88 results on '"Xavier Letartre"'
Search Results
2. Magic configurations in moiré superlattice of bilayer photonic crystals: Almost-perfect flatbands and unconventional localization
- Author
-
Dung Xuan Nguyen, Xavier Letartre, Emmanuel Drouard, Pierre Viktorovitch, H. Chau Nguyen, and Hai Son Nguyen
- Subjects
Physics ,QC1-999 - Abstract
We investigate the physics of photonic band structures of the moiré patterns that emerged when overlapping two unidimensional photonic crystal slabs with mismatched periods. The band structure of our system is a result of the interplay between intralayer and interlayer coupling mechanisms, which can be fine-tuned via the distance separating the two layers. We derive an effective Hamiltonian that captures the essential physics of the system and reproduces all numerical simulations of electromagnetic solutions with high accuracy. Most interestingly, magic distances corresponding to the emergence of photonic flatbands within the whole Brillouin zone of the moiré superlattice are observed. We demonstrate that these flatband modes are tightly localized within a moiré period. Moreover, we suggest a single-band tight-binding model that describes the moiré minibands, of which the tunneling rate can be continuously tuned via the interlayer strength. Our results show that the band structure of bilayer photonic moiré can be engineered in the same fashion as the electronic/excitonic counterparts. It would pave the way to study many-body physics at photonic moiré flatbands and optoelectronic devices.
- Published
- 2022
- Full Text
- View/download PDF
3. Tubular optical microcavities based on rolled-up photonic crystals
- Author
-
Rémi Briche, Aziz Benamrouche, Pierre Cremillieu, Philippe Regreny, Jean-Louis Leclercq, Xavier Letartre, Alexandre Danescu, and Ségolène Callard
- Subjects
Applied optics. Photonics ,TA1501-1820 - Abstract
The self-rolling of micro-structured membranes via the stress-engineering method opens new ways to create 3D photonic micro-objects with original designs and optical properties. This article validates this approach by producing 3D hollow micro-resonators based on rolled-up 2D photonic crystal membrane mirrors, capable of trapping light in 3D and in air. We fabricated the 3D tubular microresonators with 10 μm–20 μm diameters by rolling photonic crystal membranes using stress-engineering technique on the prestressed InGaP/InP bilayer. We also added a design feature to lift the microtubes vertically and facilitate optical measurements, but also to attach the structures to the substrate. The dispersion of the planar 2D photonic crystal membrane was optimized to exhibit high reflectivity (>95%) at normal incidence over a large spectral band (100 nm) in the near-infrared domain (1.5 μm–1.6 μm). The cylindrical cavity model and numerical simulations predicted the presence of quasi-pure radial cavity modes with a strong concentration of light over nearly 3% of the photonic microtubes’ cross section. We demonstrated experimentally the presence of those modes through scanning near-field optical microscopy measurements. Using a bowtie nanoantenna, we selectively detected and mapped transverse electric modes in the hollow core of photonic microtubes. Spatially resolved cartographies allowed for the identification of the modes in good agreement with theoretical predictions. This work brings theoretical and experimental proof of concept of light cages based on rolled-up photonic crystal membranes. It also opens the path to the realization of original photonic microstructures as combinations of a specific photonic crystal design and a targeted 3D form.
- Published
- 2020
- Full Text
- View/download PDF
4. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications
- Author
-
Quentin Wilmart, Houssein El Dirani, Nicola Tyler, Daivid Fowler, Stéphane Malhouitre, Stéphanie Garcia, Marco Casale, Sébastien Kerdiles, Karim Hassan, Christelle Monat, Xavier Letartre, Ayman Kamel, Minhao Pu, Kresten Yvind, Leif Katsuo Oxenløwe, Wilfried Rabaud, Corrado Sciancalepore, Bertrand Szelag, and Ségolène Olivier
- Subjects
silicon photonics ,silicon nitride ,transceiver ,multiplexing ,grating coupler ,Coarse Wavelength Division Multiplexing (CWDM) ,LIDAR ,optical phased array ,beam steering ,frequency comb ,Kerr nonlinearity ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Silicon photonics is one of the most prominent technology platforms for integrated photonics and can support a wide variety of applications. As we move towards a mature industrial core technology, we present the integration of silicon nitride (SiN) material to extend the capabilities of our silicon photonics platform. Depending on the application being targeted, we have developed several integration strategies for the incorporation of SiN. We present these processes, as well as key components for dedicated applications. In particular, we present the use of SiN for athermal multiplexing in optical transceivers for datacom applications, the nonlinear generation of frequency combs in SiN micro-resonators for ultra-high data rate transmission, spectroscopy or metrology applications and the use of SiN to realize optical phased arrays in the 800–1000 nm wavelength range for Light Detection And Ranging (LIDAR) applications. These functionalities are demonstrated using a 200 mm complementary metal-oxide-semiconductor (CMOS)-compatible pilot line, showing the versatility and scalability of the Si-SiN platform.
- Published
- 2019
- Full Text
- View/download PDF
5. Analytical non-Hermitian description of Photonic Crystals with arbitrary Lateral and Transverse symmetry
- Author
-
Xavier Letartre, Serge Mazauric, Sébastien Cueff, Taha Benyattou, Hai Son Nguyen, Pierre Viktorovitch, and xavier, letartre
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,FOS: Physical sciences ,Physics::Optics ,Optics (physics.optics) ,Physics - Optics - Abstract
In this work we propose a general theoretical approach to the modelling of complex dispersion characteristics of leaky optical modes operating in photonic crystal slab composed of two high-index contrast gratings, beyond the protection of the light cone. Opening access of wave-guided resonances to free space continuum provides large amount of extra degrees of freedom for mode coupling engineering. Not only can the two gratings communicate via near field coupling, but they are also allowed to couple via the propagating radiated field. Our analytical model, based on a non-Hermitian Hamiltonian, including both coupling schemes, allows for a unified description of the wide family of optical modes which may be generated within uni-dimensional photonic crystal. Through a variety of illustrative examples, we show that our theoretical approach provide a simplified categorization of these modes, but it is also a powerful enabler for the discovery of novel photonic species. Finally, as proof-of-concept, we demonstrate experimentally the formation of a Dirac point at the merging of three bound states in the continuum that is the most achieved photonic specie discussed in this work., 34 pages, 23 figures
- Published
- 2022
6. Ultimate Phase Sensitivity in Surface Plasmon Resonance Sensors by Tuning Critical Coupling with Phase Change Materials
- Author
-
Cécile Jamois, Xavier Letartre, Sébastien Cueff, Taha Benyattou, Lotfi Berguiga, Lydie Ferrier, Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Cueff, Sébastien
- Subjects
Surface (mathematics) ,Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,02 engineering and technology ,01 natural sciences ,010309 optics ,Phase change ,Optics ,Phase (matter) ,0103 physical sciences ,Sensitivity (control systems) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business.industry ,Physics - Applied Physics ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,3. Good health ,13. Climate action ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
Plasmonic sensing is an established technology for real-time biomedical diagnostics and air-quality monitoring. While intensity and wavelength tracking are the most commonly used interrogation methods for Surface Plasmon Resonance (SPR), several works indicate the potential superiority of phase interrogation in detection sensitivity. Here, we theoretically and numerically establish the link between ultra-high sensitivities in phase interrogation SPR sensors and the critical coupling condition. However, reaching this condition requires a technically infeasible angstrom-level precision in the metal layer thickness. We propose a robust solution to overcome this limitation by coupling the SPR with a phase-change material (PCM) thin film. By exploiting the multilevel reconfigurable phase states of PCM, we theoretically demonstrate ultra-high phase sensitivities with a limit of detection as low as $10^{-10}$ refractive index unit (RIU). Such a PCM-assisted SPR sensor platform paves the way for unprecedented sensitivity sensors for the detection of trace amounts of low molecular weight species in biomedical sensing and environmental monitoring., 10 pages, 7 figures
- Published
- 2021
7. Magic configurations in Moir\'e Superlattice of Bilayer Photonic crystal: Almost-Perfect Flatbands and Unconventional Localization
- Author
-
Dung Xuan Nguyen, Xavier Letartre, Emmanuel Drouard, Pierre Viktorovitch, H. Chau Nguyen, and Hai Son Nguyen
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences ,General Physics and Astronomy ,Optics (physics.optics) ,Physics - Optics - Abstract
We investigate the physics of photonic band structures of the moir\'e patterns that emerged when overlapping two uni-dimensional (1D) photonic crystal slabs with mismatched periods. The band structure of our system is a result of the interplay between intra-layer and inter-layer coupling mechanisms, which can be fine-tuned via the distance separating the two layers. We derive an effective Hamiltonian that captures the essential physics of the system and reproduces all numerical simulations of electromagnetic solutions with high accuracy. Most interestingly, \textit{magic distances} corresponding to the emergence of photonic flatbands within the whole Brillouin zone of the moir\'e superlattice are observed. We demonstrate that these flatband modes are tightly localized within a moir\'e period. Moreover, we suggest a single-band tight-binding model that describes the moir\'e minibands, of which the tunnelling rate can be continuously tuned via the inter-layer strength. Our results show that the band structure of bilayer photonic moir\'e can be engineered in the same fashion as the electronic/excitonic counterparts. It would pave the way to study many-body physics at photonic moir\'e flatbands and novel optoelectronic devices., Comment: 6 pages + Supplement. Comments are welcome!
