1. Comprehensive pan-cancer analysis identifies cellular senescence as a new therapeutic target for cancer: multi-omics analysis and single-cell sequencing validation
- Author
-
Zhang, Qiuhuan, Tang, Yi, Hu, Guimei, Yuan, Zhuoer, Zhang, Shengyue, Sun, Yucao, Yin, De, Dong, Chencheng, Zhao, Jiehua, Wu, Guo, Huang, Xiaoliang, Yang, Jianrong, and Tang, Yuntian
- Subjects
Original Article - Abstract
Although cellular senescence has long been recognized as an anti-tumor mechanism, mounting evidence suggests that in some circumstances, senescent cells promote tumor growth and malignancy spread. Therefore, research into the exact relationship between cellular senescence and tumor immunity is ongoing. We analyzed changes in the expression, copy number variation, single-nucleotide variation, methylation, and drug sensitivity of cellular senescence-related genes in 33 tumor types. The cellular senescence score was calculated using the single-sample gene-set enrichment analysis. The correlations between cellular senescence score and prognosis, tumor immune microenvironment (TIME), and expression of tumor immune-related genes were comprehensively analyzed. Single-cell transcriptome sequencing data were used to assess the activation state of cellular senescence in the tumor microenvironment (TME). The expression of cellular senescence-associated hub genes varied significantly across cancer types. In these genes, missense mutation was the major type of single nucleotide polymorphism, and heterozygous deletion and heterozygous amplification were the major types of copy number variation. Moreover, the cellular senescence pathway in tumors was sensitive to drugs such as XMD13-2, TPCA-1, methotrexate, and KIN001-102. Furthermore, the cellular senescence score was significantly higher in most cancer types, related to poor prognosis. The expression of immune checkpoint molecules such as NRP1, CD276, and CD44 was significantly correlated with the cellular senescence score. Monocyte cellular senescence was significantly higher in the TME of kidney renal clear cell carcinoma cells than in normal tissues. The findings of this study provide insights into the important role of cellular senescence in the TIME of human cancers and the effect of immunotherapy.
- Published
- 2022