haider, S. (Sylvia), Hatim, M. Z. (Mohamed Z.), Herault, B. (Bruno), Hinojos Mendoza, G. (Guillermo), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Hubau, W. (Wannes), Indreica, A. (Adrian), Janssen, J. A. (John A. M.), Jedrzejek, B. (Birgit), Jentsch, A. (Anke), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Kapfer, J. (Jutta), Karger, D. N. (Dirk Nikolaus), Kavgaci, A. (Ali), Kearsley, E. (Elizabeth), Kessler, M. (Michael), Khanina, L. (Larisa), Killeen, T. (Timothy), Korolyuk, A. (Andrey), Kreft, H. (Holger), Kuehl, H. S. (Hjalmar S.), Kuzemko, A. (Anna), Landucci, F. (Flavia), Lengyel, A. (Attila), Lens, F. (Frederic), Lingner, D. V. (Debora Vanessa), Liu, H. (Hongyan), Lysenko, T. (Tatiana), Mahecha, M. D. (Miguel D.), Marceno, C. (Corrado), Martynenko, V. (Vasiliy), Moeslund, J. E. (Jesper Erenskjold), Monteagudo Mendoza, A. (Abel), Mucina, L. (Ladislav), Muller, J. V. (Jonas V.), Munzinger, J. (Jerome), Naqinezhad, A. (Alireza), Noroozi, J. (Jalil), Nowak, A. (Arkadiusz), Onyshchenko, V. (Viktor), Overbeck, G. E. (Gerhard E.), Partel, M. (Meelis), Pauchard, A. (Anibal), Peet, R. K. (Robert K.), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Peterka, T. (Tomas), Petrik, P. (Petr), Peyre, G. (Gwendolyn), Phillips, O. L. (Oliver L.), Prokhorov, V. (Vadim), Rasomavicius, V. (Valerijus), Revermann, R. (Rasmus), Rivas-Torres, G. (Gonzalo), Rodwell, J. S. (John S.), Ruprecht, E. (Eszter), Rusina, S. (Solvita), Samimi, C. (Cyrus), Schmidt, M. (Marco), Schrodt, F. (Franziska), Shan, H. (Hanhuai), Shirokikh, P. (Pavel), Sibik, J. (Jozef), Silc, U. (Urban), Sklenar, P. (Petr), Skvorc, Z. (Zeljko), Sparrow, B. (Ben), Sperandii, M. G. (Marta Gaia), Stancic, Z. (Zvjezdana), Svenning, J.-C. (Jens-Christian), Tang, Z. (Zhiyao), Tang, C. Q. (Cindy Q.), Tsiripidis, I. (Ioannis), Vanselow, K. A. (Kim Andre), Vasquez Martinez, R. (Rodolfo), Vassilev, K. (Kiril), Velez-Martin, E. (Eduardo), Venanzoni, R. (Roberto), Vibrans, A. C. (Alexander Christian), Violle, C. (Cyrille), Virtanen, R. (Risto), von Wehrden, H. (Henrik), Wagner, V. (Viktoria), Walker, D. A. (Donald A.), Waller, D. M. (Donald M.), Wang, H.-F. (Hua-Feng), Wesche, K. (Karsten), Whitfeld, T. J. (Timothy J. S.), Willner, W. (Wolfgang), Wiser, S. K. (Susan K.), Wohlgemuth, T. (Thomas), Yamalov, S. (Sergey), Zobel, M. (Martin), Bruelheide, H. (Helge), Sabatini, F. M. (Francesco Maria), Lenoir, J. (Jonathan), Hattab, T. (Tarek), Arnst, E. A. (Elise Aimee), Chytry, M. (Milan), Dengler, J. (Juergen), De Ruffray, P. (Patrice), Hennekens, S. M. (Stephan M.), Jandt, U. (Ute), Jansen, F. (Florian), Jimenez-Alfaro, B. (Borja), Kattge, J. (Jens), Levesley, A. (Aurora), Pillar, V. D. (Valerio D.), Purschke, O. (Oliver), Sandel, B. (Brody), Sultana, F. (Fahmida), Aavik, T. (Tsipe), Acic, S. (Svetlana), Acosta, A. T. (Alicia T. R.), Agrillo, E. (Emiliano), Alvarez, M. (Miguel), Apostolova, I. (Iva), Arfin Khan, M. A. (Mohammed