- Published
- 2021
8. Low-voltage, broadband graphene-coated Bragg mirror electro-optic modulator at telecom wavelengths
- Author
-
Thomas, Wood, Jérémy, Lhuillier, Malik, Kemiche, Pierre, Demongodin, Bertrand, Vilquin, Pedro Rojo, Romeo, Ali, Belarouci, Lotfi, Berguiga, Ségolène, Callard, Xavier, Letartre, and Christelle, Monat
- Abstract
We demonstrate a graphene based electro-optic free-space modulator yielding a reflectance contrast of 20% over a strikingly large 250nm wavelength range, centered in the near-infrared telecom band. Our device is based on the original association of a planar Bragg reflector, topped with an electrically contacted double-layer graphene capacitor structure employing a high work-function oxide shown to confer a static doping to the graphene in the absence of an external bias, thereby reducing the switching voltage range to +/-1V. The device design, fabrication and opto-electric characterization is presented, and its behavior modeled using a coupled optical-electronic framework.
- Published
- 2020
9. Towards active photonic dispersion control using graphene-induced non-radiative loss
- Author
-
Geneviève Grenet, Malik Kemiche, Thomas Wood, Jérémy Lhuillier, Sébastien Cueff, Christelle Monat, Xavier Letartre, Pierre Demongodin, Bertrand Vilquin, Pedro Rojo-Romeo, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Matériaux Fonctionnels et Nanostructures (INL - MFN)
- Subjects
Materials science ,business.industry ,Graphene ,Oxide ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Spatial modulation ,law.invention ,010309 optics ,chemistry.chemical_compound ,chemistry ,law ,0103 physical sciences ,Dispersion (optics) ,Radiative transfer ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Absorption (electromagnetic radiation) ,business - Abstract
International audience; We show that the photonic dispersion of a two coupled-mode system can be actively tuned using graphene-induced non-radiative loss. Our implementation exploits the spatial modulation of graphene's absorption via patterned oxide substrates.
- Published
- 2020
10. Towards low-power near-infrared modulators operating at telecom wavelengths: when graphene plasmons frustrate their metallic counterparts
- Author
-
Jérémy Lhuillier, Pierre Demongodin, Xavier Letartre, Philippe Regreny, Aziz Benamrouche, Malik Kemiche, Christelle Monat, Ségolène Callard, Pedro Rojo-Romeo, Thomas Wood, Bertrand Vilquin, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), H2020 ERC project, European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,Coupled mode theory ,7. Clean energy ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,law ,0103 physical sciences ,Surface plasmon resonance ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Plasmon ,Graphene ,business.industry ,Statistical and Nonlinear Physics ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Wavelength ,Excited state ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; A free-space electro-optic modulator device exploiting graphene's surface plasmon polariton (SPP) at near-infrared frequencies is proposed and theoretically studied. The device is made up of two resonant structures, the first being a metallic SPP displaying broadband absorption, and the second graphene's own SPP, which is shown to frustrate the metallic plasmon when excited, leading to a narrow reflectance peak. Doping of the graphene to achieve Fermi-level tuning is shown to shift the wavelength of the frustration phenomenon, thereby enabling the use of the device as a modulator. A reduction of 20% in the switching energy is expected due to the unique principle of operation which, crucially and contrary to most work in this field, does not rely on electroabsorption but electrorefraction changes in graphene. This coupled SPP resonator geometry also permits efficient channeling of optical energy from free space into graphene's SPP at near-infrared frequencies.
- Published
- 2020
- Full Text
- View/download PDF
11. Metallo-dielectric metasurfaces for thermal emission with controlled spectral bandwidth and angular aperture
- Author
-
Pierre Viktorovitch, Céline Chevalier, Cécile Jamois, Leo Wojszvzyk, Xavier Letartre, Lydie Ferrier, François Marquier, Jean-Jacques Greffet, Cédric Blanchard, Jean-Louis Leclercq, and Ioana Moldovan-Doyen
- Subjects
Materials science ,business.industry ,Bandwidth (signal processing) ,Physics::Optics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,02 engineering and technology ,Dielectric ,021001 nanoscience & nanotechnology ,Coupled mode theory ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,010309 optics ,Resonator ,Angular aperture ,Optics ,0103 physical sciences ,Emissivity ,0210 nano-technology ,business ,Astrophysics::Galaxy Astrophysics ,Circular polarization ,Photonic crystal - Abstract
We introduce thermal metallo-dielectric metasurfaces as mid IR sources. The emitter is a lossy metal. The spectral and angular emission is controlled using a periodic array of high refractive dielectric resonators. We introduce a design that allows to control independently the emission bandwidth and the angular aperture while ensuring a large emissivity. To validate the concept, we fabricated and characterized a metasurface, showing a good agreement with the theory.
