1. Interference Measurements Across Vacuum and Atmospheric Environments for Characterization of Space-Borne Telescope
- Author
-
Yi-Kai Huang and Cheng-Huan Chen
- Subjects
space-borne telescope ,interferometry ,thermal vacuum test ,Applied optics. Photonics ,TA1501-1820 - Abstract
A space-borne telescope is used for Earth observation at about 500 km above sea level in the thermosphere where the air density is very low and the temperature increases significantly during daytime. If the telescopes are aligned and characterized on the ground with standard temperature and pressure (STP) conditions, different from that of the thermosphere, their performance could drift during their mission. Therefore, they are usually placed in a thermal vacuum chamber during ground testing in order to verify the system can perform well and withstand the harsh environment such as a high vacuum level and large temperature variations before being launched. Nevertheless, it remains a challenge to build up an in situ optical measurement system for a large aperture telescope in a thermal vacuum chamber due to the finite internal space of the chamber, limited aperture size of the vacuum view port and thermal dissipation problem of the measuring instruments. In this paper, a novel architecture of an interferometer whose light path travels across a vacuum chamber and an atmospheric environment has been proposed to resolve all of these technical issues. The major feature of the architecture is the diverger lens being located within the vacuum chamber, leaving the rest of the interferometer outside. The variation of the interference fringe due to the relocation of the diverger lens has been investigated with optical simulations and the solutions for compensation have also been proposed. Together with a specific alignment procedure for the proposed architecture, the interferogram has been successfully acquired from a prototype testbed.
- Published
- 2024
- Full Text
- View/download PDF