A. S.), Arroyo, L. (Luzmila), Attorre, F. (Fabio), Aubin, I. (Isabelle), Banerjee, A. (Arindam), Bauters, M. (Marijn), Bergeron, Y. (Yves), Bergmeier, E. (Erwin), Biurrun, I. (Idoia), Bjorkman, A. D. (Anne D.), Bonari, G. (Gianmaria), Bondareva, V. (Viktoria), Brunet, J. (Jorg), Carni, A. (Andraz), Casella, L. (Laura), Cayuela, L. (Luis), Cerny, T. (Tomas), Chepinoga, V. (Victor), Csiky, J. (Janos), Custerevska, R. (Renata), De Bie, E. (Els), de Gasper, A. L. (Andre Luis), De Sanctis, M. (Michele), Dimopoulos, P. (Panayotis), Dolezal, J. (Jiri), Dziuba, T. (Tetiana), El-Sheikh, M. A. (Mohamed Abd El-Rouf Mousa), Enquist, B. (Brian), Ewald, J. (Joerg), Fazayeli, F. (Farideh), Field, R. (Richard), Finckh, M. (Manfred), Gachet, S. (Sophie), Galan-de-Mera, A. (Antonio), Garbolino, E. (Emmanuel), Gholizadeh, H. (Hamid), Giorgis, M. (Melisa), Golub, V. (Valentin), Alsos, I. G. (Inger Greve), Grytnes, J.-A. (John-Arvid), Guerin, G. R. (Gregory Richard), Gutierrez, A. G. (Alvaro G.), Haider, S. (Sylvia), Hatim, M. Z. (Mohamed Z.), Herault, B. (Bruno), Hinojos Mendoza, G. (Guillermo), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Hubau, W. (Wannes), Indreica, A. (Adrian), Janssen, J. A. (John A. M.), Jedrzejek, B. (Birgit), Jentsch, A. (Anke), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Kapfer, J. (Jutta), Karger, D. N. (Dirk Nikolaus), Kavgaci, A. (Ali), Kearsley, E. (Elizabeth), Kessler, M. (Michael), Khanina, L. (Larisa), Killeen, T. (Timothy), Korolyuk, A. (Andrey), Kreft, H. (Holger), Kuehl, H. S. (Hjalmar S.), Kuzemko, A. (Anna), Landucci, F. (Flavia), Lengyel, A. (Attila), Lens, F. (Frederic), Lingner, D. V. (Debora Vanessa), Liu, H. (Hongyan), Lysenko, T. (Tatiana), Mahecha, M. D. (Miguel D.), Marceno, C. (Corrado), Martynenko, V. (Vasiliy), Moeslund, J. E. (Jesper Erenskjold), Monteagudo Mendoza, A. (Abel), Mucina, L. (Ladislav), Muller, J. V. (Jonas V.), Munzinger, J. (Jerome), Naqinezhad, A. (Alireza), Noroozi, J. (Jalil), Nowak, A. (Arkadiusz), Onyshchenko, V. (Viktor), Overbeck, G. E. (Gerhard E.), Partel, M. (Meelis), Pauchard, A. (Anibal), Peet, R. K. (Robert K.), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Peterka, T. (Tomas), Petrik, P. (Petr), Peyre, G. (Gwendolyn), Phillips, O. L. (Oliver L.), Prokhorov, V. (Vadim), Rasomavicius, V. (Valerijus), Revermann, R. (Rasmus), Rivas-Torres, G. (Gonzalo), Rodwell, J. S. (John S.), Ruprecht, E. (Eszter), Rusina, S. (Solvita), Samimi, C. (Cyrus), Schmidt, M. (Marco), Schrodt, F. (Franziska), Shan, H. (Hanhuai), Shirokikh, P. (Pavel), Sibik, J. (Jozef), Silc, U. (Urban), Sklenar, P. (Petr), Skvorc, Z. (Zeljko), Sparrow, B. (Ben), Sperandii, M. G. (Marta Gaia), Stancic, Z. (Zvjezdana), Svenning, J.-C. (Jens-Christian), Tang, Z. (Zhiyao), Tang, C. Q. (Cindy Q.), Tsiripidis, I. (Ioannis), Vanselow, K. A. (Kim Andre), Vasquez Martinez, R. (Rodolfo), Vassilev, K. (Kiril), Velez-Martin, E. (Eduardo), Venanzoni, R. (Roberto), Vibrans, A. C. (Alexander Christian), Violle, C. (Cyrille), Virtanen, R. (Risto), von Wehrden, H. (Henrik), Wagner, V. (Viktoria), Walker, D. A. (Donald A.), Waller, D. M. (Donald M.), Wang, H.-F. (Hua-Feng), Wesche, K. (Karsten), Whitfeld, T. J. (Timothy J. S.), Willner, W. (Wolfgang), Wiser, S. K. (Susan K.), Wohlgemuth, T. (Thomas), Yamalov, S. (Sergey), Zobel, M. (Martin), and Bruelheide, H. (Helge)