- Published
- 2021
12. Tailoring the Local Density of Optical States and Directionality of Light Emission by Symmetry Breaking
- Author
-
Rashid Zia, Matthew Shao Ran Huang, Hai Son Nguyen, Xavier Letartre, Florian Dubois, Pierre Viktorovitch, Sébastien Cueff, Dongfang Li, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), School of Engineering (Brown Engineering), Brown University, ANR-16-CE24-0004,SNAPSHOT,Nano-couches minces commutables pour la photonique sur silicium : vers de nouveaux composants optoélectroniques ultra-efficaces(2016), and ANR-15-CE24-0026,PICSEL,VCSELs pour la photonique intégrée compatible CMOS(2015)
- Subjects
Physics ,Photoluminescence ,Condensed matter physics ,business.industry ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0103 physical sciences ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Light emission ,Symmetry breaking ,Stimulated emission ,Electrical and Electronic Engineering ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,business ,Order of magnitude ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal - Abstract
We present a method to simultaneously engineer the energy-momentum dispersion and the local density of optical states (LDOS). Using vertical symmetry breaking in high-contrast gratings, we enable the mixing of modes with different parities, thus producing hybridized modes with controlled dispersion. By tuning geometric parameters, we control the coupling between Bloch modes, leading to flatband, M- and W-shaped dispersion as well as Dirac dispersion. This dispersion-engineering leads to tailored LDOS and we experimentally demonstrate a two order of magnitude enhancement of photoluminescence from weak emitters—defects in silicon—via optical modes with adjustable angle of emission. This vertical symmetry-breaking method could readily be used in various photonic crystals and metasurfaces devices and opens up a new way to strongly boost light emission on-chip and to steer it to arbitrary directions.
- Published
- 2019
13. Technological advances on Si and Si3N4 low-loss waveguide platforms for nonlinear and quantum optics applications
- Author
-
Christelle Monat, Camille Petit-Etienne, Houssein El Dirani, Xavier Letartre, Cyril Bellegarde, Corrado Sciancalepore, Erwine Pargon, Jean-Michel Hartmann, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), and STMicroelectronics [Crolles] (ST-CROLLES)
- Subjects
Materials science ,Photon ,Band gap ,Complementary metal-oxide-semiconductor (CMOS) ,Physics::Optics ,Silicon on insulator ,correlated photons ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,010309 optics ,Resonator ,Kerrbased comb generation ,020210 optoelectronics & photonics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,photonic integrated circuits (PICs) ,ComputingMilieux_MISCELLANEOUS ,Quantum optics ,hydrogen annealing ,silicon nitride (Si3N4) ,[PHYS]Physics [physics] ,Silicon photonics ,nonlinear integrated optics ,business.industry ,resonators ,Atomic clock ,quantum integrated circuits ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,business - Abstract
In this communication, we report on the design, fabrication, and testing of silicon-on-insulator (SOI) and silicon-nitrideon- insulator (SiNOI) photonic circuits for nonlinear and quantum optics applications. As recently demonstrated, the generation of correlated photons on Si platforms can be used for quantum cryptography and quantum computing. Concerning SiNOI waveguides, Kerr frequency combs have been proposed in many applications, such as atomic clocks, on-chip spectroscopy, and terabit coherent communications. Silicon is an attractive platforms for correlated photons sources because of its high nonlinearity, they can have several modes in telecom band with sharp line widths (tens of μeV) and its inherent complementary metal-oxide-semiconductor (CMOS) compatibility. Moreover, the SiNOI is an attractive platform for Kerr comb generation due to their large bandgap and consequently the low two-photon absorption in the telecommunication band. Furthermore, in all the previous SiNOI-based frequency combs, the silicon nitride film undergoes long and high-temperature annealing to reduce the absorption in the telecommunication band caused by the dangling N-H bonds, thus making such annealed Si3N4 films non-CMOS compatible. However, both in the case of correlated photons pairs generation and Kerr frequency combs, the source efficiency is related to the quality factor (Q), so that a high-Q resonator is required to get highly-efficient sources. Authors report here about the fabrication and the characterization of annealing-free CMOS-compatible SiNOI- and hydrogen-annealed silicon-based waveguides and microresonators featuring ultra-low losses (e.g., 0.6 dB/cm for single-mode Si waveguides) that can be used, respectively, as efficient sources for Kerr combs and correlated photon pairs sources.
- Published
- 2019
14. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications
- Author
-
Stephane Malhouitre, Xavier Letartre, Segolene Olivier, Quentin Wilmart, A. N. Kamel, Marco Casale, Leif Katsuo Oxenløwe, Minhao Pu, Houssein El Dirani, Nicola A. Tyler, Wilfried Rabaud, Stephanie Garcia, Sebastien Kerdiles, Corrado Sciancalepore, Daivid Fowler, Karim Hassan, Bertrand Szelag, Christelle Monat, Kresten Yvind, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon nitride ,Silicon photonics ,02 engineering and technology ,Nitride ,lcsh:Technology ,01 natural sciences ,7. Clean energy ,Multiplexing ,lcsh:Chemistry ,LIDAR ,chemistry.chemical_compound ,020210 optoelectronics & photonics ,Beam steering ,0202 electrical engineering, electronic engineering, information engineering ,frequency comb ,Grating coupler ,General Materials Science ,Transceiver ,lcsh:QH301-705.5 ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,Fluid Flow and Transfer Processes ,multiplexing ,Phased-array optics ,silicon photonics ,General Engineering ,lcsh:QC1-999 ,Optical phased array ,Computer Science Applications ,Metrology ,Frequency comb ,silicon nitride ,CMOS ,Optoelectronics ,Materials science ,optical phased array ,Coarse Wavelength Division Multiplexing (CWDM) ,beam steering ,Kerr nonlinearity ,010309 optics ,0103 physical sciences ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,transceiver ,lcsh:T ,business.industry ,Process Chemistry and Technology ,grating coupler ,lcsh:Biology (General) ,lcsh:QD1-999 ,chemistry ,lcsh:TA1-2040 ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Photonics ,lcsh:Engineering (General). Civil engineering (General) ,business ,lcsh:Physics - Abstract
Silicon photonics is one of the most prominent technology platforms for integrated photonics and can support a wide variety of applications. As we move towards a mature industrial core technology, we present the integration of silicon nitride (SiN) material to extend the capabilities of our silicon photonics platform. Depending on the application being targeted, we have developed several integration strategies for the incorporation of SiN. We present these processes, as well as key components for dedicated applications. In particular, we present the use of SiN for athermal multiplexing in optical transceivers for datacom applications, the nonlinear generation of frequency combs in SiN micro-resonators for ultra-high data rate transmission, spectroscopy or metrology applications and the use of SiN to realize optical phased arrays in the 800&ndash, 1000 nm wavelength range for Light Detection And Ranging (LIDAR) applications. These functionalities are demonstrated using a 200 mm complementary metal-oxide-semiconductor (CMOS)-compatible pilot line, showing the versatility and scalability of the Si-SiN platform.
- Published
- 2019
15. Optical frequency comb generation using annealing-free Si3N4 films for front-end monolithic integration with Si photonics
- Author
-
Marco Casale, Minhao Pu, Sebastien Kerdiles, Houssein El Dirani, Kresten Yvind, Corrado Sciancalepore, A. N. Kamel, Xavier Letartre, Leif Katsuo Oxenløwe, Christelle Monat, Sonia M. García-Blanco, Pavel Cheben, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Danmarks Tekniske Universitet (DTU), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Complimentary metal-oxide-semiconductor (CMOS) ,Materials science ,Silicon on insulator ,02 engineering and technology ,Integrated circuit ,7. Clean energy ,01 natural sciences ,law.invention ,010309 optics ,Frequency comb ,chemistry.chemical_compound ,Kerr-based comb generation ,law ,0103 physical sciences ,Silicon nitride (Si3N4) ,Resonators ,Crystalline silicon ,ComputingMilieux_MISCELLANEOUS ,Nonlinear integrated optics ,Silicon photonics ,Photonic integrated circuits (PICs) ,business.industry ,Photonic integrated circuit ,021001 nanoscience & nanotechnology ,Silicon nitride ,chemistry ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
In this communication, we report on the design, fabrication and testing of silicon-nitride-in-insulator (SiNOI) nonlinear photonic circuits for comb generation in silicon photonics and optoelectronics. The low two-photon absorption when compared with crystalline silicon makes the SiNOI an attractive platform for frequency comb generation. Kerr combs have been recently used in terabit per second coherent communications demos. Such devices can overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogenous integration of III-V on SOI lasers for both datacom and telecom applications. By using monolithically-integrated SiN-based Kerr frequency combs, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides and resonators, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. However, in all the previous SiNOI-based frequency combs, the silicon nitride film is annealed under long and high temperature which made the cointegration with silicon based optoelectronics elusive. The annealing steps used in common SiN fabrication processes are not only incompatible with the front-end of line complementary metal-oxide-semiconductor processes, but also costly and long and thus an important cost factor in non-CMOS compatible processes. In our work, we present the fabrication and testing of an annealing-free and crack-free SiNOI. Notably, a 800-nm-spanning (1300-2100 nm) frequency comb is generated using 740-nm-thick silicon nitride featuring full compatibility with silicon photonics integrated circuits. This work constitutes a new, decisive step toward time-stable power-efficient Kerr-based broadband sources featuring full process compatibility with Si photonic integrated circuits (Si-PICs) on CMOS-lines.
- Published
- 2019
16. Reconfigurable Flat Optics with Programmable Reflection Amplitude Using Lithography‐Free Phase‐Change Material Ultra‐Thin Films (Advanced Optical Materials 2/2021)
- Author
-
Arnaud Taute, Julien Lumeau, Xavier Letartre, Stephane Monfray, Qinghua Song, Sébastien Cueff, Antoine Bourgade, Brice Devif, Patrice Genevet, and Lotfi Berguiga
- Subjects
Optics ,Amplitude ,Materials science ,business.industry ,Optical materials ,Reflection (physics) ,Thin film ,business ,Lithography ,Phase-change material ,Atomic and Molecular Physics, and Optics ,Light modulation ,Electronic, Optical and Magnetic Materials - Published
- 2021
17. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics
- Author
-
Leif Katsuo Oxenløwe, Xavier Letartre, Minhao Pu, A. N. Kamel, Christelle Monat, Sebastien Kerdiles, Houssein El Dirani, Corrado Sciancalepore, Kresten Yvind, Marco Casale, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Danmarks Tekniske Universitet (DTU), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), DTU Fotonik, Technical University of Denmark [Lyngby] (DTU), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,Silicon on insulator ,chemistry.chemical_element ,Physics::Optics ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,010309 optics ,chemistry.chemical_compound ,Frequency comb ,Condensed Matter::Materials Science ,0103 physical sciences ,Crystalline silicon ,Silicon photonics ,business.industry ,Photonic integrated circuit ,021001 nanoscience & nanotechnology ,chemistry ,Silicon nitride ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
International audience; Silicon-nitride-on-insulator (SiNOI) is an attractive platform for optical frequency comb generation in the telecommunication band because of the low two-photon absorption and free carrier induced nonlinear loss when compared with crystalline silicon. However, the high-temperature annealing that has been used so far for demonstrating Si3N4-based frequency combs made the co-integration with silicon-based optoelectronics elusive, thus reducing dramatically its effective complementary metal oxide semiconductor (CMOS) compatibility. We report here on the fabrication and testing of annealing-free SiNOI nonlinear photonic circuits. In particular, we have developed a process to fabricate low-loss, annealing-free, and crack-free Si3N4 740-nm-thick films for Kerr-based nonlinear photonics featuring a full process compatibility with front-end silicon photonics. Experimental evidence shows that micro-resonators using such annealing-free silicon nitride films are capable of generating a frequency comb spanning 1300-2100 nm via optical parametrical oscillation based on four-wave mixing. This work constitutes a decisive step toward time-stable power-efficient Kerr-based broadband sources featuring full process compatibility with Si photonic integrated circuits (Si-PICs) on CMOS-.lines.
- Published
- 2018
18. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones
- Author
-
Thierry Deschamps, Hai Son Nguyen, Pierre Viktorovitch, Christian Seassal, Florian Dubois, Jean-Louis Leclercq, Sébastien Cueff, Antonin Pardon, Xavier Letartre, Biologie et physiologie des états septiques, IFR114-Université de Lille, Droit et Santé, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'électromagnétisme Microondes et optoélectronique (LEMO ), and Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Local density of states ,Condensed matter physics ,business.industry ,Dirac (software) ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Symmetry (physics) ,Planar ,Quantum mechanics ,0103 physical sciences ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Symmetry breaking ,Photonics ,010306 general physics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS ,Optics (physics.optics) ,Physics - Optics ,Photonic crystal - Abstract
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
- Published
- 2018
19. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics
- Author
-
Leif Katsuo Oxenløwe, Minhao Pu, Peter David Girouard, Nicolas Olivier, Xavier Letartre, Corrado Sciancalepore, Houssein El Dirani, Christophe Jany, Elizaveta Semenova, S. Brision, Christelle Monat, Lars Hagedorn Frandsen, Kresten Yvind, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Alcatel-Thalès III-V lab (III-V Lab), THALES [France]-ALCATEL, Laboratoire d'optique et biosciences (LOB), École polytechnique (X)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of photonics engineering, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Department of Photonics Engineering [Lyngby], European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), THALES-ALCATEL, and Technical University of Denmark [Lyngby] (DTU)
- Subjects
Materials science ,Silicon ,Physics::Instrumentation and Detectors ,Complementary metal-oxide-semiconductor (CMOS) ,Silicon on insulator ,chemistry.chemical_element ,Physics::Optics ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Kerr-based continuum generation ,010309 optics ,Frequency comb ,chemistry.chemical_compound ,020210 optoelectronics & photonics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Silicon nitride (Si3N4) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Nonlinear integrated optics ,Silicon photonics ,Photonic integrated circuits (PICs) ,business.industry ,Nanowires ,Photonic integrated circuit ,Supercontinuum ,chemistry ,Silicon nitride ,Aluminum gallium arsenide silicon optoelectronics ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,business - Abstract
In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).
- Published
- 2018
20. Slow Light Dispersion Engineering of Active Photonic Crystal Cavities for Compact and Integrated Mode-Locked Lasers
- Author
-
Xavier Letartre, Malik Kemiche, Radoslaw Mazurczyk, Pedro Rojo-Romeo, Philippe Regreny, Aziz Benamrouche, Jérémy Lhuillier, Thomas Wood, Ségolène Callard, Christelle Monat, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dispersion engineering ,Materials science ,business.industry ,Physics::Optics ,02 engineering and technology ,Chip ,Laser ,Slow light ,law.invention ,020210 optoelectronics & photonics ,law ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,Laser mode locking ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Photonic crystal - Abstract
International audience; We realize compact active photonic crystal cavities for miniaturized chip-based pulsed lasers. We experimentally validate our approach relying on slow-light dispersion engineering for sustaining the intended regular comb of modes from a 30 µm long cavity.