- Abstract
Motivation: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained: Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain: Global, 0.01–40,000 m². Time period and grain: 1888–2015, recording dates. Major taxa and level of measuremen
- Published
- 2021
22. Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity
- Author
-
Hammen, V. C., Biesmeijer, J. C., Bommarco, R., Budrys, E., Christensen, T. R., Fronzek, S., Grabaum, R., Jaksic, P., Klotz, S., Kramarz, P., Kröel-Dulay, G., Kühn, I., Mirtl, M., Moora, M., Petanidou, T., Pino, J., Potts, S. G., Rortais, A., Schulze, C. H., Steffan-Dewenter, I., Stout, J., Szentgyörgyi, H., Vighi, M., Vujic, A., Westphal, C., Wolf, T., Zavala, G., Zobel, M., Settele, J., and Kunin, W. E.
- Published
- 2010
- Full Text
- View/download PDF
23. Analysis of membrane electrode assembly (MEA) by environmental scanning electron microscope (ESEM)
- Author
-
Yu, H.M., Schumacher, J.O., Zobel, M., and Hebling, C.
- Published
- 2005
- Full Text
- View/download PDF
24. Molecular and phenotypic characteristics of metachromatic leukodystrophy patients from Poland
- Author
-
Ługowska, A, Berger, J, Tylki-Szymańska, A, Löschl, B, Molzer, B, Zobel, M, and Czartoryska, B
- Published
- 2005
25. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time
- Author
-
Neuenkamp, L., Prober, S.M., Price, J.N., Zobel, M., Standish, R.J., Neuenkamp, L., Prober, S.M., Price, J.N., Zobel, M., and Standish, R.J.
- Abstract
Mycorrhizal inoculation can enhance outcomes of ecological restoration, but the benefits may be context-dependent. Here, we performed a meta-analysis of field studies to elucidate conditions in which adding mycorrhizal fungi enhances restoration success. We found inoculation increased plant biomass by an average effect size of 1.7 in 70 independent comparisons from 26 field-based studies, with the largest increases to N-fixing woody plants, C4-grasses and plants growing in soils with low plant-available P. Growth responses to inoculation increased with time for the first 3 yr after inoculation, especially for N-fixing woody plants and plants growing in severely altered soils. We found that mycorrhizal inoculation increased species richness of restored plant communities by 30%, promoted establishment of target species, and enhanced similarity of restored to reference communities. We conclude that the addition of mycorrhizal fungi to restoration sites can facilitate rapid establishment of vegetation cover, and restoration of diverse plant communities more akin to reference sites.