- Published
- 2018
21. Tuneable Dual-Mode Micro-Resonator Associating Photonic Crystal Membrane and Fabry–Perot Cavity
- Author
-
Xavier Letartre, Pierre Viktorovitch, Koku Kusiaku, Jean-Louis Leclercq, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Materials science ,Field (physics) ,business.industry ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,Resonator ,020210 optoelectronics & photonics ,Optics ,Amplitude ,Position (vector) ,0103 physical sciences ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,business ,Fabry–Pérot interferometer ,Coupling coefficient of resonators ,Photonic crystal ,Matrix method - Abstract
International audience; We report on a tuneable dual-wavelength micro-resonator with a resonant photonic crystal membrane (PCM) inserted in a vertical Fabry-Perot (FP) cavity. Strong optical coupling between both resonators leads to dual-wavelength resonances. Their energy difference, determined by the overlap of both modes, can be tuned using micro-opto-electro-mechanical systems. Variations in spectral and field overlaps are considered separately with a phenomenological matrix method through, respectively, the FP cavity thickness and the PCM position change. This approach is compared with 2-D finite-difference time-domain simulations in the second case. Periodic evolution of both modes is observed with unsymmetrical amplitude, unlike with the model cause of its approximations.
- Published
- 2014
22. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)
- Author
-
Christian Grillet, Xavier Letartre, Cédric Blanchard, Pierre Viktorovitch, Jean-Louis Leclercq, and Cécile Jamois
- Subjects
Physics ,Photon ,business.industry ,Physics::Optics ,Resonance ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Laser ,Polarization (waves) ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,Optics ,law ,Q factor ,0103 physical sciences ,Optoelectronics ,Light emission ,0210 nano-technology ,business ,Photonic crystal - Abstract
Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.
- Published
- 2016
23. Thermal, Modal, and Polarization Features of Double Photonic Crystal Vertical-Cavity Surface-Emitting Lasers
- Author
-
Nicolas Olivier, Pierre Viktorovitch, Badhise Ben Bakir, Julie Harduin, Corrado Sciancalepore, Christian Seassal, Xavier Letartre, and J-M. Fedeli
- Subjects
lcsh:Applied optics. Photonics ,Materials science ,Complementary metal–oxide–semiconductor (CMOS) ,slow Bloch mode (SBM) ,Physics::Optics ,Silicon on insulator ,Semiconductor laser theory ,law.invention ,Optical pumping ,Optics ,photonic crystal (PhC) ,guided-mode resonance (GMR) ,law ,vertical-cavity surface-emitting laser (VCSEL) ,lcsh:QC350-467 ,Electrical and Electronic Engineering ,semiconductor laser ,Photonic crystal ,business.industry ,lcsh:TA1501-1820 ,Optical polarization ,Laser ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Optoelectronics ,Photonics ,business ,lcsh:Optics. Light - Abstract
Long-wavelength vertical-cavity surface-emitting lasers (VCSELs) for photonics-on-complementary metal-oxide-semiconductor (CMOS) integration based on a double set of Si/SiO2 photonic crystal mirrors (PCMs) have been recently fabricated. In the present communication, an extensive overview about modal, polarization, and thermal features of optically pumped demonstrators is presented. Capable of operating continuous-wave up to 43°C at low thresholds, such VCSELs show single-mode polarization-stable operation at 1.55-μm with uncooled output powers in excess of 0.4 mW. This paper aims at singling out notably the device optical features arising from the excellent flexibility of the photonic architecture used. Noticeably, the light molding obtained through the engineering of Si/SiO2 photonic crystals allows for a tailored modal selection and full polarization control. Furthermore, the high-throughput cost-effective Si-based process technology developed is ideally well-suited for perspective industrial development.
- Published
- 2012
24. Thermal Aware Design Method for VCSEL-Based On-Chip Optical Interconnect
- Author
-
Hui Li, Xavier Letartre, Sébastien Le Beux, Ian O 'Connor, Gabriela Nicolescu, Alain Fourmigue, INL - Conception de Systèmes Hétérogènes (INL - CSH), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Computer and Software Engineering, École Polytechnique de Montréal (EPM), and INL - Nanophotonique (INL - Photonique)
- Subjects
FOS: Computer and information sciences ,Materials science ,Physics::Optics ,Computer Science - Emerging Technologies ,02 engineering and technology ,01 natural sciences ,law.invention ,Vertical-cavity surface-emitting laser ,thermal simulation ,Resonator ,Signal-to-noise ratio ,Thermal aware ,law ,0103 physical sciences ,Thermal ,design methodology ,0202 electrical engineering, electronic engineering, information engineering ,Hardware_INTEGRATEDCIRCUITS ,010302 applied physics ,Silicon photonics ,business.industry ,Optical interconnect ,ONoC ,Laser ,020202 computer hardware & architecture ,Emerging Technologies (cs.ET) ,Optoelectronics ,[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET] ,business - Abstract
Optical Network-on-Chip (ONoC) is an emerging technology considered as one of the key solutions for future generation on-chip interconnects. However, silicon photonic devices in ONoC are highly sensitive to temperature variation, which leads to a lower efficiency of Vertical-Cavity Surface-Emitting Lasers (VCSELs), a resonant wavelength shift of Microring Resonators (MR), and results in a lower Signal to Noise Ratio (SNR). In this paper, we propose a methodology enabling thermal-aware design for optical interconnects relying on CMOS-compatible VCSEL. Thermal simulations allow designing ONoC interfaces with low gradient temperature and analytical models allow evaluating the SNR., IEEE International Conference on Design Automation and Test in Europe (DATE 2015), Mar 2015, Grenoble, France. 2015
- Published
- 2015
25. Photonic crystals: basic concepts and devices
- Author
-
Xavier Letartre, Jean Louis Leclercq, Pierre Viktorovitch, Emmanuel Drouard, Michel Garrigues, Christian Seassal, and Pedro Rojo Romeo
- Subjects
Physics ,Wavelength ,Data processing ,Photon ,business.industry ,General Engineering ,Physics::Optics ,Energy Engineering and Power Technology ,Optoelectronics ,Photonics ,business ,Microphotonics ,Photonic crystal - Abstract
The art of microphotonics consists in confining photons, in one or more directions, in structures having dimensions about the wavelength, and doing this for the longest possible duration. The objective is then to associate these microstructures in order to carry out a photonic integration allowing data processing in very compact systems and using low optical powers. Photonic crystals have largely showed these last years their capacity to achieve these goals. To cite this article: P. Viktorovitch et al., C. R. Physique 8 (2007).
- Published
- 2007
26. Mid-infrared integrated photonics on a SiGe platform
- Author
-
Regis Orobtchouk, Barry Luther-Davies, Pan Ma, Cédric Blanchard, M. Sinobab, Luca Carletti, Christelle Monat, Christian Grillet, David Allioux, Sergio Nicoletti, Zhen Lin, Steven J. Madden, J. L. Leclercq, Xavier Letartre, Yi Yu, David J. Moss, S. Ortiz, Pierre Labeye, Cécile Jamois, D. Hudson, Mickael Brun, Pedro Rojo-Romeo, Pierre Viktorovitch, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Département d'Optronique (DOPT), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre for Ultra-high bandwidth Devices for Optical Systems (CUDOS), Australian National University (ANU), Centre for Ultra-high-Bandwidth Devices & Optical Systems (CUDOS), The University of Sydney, Royal Melbourne Institute of Technology University (RMIT University), Marie-Curie FP7-PEOPLE-2013-CIG, European Project: 631543,EC:FP7:PEOPLE,FP7-PEOPLE-2013-CIG,MIRCOMB(2014), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-École Centrale de Lyon (ECL), Inl, Laboratoire INL UMR5270, and cmos-compatible nonlinear integrated Mid-IR frequency COMBs - MIRCOMB - - EC:FP7:PEOPLE2014-05-01 - 2018-04-30 - 631543 - VALID
- Subjects
Engineering ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,Computer Networks and Communications ,[SPI] Engineering Sciences [physics] ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Mid infrared ,styling ,insert ,02 engineering and technology ,[SPI.MAT] Engineering Sciences [physics]/Materials ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,010309 optics ,[SPI]Engineering Sciences [physics] ,component ,0103 physical sciences ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business.industry ,021001 nanoscience & nanotechnology ,formatting ,style ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Photonics ,0210 nano-technology ,business ,Telecommunications - Abstract
JUN 28-JUL 02, 2015; International audience; The mid-infrared is of great interest for a huge range of applications such as medical and environment sensors, security, defense and astronomy. I will give a broad overview of the different activities recently launched in INL Lyon, in close collaboration with several French and Australian institutions, under the umbrella of ``Mid-IR integrated photonics” with a particular focus on novel integrated sources for the Mid-IR exploitinga nonlinearSiGe platform
- Published
- 2015
27. Perturbation model for the control of the spectral properties of high contrast gratings
- Author
-
Cédric Blanchard, Christian Grillet, Xavier Letartre, Taha Benyattou, Jean-Louis Leclercq, Pierre Viktorovitch, Cécile Jamois, Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), INL - Nanophotonique ( INL - Photonique ), and Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL )
- Subjects
High index ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,MathematicsofComputing_GENERAL ,Perturbation (astronomy) ,02 engineering and technology ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,020210 optoelectronics & photonics ,Optics ,[ SPI ] Engineering Sciences [physics] ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal ,Physics ,High contrast ,business.industry ,Spectral properties ,021001 nanoscience & nanotechnology ,high index contrast membrane ,perturbation model ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,Photonics ,0210 nano-technology ,business ,Photonic Crystal ,Efficient energy use - Abstract
International audience; The comprehension and manipulation of the spectral characteristics of photonic structures is of great interest for a vast bunch of applications, in particular for energy eciency. In this paper we focus on a perturbation model capable of providing insight and control on the resonances that are supported by high index contrast gratings.
- Published
- 2015
28. Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling
- Author
-
Abdelmounaim Harouri, Huanhuan Liu, Mohsen Erouel, Taha Benyattou, Emmanuel Gerelli, Cécile Jamois, Laurent Milord, Ali Belarouci, Xavier Letartre, Regis Orobtchouk, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Sherbrooke (UdeS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-École Centrale de Lyon (ECL), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Coupling ,Physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Finite-difference time-domain method ,Physics::Optics ,Interference (wave propagation) ,Atomic and Molecular Physics, and Optics ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Interferometry ,[SPI]Engineering Sciences [physics] ,Optics ,Thin-film interference ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Plasmon ,Fabry–Pérot interferometer ,ComputingMilieux_MISCELLANEOUS - Abstract
In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.
- Published
- 2015
29. Modal analysis and engineering on inp-based two-dimensional photonic-crystal microlasers on a si wafer
- Author
-
Bernard Aspar, Philippe Regreny, Xavier Letartre, Christelle Monat, J.P. Albert, Christian Seassal, Pierre Viktorovitch, Marine Le Vassor d'Yerville, David Cassagne, E. Jalaguier, Pedro Rojo-Romeo, and S. Pocas
- Subjects
Materials science ,Photoluminescence ,business.industry ,Plane wave ,Condensed Matter Physics ,Laser ,Optical microcavity ,Atomic and Molecular Physics, and Optics ,law.invention ,Optical pumping ,Optics ,law ,Optoelectronics ,Spontaneous emission ,Wafer ,Electrical and Electronic Engineering ,business ,Photonic crystal - Abstract
We report results on hexagonal-shaped microlasers formed from two-dimensional photonic crystals (PCs) using InP-based materials transferred and bonded onto SiO/sub 2// Si wafers. Two types of hexagonal cavities are investigated : single defect (one hole missing) cavities, so-called H1 cavities (1 /spl mu/m in diameter) and two holes missing per side H2 cavities (2 /spl mu/m in diameter). Their optical properties are analyzed using photoluminescence experiments, and plane wave method simulations have been performed for comparison. High Q modes (/spl sim/600/700) have been measured and they have been shown to enable laser effect at room temperature, under pulsed optical pumping (15% duty cycle and 25-ns pulsewidth). The study of these efficient mode characteristics gives guidance for further improvement of the operation conditions of PC lasers, such as the reduction of the threshold pumping power.
- Published
- 2003
30. Optical coupling between a two-dimensional photonic crystal-based microcavity and single-line defect waveguide on InP membranes
- Author
-
Christian Grillet, Xavier Letartre, Y. Dsieres, Pierre Viktorovitch, Taha Benyattou, Christian Seassal, and Pedro Rojo-Romeo
- Subjects
Diffraction ,Photoluminescence ,Materials science ,business.industry ,Finite difference ,Physics::Optics ,Condensed Matter Physics ,Polarization (waves) ,Optical microcavity ,Waveguide (optics) ,Atomic and Molecular Physics, and Optics ,law.invention ,law ,Optoelectronics ,Electrical and Electronic Engineering ,Luminescence ,business ,Photonic crystal - Abstract
We demonstrate the mutual coupling between a microcavity and a waveguide realized in a two-dimensional photonic crystal on an InP membrane. Coupling processes are evidenced by generating guided or cavity modes by photoluminescence and by measuring locally the diffraction losses. Depending on the transfer and loss dynamics, different coupling processes are found. Finite difference time-domain simulations and additional polarization resolved luminescence measurements are performed in order to further investigate the coupling procedure.
- Published
- 2002
31. INHIBITION OF LIGHT EMISSION IN A 2.5D PHOTONIC STRUCTURE
- Author
-
Christian Seassal, Xavier Letartre, Romain Peretti, Pierre Viktorovich, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Range (particle radiation) ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,business.industry ,Finite-difference time-domain method ,FOS: Physical sciences ,General Physics and Astronomy ,Physics::Optics ,Distributed Bragg reflector ,Dipole ,Optoelectronics ,Light emission ,Photonics ,business ,Physics - Optics ,Optics (physics.optics) ,Photonic crystal - Abstract
International audience; We analyse inhibition of emission in a 2.5D photonic structures made up a photonic crystal (PhC) and Bragg mirrors using FDTD simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwiched between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.
- Published
- 2014
32. Coupling of quantum dots with a photon cage
- Author
-
Romain Peretti, Guillaume Beaudin, Chérif Belacel, Rémy Artinyan, Pedro Rojo-Romeo, Jean-Louis Leclercq, B Gonzalez-Acevedo, Ségolène Callard, Alice Berthelot, Xavier Letartre, Aziz Benamrouche, Vincent Aimez, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), and Université de Sherbrooke (UdeS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Photon ,Silicon ,business.industry ,chemistry.chemical_element ,Scanning gate microscopy ,Purcell effect ,Condensed Matter::Materials Science ,chemistry ,Quantum dot ,Electro-absorption modulator ,Optoelectronics ,Near-field scanning optical microscope ,Spectroscopy ,business - Abstract
International audience; We report on the investigation of the coupling between the high-Q mode of a tri-dimensional hollow silicon-based micro-resonator and PbS quantum dots in the near-infrared range, using near-field scanning optical microscopy and far-field spectroscopy.