- Published
- 2019
26. Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise
- Author
-
Musche, Martin, Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W.D., Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, P., Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, M., White, T., Zobel, M., Klotz, Stefan, Musche, Martin, Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W.D., Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, P., Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, M., White, T., Zobel, M., and Klotz, Stefan
- Abstract
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
- Published
- 2019
27. Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise
- Author
-
Musche, M., Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W. Daniel, Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, Petr, Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, Montserrat, White, T., Zobel, M., Klotz, S., Musche, M., Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W. Daniel, Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, Petr, Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, Montserrat, White, T., Zobel, M., and Klotz, S.
- Abstract
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
- Published
- 2019
28. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time
- Author
-
Neuenkamp, L., Prober, S.M., Price, J.N., Zobel, M., Standish, R.J., Neuenkamp, L., Prober, S.M., Price, J.N., Zobel, M., and Standish, R.J.
- Abstract
Mycorrhizal inoculation can enhance outcomes of ecological restoration, but the benefits may be context-dependent. Here, we performed a meta-analysis of field studies to elucidate conditions in which adding mycorrhizal fungi enhances restoration success. We found inoculation increased plant biomass by an average effect size of 1.7 in 70 independent comparisons from 26 field-based studies, with the largest increases to N-fixing woody plants, C4-grasses and plants growing in soils with low plant-available P. Growth responses to inoculation increased with time for the first 3 yr after inoculation, especially for N-fixing woody plants and plants growing in severely altered soils. We found that mycorrhizal inoculation increased species richness of restored plant communities by 30%, promoted establishment of target species, and enhanced similarity of restored to reference communities. We conclude that the addition of mycorrhizal fungi to restoration sites can facilitate rapid establishment of vegetation cover, and restoration of diverse plant communities more akin to reference sites.
- Published
- 2018
29. Indicators for biodiversity in agricultural landscapes : a pan-European study
- Author
-
Billeter, Regula, Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., Van Wingerden, W.K.R.E., Zobel, M., Edwards, P.J., Billeter, Regula, Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., Van Wingerden, W.K.R.E., Zobel, M., and Edwards, P.J.
- Published
- 2018
30. Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions
- Author
-
Menzel, Andreas, Hempel, S., Davison, J., Moora, M., Pyšek, P., Rillig, M.C., Zobel, M., Kühn, Ingolf, Menzel, Andreas, Hempel, S., Davison, J., Moora, M., Pyšek, P., Rillig, M.C., Zobel, M., and Kühn, Ingolf
- Abstract
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non-mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130km²). We used generalized linear models, incorporating main effects and up to three-way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade-off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade-offs). AM status significantly explained the area of occupancy of natives and neophytes - with facultative mycorrhizal species occupying the largest area in both groups - but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade-offs with other traits related to high C cost in terms of area of occupancy, such trade-offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophyte than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal s
- Published
- 2018
31. Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis
- Author
-
Asociación Española Contra el Cáncer, Ministry of Science, Research and Art Baden-Württemberg, European Commission, European Research Council, Josep Carreras Leukemia Foundation, Associazione Italiana per la Ricerca sul Cancro, Fondazione Cariplo, Association for International Cancer Research, Ministero dell'Istruzione, dell'Università e della Ricerca, Gerboth, S., Frittoli, E., Palamidessi, A., Baltanás, Fernando C., Salek, M., Rappsilber, J., Giuliani, C., Troglio, F., Rolland, Y., Pruneri, G., Kreutmair, S., Pallavicini, I., Zobel, M., Cinquanta, M., Minucci, S., Gómez, Carmela, Illert, A.L., Scita, G., Asociación Española Contra el Cáncer, Ministry of Science, Research and Art Baden-Württemberg, European Commission, European Research Council, Josep Carreras Leukemia Foundation, Associazione Italiana per la Ricerca sul Cancro, Fondazione Cariplo, Association for International Cancer Research, Ministero dell'Istruzione, dell'Università e della Ricerca, Gerboth, S., Frittoli, E., Palamidessi, A., Baltanás, Fernando C., Salek, M., Rappsilber, J., Giuliani, C., Troglio, F., Rolland, Y., Pruneri, G., Kreutmair, S., Pallavicini, I., Zobel, M., Cinquanta, M., Minucci, S., Gómez, Carmela, Illert, A.L., and Scita, G.
- Abstract
Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1 fl/fl mice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL.
- Published
- 2018
32. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe
- Author
-
Bueno, C.G., Moora, M., Gerz, M., Davison, J., Öpik, M., Pärtel, M., Helm, A., Ronk, A., Kühn, Ingolf, Zobel, M., Bueno, C.G., Moora, M., Gerz, M., Davison, J., Öpik, M., Pärtel, M., Helm, A., Ronk, A., Kühn, Ingolf, and Zobel, M.
- Abstract
AimIdentifying the factors that drive large-scale patterns of biotic interaction is fundamental for understanding how communities respond to changing environmental conditions. Mycorrhizal symbiosis is a key interaction between fungi and most vascular plants. Whether plants are obligately (OM) or facultatively (FM) mycorrhizal, and which mycorrhizal type they form – arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), ericoid mycorrhizal (ERM) or non-mycorrhizal (NM) – can have strong implications for plant species distribution at the continental scale and on the responses of plants to environmental gradients.LocationEurope, north of 43° latitude and excluding Russia, Belarus and Moldova.Time periodUndefined.Major taxa studiedVascular plants.MethodsUsing published sources, we compiled the most complete dataset yet of plant mycorrhizal and geographical information for Europe, comprising 1442 plant species. We mapped the European distributions of plant mycorrhizal status (OM and FM) and type (AM, ECM, ERM and NM) and analysed their relationships with climatic, edaphic and plant productivity drivers on a 50 km × 50 km equal-area grid.ResultsThe distribution of mycorrhizal types in Europe was driven by mean temperature, soil pH and productivity. AM plant species predominated throughout the region, but at higher latitudes the share of NM and, to a lesser extent, ECM and ERM species increased. FM species predominated over OM species, and this increased with latitude and was dependent on temperature drivers. The high share of OM species in the central European mountains indicates a possible influence of historical glacial refugia.Main conclusionsOur results challenge the prevailing view of parallel trends in the latitudinal and elevational distribution of mycorrhizal types and demonstrate distinctive responses of plants with different mycorrhizal status to climatic, edaphic and biogeographical drivers at the European scale.
- Published
- 2017
33. Introduction
- Author
-
Bakker, J. P., Willems, J. H., and Zobel, M.
- Published
- 1996
34. Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis
- Author
-
Gerboth, S, primary, Frittoli, E, additional, Palamidessi, A, additional, Baltanas, F C, additional, Salek, M, additional, Rappsilber, J, additional, Giuliani, C, additional, Troglio, F, additional, Rolland, Y, additional, Pruneri, G, additional, Kreutmair, S, additional, Pallavicini, I, additional, Zobel, M, additional, Cinquanta, M, additional, Minucci, S, additional, Gomez, C, additional, Santos, E, additional, Illert, A L, additional, and Scita, G, additional
- Published
- 2017
- Full Text
- View/download PDF
35. Mycorrhizal status helps explain invasion success of alien plant species
- Author
-
Menzel, Andreas, Hempel, S., Klotz, Stefan, Moora, M., Pyšek, P., Rillig, M.C., Zobel, M., Kühn, Ingolf, Menzel, Andreas, Hempel, S., Klotz, Stefan, Moora, M., Pyšek, P., Rillig, M.C., Zobel, M., and Kühn, Ingolf
- Abstract
It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.