- Published
- 2014
33. Photoluminescence polarization and piezoelectric properties of InAs/InP quantum rod-nanowires
- Author
-
H. Khmissi, K. Naji, Catherine Bru-Chevallier, Michel Gendry, Jean-Baptiste Barakat, Gilles Patriarche, Nicolas Chauvin, Roman Anufriev, Xavier Letartre, INL - Spectroscopies et Nanomatériaux (INL - S&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Laboratoire de Micro-optoélectronique et Nanostructures [Monastir], Faculté des Sciences de Monastir (FSM), Université de Monastir - University of Monastir (UM)-Université de Monastir - University of Monastir (UM), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Gendry, Michel, Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
Materials science ,Photoluminescence ,Silicon ,Linear polarization ,business.industry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Nanowire ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Polarization (waves) ,01 natural sciences ,Piezoelectricity ,chemistry ,0103 physical sciences ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,business ,Molecular beam epitaxy ,Wurtzite crystal structure - Abstract
International audience; Purely wurtzite InAs/InP quantum rod nanowires (QRod-NWs) emitting at 1.55 µm have been successfully grown on silicon substrates by VLS assisted molecular beam epitaxy. Microphotoluminescence studies of single QRod-NWs reveal a highly linearly polarized emission parallel to the nanowires axis. This very high degree of linear polarization (> 0.9) can be explained by the photonic nature of the NW structure. Moreover, these QRod-NWs reveal a broad peak with an asymmetric lineshape at 10K. From experimental and theoretical studies, we conclude that this feature is a consequence of a piezoelectric field induced by the strained InAs QRod.
- Published
- 2014
34. Optical characterization of active photon cages
- Author
-
Guillaume Beaudin, Vincent Aimez, Xavier Letartre, Romain Peretti, Cherif Belacel, Marina Kozubova, Aziz Benamrouche, Anne-Marie Jurdyc, Alice Berthelot, Ségolène Callard, Rémy Artinyan, Jean-Louis Leclercq, Pedro Rojo-Romeo, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), and Université de Sherbrooke (UdeS)
- Subjects
Mode volume ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Photon ,Materials science ,Photoluminescence ,business.industry ,FOS: Physical sciences ,Physics::Optics ,7. Clean energy ,Electromagnetic radiation ,Resonator ,Quantum dot ,Optoelectronics ,Photonics ,business ,Optics (physics.optics) ,Physics - Optics ,Photonic crystal - Abstract
International audience; Recently, we developed a new family of 3D photonic hollow resonators which theoretically allow tight confinement of light in a fluid (gaz or liquid): the photon cages. These new resonators could be ideal for sensing applications since they not only localize the electromagnetic energy in a small mode volume but also enforce maximal overlap between this localized field and the environment (i.e. a potential volume of nano-particles). In this work, we will present numerical and experimental studies of the interaction of a photon cage optical mode with nano-emitters. For this, PbS quantum dot emitters in a PDMS host matrix have been introduced in photon cages designed to have optimal confinement properties when containing a PDMS-based active medium. Photoluminescence measurements have been performed and the presence of quantum dot emitters in the photon cages has been demonstrated.
- Published
- 2014
35. Confinement of photons and control of their emission using surface addressable photonic crystal membrane
- Author
-
Cédric Blanchard, Romain Peretti, Corrado Sciancalepore, Xavier Letartre, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique ( INL - Photonique ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Electronique, Informatique et Image ( Le2i ), and Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Photon ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,Bent molecular geometry ,Nanophotonics ,02 engineering and technology ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,010309 optics ,[SPI]Engineering Sciences [physics] ,020210 optoelectronics & photonics ,Optics ,law ,0103 physical sciences ,Thermal ,[ SPI ] Engineering Sciences [physics] ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photonic crystal ,Coupling ,Physics ,business.industry ,Laser ,Q factor ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,business - Abstract
International audience; High index contrast periodic structures can be exploited to perform an arbitrarily adjustable spatio-temporal molding of light at the wavelength scale. This tight control of photons is obtained through a shaping of resonant modes and a suitable adjustment of their coupling with propagative modes. In this talk, surface addressable (or above the light line) Bloch modes in photonic crystal membranes (PCMs) will be investigated. The concepts governing the properties of these modes will be first presented. It will be demonstrated that simple models can be considered to understand their behavior and, more specifically, their ability to capture photons during the desired lifetime. Bloch modes with a very large band width or a very high Q factor can be easily designed this way. The wide application range of these PCMs will be illustrated by different devices. Low Q Bloch modes will be first used as efficient and broadband reflectors and exploited to realize compact and efficient vertical cavity lasers with unprecedented functionalities. In addition, it will be shown that this kind of mirrors can be bent in order to confine photons in the 3 directions even in low index materials, opening the way to a new class of emitters and sensors. Finally, the exploitation of high Q Bloch modes to design highly directional thermal emitters with wavelength selectivity will be presented.
- Published
- 2014
36. Photonic crystal mirror based optical microsources for silicon photonics
- Author
-
Cédric Blanchard, Jean-Louis Leclercq, Xavier Letartre, Christian Seassal, Pierre Viktorovitch, INL - Nanophotonique ( INL - Photonique ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Université de Lyon, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, and HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
- Subjects
Materials science ,Silicon photonics ,Photon ,business.industry ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,010309 optics ,[SPI]Engineering Sciences [physics] ,Resonator ,020210 optoelectronics & photonics ,Simple (abstract algebra) ,Q factor ,0103 physical sciences ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[ SPI ] Engineering Sciences [physics] ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Photonic crystal - Abstract
International audience; Surface-addressable photonic crystal membrane resonators are shown to constitute generic enablers for 3D harnessing of light. Conceptual approaches used to analyse their optical properties are briefly presented and leads to simple design rules. Application to VCSELS is emphasized.
- Published
- 2014
37. Perturbation approach for the control of the quality factor in photonic crystal membranes: Application to selective absorbers
- Author
-
Cédric Blanchard, Pierre Viktorovitch, Xavier Letartre, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), INL - Nanophotonique ( INL - Photonique ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,Perturbation (astronomy) ,Atomic and Molecular Physics, and Optics ,Selective surface ,Optics ,Membrane ,[ SPI ] Engineering Sciences [physics] ,Integrated optics ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Emission spectrum ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,business ,PACS: 42.25.Fx, 42.70.Qs, 02.70.−c ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal - Abstract
International audience; Above the light line, guided modes cannot be perpetually sustained into a photonic crystal membrane owing to its periodic modulation. The resulting leaky waves are nowadays largely exploited in the context of integrated optics. We develop here a model affording insight into the mechanism that allows the obtention of resonances endowed with extremely high quality factors. As a matter of fact, the model indicates that the quality factor can take arbitrarily high values and that this phenomenon results from the coupling between guided and radiated modes. The obtained tight control over the emission spectrum of a photonic crystal membrane is employed to design a spectrally and spatially selective absorber.
- Published
- 2014
38. Huge light-enhancement by coupling a bowtie nano-antennas plasmonic resonance to a photonic crystal mode
- Author
-
Ali El Eter, Taha Benyattou, Fadi Issam Baida, Thierry Grosjean, Xavier Letartre, Pierre Viktorovitch, Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), INL - Nanophotonique (INL - Photonique), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Femto-st, Optique
- Subjects
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Physics::Optics ,[SPI.MAT] Engineering Sciences [physics]/Materials ,7. Clean energy ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,Resonator ,Optics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Plasmon ,Photonic crystal ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Resonance ,Nonlinear optics ,Atomic and Molecular Physics, and Optics ,Coupling (electronics) ,Light intensity ,Q factor ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,business - Abstract
International audience; We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.