- Published
- 2016
36. Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany
- Author
-
Menzel, Andreas, Hempel, S., Manceur, Marc Ameur, Götzenberger, L., Moora, M., Rillig, M.C., Zobel, M., Kühn, Ingolf, Menzel, Andreas, Hempel, S., Manceur, Marc Ameur, Götzenberger, L., Moora, M., Rillig, M.C., Zobel, M., and Kühn, Ingolf
- Abstract
We analysed the spatial distribution patterns of plant species’ arbuscular mycorrhizal status across an intermediate geographical scale (i.e. the country of Germany) and related these distributions to environmental drivers. Three levels of arbuscular mycorrhizal status of plant species could be defined: (1) obligate arbuscular mycorrhizal species that are always colonised by mycorrhizal fungi, (2) facultative arbuscular mycorrhizal species that are colonised under some conditions but not colonised under others and (3) non-mycorrhizal species that are never found to be colonised by mycorrhizal fungi. We aimed to investigate whether plant species assemblages at the studied grid cell scale are composed of different proportions of species regarding their arbuscular mycorrhizal status, and whether the variation of these proportions can be linked to the geographical variation of ecological and environmental factors. We fitted a vector generalised additive model (VGAM) for log-ratios of proportions of plant species’ arbuscular mycorrhizal status per grid cell (2859 grid cells, each c. 130 km2). The spatially explicit plant arbuscular mycorrhizal status distribution model was based on environmental predictors related to climate, geology and land use. The spatial distribution of plant arbuscular mycorrhizal status can be explained as a function of nine environmental predictors (D2 = 0.54). Proportion of obligate arbuscular mycorrhizal plant species per grid cell increased with increasing temperature range, mean annual temperature, urban area and area of lime as geological parent material and decreased with increasing area of mixed forest and coniferous forest. Annual temperature range was by far the most important predictor. These results extend the comparative context of former studies that established relationships between mycorrhizal status and other plant characteristics at species level, including those describing species ecological requiremen
- Published
- 2016
37. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism
- Author
-
Davison, J., Moora, M., Öpik, M., Adholeya, A., Ainsaar, L., Bâ, A., Burla, S., Diedhiou, A. G., Hiiesalu, I., Jairus, T., Johnson, N. C., Kane, A., Koorem, K., Kochar, M., Ndiaye, C., Pärtel, M., Reier, Ü., Saks, Ü., Singh, R., Vasar, M., Zobel, M., Davison, J., Moora, M., Öpik, M., Adholeya, A., Ainsaar, L., Bâ, A., Burla, S., Diedhiou, A. G., Hiiesalu, I., Jairus, T., Johnson, N. C., Kane, A., Koorem, K., Kochar, M., Ndiaye, C., Pärtel, M., Reier, Ü., Saks, Ü., Singh, R., Vasar, M., and Zobel, M.
- Published
- 2015
38. Die Bildung einer 1,3-Disulfo-hexo-furanose als Ursache für den scheinbaren Verlust an Ascorbinsäure beim Sulfitieren von Nahrungsmitteln
- Author
-
Zobel, M. and Körpe, W.
- Published
- 1964
- Full Text
- View/download PDF
39. Wechselbeziehungen zwischen Ascorbinsäure und Cellulose bei papierchromatographischen Bestimmungen
- Author
-
Zobel, M. and Prahl, Chr
- Published
- 1967
- Full Text
- View/download PDF
40. Beitrag zur quantitativen papierchromatographischen bestimmung von ascorbinsäure, dehydroascorbinsäure und ascorbigen in thermisch behandelten biologischen Materialien: II. Mitteilung Papierchromatographische bestimmung der dehydroascorbinsäure
- Author
-
Hermann, J. and Zobel, M.
- Published
- 1962
- Full Text
- View/download PDF
41. Beitrag zur quantitativen papierchromatographischen Bestimmung von Ascorbinsäure, Dehydroascorbinsäure und Ascorbigen in thermisch behandelten biologischen MaterialienIV. Mitteilung Verbesserung der quantitativen Auswertung der Chromatogramme
- Author
-
Zobel, M. and Teutloff, A.
- Published
- 1962
- Full Text
- View/download PDF
42. Beitrag zur bestimmung des vitamin C-gehaltes in lebensmitteln. Ergebnisse eines ringversuches
- Author
-
Zacharias, R., Imhoff, U., Strohecker, Jr., R., and Zobel, M.
- Published
- 1968
- Full Text
- View/download PDF
43. Beitrag zur quantitativen papierchromatographischen Bestimmung von Ascorbinsäure, Dehydroascorbinsäure und Ascorbigen in thermisch behandelten biologischen Materialien: III. Mitteilung Papierchromatographische Bestimmung des Ascorbigens
- Author
-
Herrmann, J. and Zobel, M.
- Published
- 1962
- Full Text
- View/download PDF
44. Über das Verhalten des Solanins in Kartoffeln bei verschiedenen Garmachungsarten
- Author
-
Zobel, M. and Schilling, J.
- Published
- 1964
- Full Text
- View/download PDF
45. Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales: research needs and approaches of the SCALES project
- Author
-
Henle, Klaus, Kunin, Williams, Schweiger, Oliver, Schmeller, D.S., Grobelnik, V., Matsinos, Y., Pantis, J., Penev, L., Potts, Simon, Ring, I., Simila, J., Tzanopoulos, Joseph, Van den Hove, S., Baguette, M., Clobert, J., Ecoffier, L., Framstad, E., Grodzinska-Jurczak, M., Lengyel, S., Marty, P., Moilanen, A., Porcher, E., Steinicke, H., Storch, D., Steffan Dewenter, I., Sykes, M.T., Zobel, M., and Settele, J.
- Published
- 2010
46. Which is a better predictor of plant traits: Temperature or precipitation?
- Author
-
Moles, AT, Perkins, SE, Laffan, SW, Flores-Moreno, H, Awasthy, M, Tindall, ML, Sack, L, Pitman, A, Kattge, J, Aarssen, LW, Anand, M, Bahn, M, Blonder, B, Cavender-Bares, J, Cornelissen, JHC, Cornwell, WK, Díaz, S, Dickie, JB, Freschet, GT, Griffiths, JG, Gutierrez, AG, Hemmings, FA, Hickler, T, Hitchcock, TD, Keighery, M, Kleyer, M, Kurokawa, H, Leishman, MR, Liu, K, Niinemets, Ü, Onipchenko, V, Onoda, Y, Penuelas, J, Pillar, VD, Reich, PB, Shiodera, S, Siefert, A, Sosinski, EE, Soudzilovskaia, NA, Swaine, EK, Swenson, NG, van Bodegom, PM, Warman, L, Weiher, E, Wright, IJ, Zhang, H, Zobel, M, Bonser, SP, Moles, AT, Perkins, SE, Laffan, SW, Flores-Moreno, H, Awasthy, M, Tindall, ML, Sack, L, Pitman, A, Kattge, J, Aarssen, LW, Anand, M, Bahn, M, Blonder, B, Cavender-Bares, J, Cornelissen, JHC, Cornwell, WK, Díaz, S, Dickie, JB, Freschet, GT, Griffiths, JG, Gutierrez, AG, Hemmings, FA, Hickler, T, Hitchcock, TD, Keighery, M, Kleyer, M, Kurokawa, H, Leishman, MR, Liu, K, Niinemets, Ü, Onipchenko, V, Onoda, Y, Penuelas, J, Pillar, VD, Reich, PB, Shiodera, S, Siefert, A, Sosinski, EE, Soudzilovskaia, NA, Swaine, EK, Swenson, NG, van Bodegom, PM, Warman, L, Weiher, E, Wright, IJ, Zhang, H, Zobel, M, and Bonser, SP
- Abstract
Question: Are plant traits more closely correlated with mean annual temperature, orwithmean annual precipitation? Location: Global. Methods: We quantified the strength of the relationships between temperature and precipitation and 21 plant traits from 447,961 species-site combinations worldwide. We used meta-analysis to provide an overall answer to our question. Results: Mean annual temperature was significantly more strongly correlated with plant traits than was mean annual precipitation. Conclusions: Our study provides support for some of the assumptions of classical vegetation theory, and points to many interesting directions for future research. The relatively low R2 values for precipitation might reflect the weak link betweenmean annual precipitation and the availability of water to plants.
- Published
- 2014
47. Fifty thousand years of Arctic vegetation and megafaunal diet
- Author
-
Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D., Vestergård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L., Boessenkool, S., Epp, L.S., Pearman, P.B., Cheddadi, R., Murray, D., Bråthen, K.A., Yoccoz, N., Binney, H., Cruaud, C., Wincker, P., Goslar, T., Alsos, I.G., Bellemain, E., Brysting, A.K., Elven, R., Sønstebø, J.H., Murton, J., Sher, A., Rasmussen, M., Rønn, R., Mourier, T., Cooper, A., Austin, J., Möller, P., Froese, D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov, G., Roberts, R.G., MacPhee, R.D.E., Gilbert, M.T.P., Kjær, K.H., Orlando, L., Brochmann, C., Taberlet, P., Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D., Vestergård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L., Boessenkool, S., Epp, L.S., Pearman, P.B., Cheddadi, R., Murray, D., Bråthen, K.A., Yoccoz, N., Binney, H., Cruaud, C., Wincker, P., Goslar, T., Alsos, I.G., Bellemain, E., Brysting, A.K., Elven, R., Sønstebø, J.H., Murton, J., Sher, A., Rasmussen, M., Rønn, R., Mourier, T., Cooper, A., Austin, J., Möller, P., Froese, D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov, G., Roberts, R.G., MacPhee, R.D.E., Gilbert, M.T.P., Kjær, K.H., Orlando, L., Brochmann, C., and Taberlet, P.
- Abstract
Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
- Published
- 2014
48. Correction: Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe
- Author
-
Breeze, T., Vaissiere, B.E., Bommarco, R., Petanidou, T., Seraphides, N., Kozak, L., Scheper, J.A., Biesmeijer, J.C., Kleijn, D., Gyldenkaerne, S., Holzschuh, A., Steffan-Dewenter, I., Stout, J.C., Partel, M., Zobel, M., Potts, S.G., Breeze, T., Vaissiere, B.E., Bommarco, R., Petanidou, T., Seraphides, N., Kozak, L., Scheper, J.A., Biesmeijer, J.C., Kleijn, D., Gyldenkaerne, S., Holzschuh, A., Steffan-Dewenter, I., Stout, J.C., Partel, M., Zobel, M., and Potts, S.G.
- Abstract
The following information was missing from the funding section: BBSRC, DEFRA, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative crops project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- Published
- 2014
49. Mycorrhizas in the Central European flora - relationships with plant life history traits and ecology
- Author
-
Hempel, S., Götzenberger, L., Kühn, Ingolf, Michalski, Stefan, Rillig, M.C., Zobel, M., Moora, M., Hempel, S., Götzenberger, L., Kühn, Ingolf, Michalski, Stefan, Rillig, M.C., Zobel, M., and Moora, M.
- Abstract
Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life-history traits and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, higher pH; and negatively with moist, acidic and fertile soils. Competitive species were more frequently OM and stress tolerators non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species, differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM+NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology.
- Published
- 2013
50. Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis
- Author
-
Gerboth, S, Frittoli, E, Palamidessi, A, Baltanas, F C, Salek, M, Rappsilber, J, Giuliani, C, Troglio, F, Rolland, Y, Pruneri, G, Kreutmair, S, Pallavicini, I, Zobel, M, Cinquanta, M, Minucci, S, Gomez, C, Santos, E, Illert, A L, and Scita, G
- Abstract
Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.