- Published
- 2014
39. [Untitled]
- Author
-
Ian O'Connor, Gilles Jacquemod, Frédéric Gaffiot, Xavier Letartre, and Pascal Bontoux
- Subjects
Engineering ,business.industry ,Photonic integrated circuit ,Physics::Optics ,Mixed-signal integrated circuit ,Integrated circuit ,Surfaces, Coatings and Films ,law.invention ,Behavioral modeling ,Resonator ,Hardware and Architecture ,law ,Signal Processing ,Electronic engineering ,VHDL-AMS ,Physical design ,Photonics ,business - Abstract
In order to develop and manufacture optical integrated circuits, a common environment for integrated photonic and optronic design is required. In this paper, we show that it is possible to use VHDL-AMS to model optical integrated devices, and that sufficient accuracy can be achieved while retaining simulation times compatible with system-level design. Models of parallel waveguides and Y-couplers are given and microring resonators are studied. Finite-elements methods have been used in order to validate the established models.
- Published
- 2001
40. Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence
- Author
-
Pierre Viktorovitch, Badhise Ben Bakir, Christian Seassal, Pedro Rojo-Romeo, Michel Garrigues, Haroldo T. Hattori, Jean Louis Leclercq, Salim Boutami, and Xavier Letartre
- Subjects
Materials science ,Computer simulation ,business.industry ,Transmitter ,Photonic integrated circuit ,Physics::Optics ,Stopband ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Optics ,Broadband ,Optoelectronics ,Group velocity ,Electrical and Electronic Engineering ,business ,Photonic crystal - Abstract
Two-dimensional (2-D) compact photonic crystal reflectors on suspended InP membranes were studied under normal incidence. We report the first experimental demonstration of 2-D broadband reflectors (experimental stopband superior to 200 nm, theoretical stopband of 350 nm). They are based on the coupling of free space waves with two slow Bloch modes of the crystal. Moreover, they present a very strong sensitivity of the polarization dependence, when modifying their geometry. A compact (50/spl times/50 /spl mu/m/sup 2/) demonstrator was realized and characterized, behaving either as a broadband reflector or as a broadband transmitter, depending on the polarization of the incident wave. Experimental results are in good agreement with numerical simulations.
- Published
- 2006
41. Strong confinement of light in low index materials: the Photon Cage
- Author
-
Xavier Letartre, Jean-Louis Leclercq, Pierre Viktorovitch, Clément Sieutat, and Romain Peretti
- Subjects
Photon ,Materials science ,business.industry ,Physics::Optics ,Trapping ,Bending ,Microstructure ,Atomic and Molecular Physics, and Optics ,Resonator ,Optics ,Q factor ,Optoelectronics ,Photonics ,business ,Photonic crystal - Abstract
New photonic microstructures are proposed for an efficient light trapping in low index media. Cylindrical hollow cavities formed by bending a photonic crystal membrane are designed. Using numerical simulations, strong confinement of photons is demonstrated for very open resonators. The resulting strong light matter interaction can be exploited in optical devices comprising an active material embedded in a low index matrix like polymer or even gaz.
- Published
- 2013
42. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser
- Author
-
Laurent Chusseau, Pierre Viktorovitch, Fabrice Philippe, Xavier Letartre, Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Radiations et composants (RADIAC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Systèmes complexes, automates et pavages (ESCAPE), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
FOS: Physical sciences ,Physics::Optics ,Mode stability ,02 engineering and technology ,01 natural sciences ,Semiconductor laser theory ,010309 optics ,Competition (economics) ,Quantum-dots ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Physics ,Semiconductor lasers ,Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,42.55.Px, 42.60.Lh, 85.35.Be ,Mode (statistics) ,Dual mode ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Dual-mode lasers ,Atomic and Molecular Physics, and Optics ,Semiconductor ,Quantum dot ,Optoelectronics ,0210 nano-technology ,business ,Quantum Physics (quant-ph) ,Optics (physics.optics) ,Physics - Optics - Abstract
This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing., First draft of a paper submitted to Phys Rev A. This version includes an extended discussion about dual-mode lasers and recall some known results about stability. Extended bibliography
- Published
- 2013
43. Optical Look Up Table
- Author
-
Zhen Li, Sebastien Le Beux, Christelle Monat, Xavier Letartre, Ian O'Connor, INL - Conception de Systèmes Hétérogènes (INL - CSH), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Nanophotonique (INL - Photonique)
- Subjects
010302 applied physics ,LUT ,Silicon photonic architectures ,02 engineering and technology ,01 natural sciences ,020202 computer hardware & architecture ,WDM ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Hardware_INTEGRATEDCIRCUITS ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[INFO.INFO-ES]Computer Science [cs]/Embedded Systems ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Hardware_LOGICDESIGN - Abstract
International audience; The computation capacity of conventional FPGAs is directly proportional to the size and expressive power of Look Up Table (LUT) resources. Individual LUT performance is limited by transistor switching time and power dissipation, defined by the CMOS fabrication process. In this paper we propose OLUT, an optical core implementation of LUT, which has the potential for low latency and low power computation. In addition, the use of Wavelength Division Multiplexing (WDM) allows parallel computation, which can further increase computation capacity. Preliminary experimental results demonstrate the potential for optically assisted on-chip computation.
- Published
- 2013
44. Low frequency noise sources in InAlAs/InGaAs MODFETs
- Author
-
Pedro Rojo-Romeo, Michel Gendry, Jacques Tardy, Xavier Letartre, Jean Louis Leclercq, M. Oustric, and Pierre Viktorovitch
- Subjects
Materials science ,business.industry ,Infrasound ,Transistor ,Heterojunction ,Photon upconversion ,Electronic, Optical and Magnetic Materials ,Gallium arsenide ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Lattice (order) ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Ohmic contact ,Voltage - Abstract
Detailed analysis of the 1/f low-frequency noise (LFN) in In/sub 0.52/Al/sub 0.48/As/InGaAs MODFET structures is performed, for low drain bias (below pinch-off voltage), in order to identify the physical origin and the location of the noise sources responsible for drain current fluctuations in the frequency range 0.1 Hz-10/sup 5/ Hz. Experimental data were analyzed with the support of a general modeling of the 1/f LFN induced by traps distributed within the different layers and interfaces which constitute the heterostructures. Comparative noise measurements are performed on a variety of structures with different barrier (InAIAs, InP) and different channel (InGaAs lattice matched to InP, strained InGaAs, InP) materials. It is concluded that the dominant low frequency noise sources of InAlAs/InGaAs MODFET transistors in the ON state are generated by deep traps distributed within the "bulk" InAlAs barrier and buffer layers. For reverse gate bias, the gate current appears to be the dominant contribution to the channel LFN, whereas both the gate current and the drain and source ohmic contacts are the dominant sources of noise when the device is biased strongly in the ON state. Heterojunction FET's on InP substrate with InP barrier and buffer layers show significantly lower LFN and appear to be more suitable for applications such as nonlinear circuits that have noise upconversion.
- Published
- 1996
45. Design and growth investigations of strained In/sub x/Ga/sub 1-x/As/InAlAs/InP heterostructures for high electron mobility transistor application
- Author
-
Xavier Letartre, C. Santinelli, M. Ambri, M. Pitaval, V. Drouot, Michel Gendry, Pierre Viktorovitch, Jacques Tardy, G. Hollinger, Laboratoire d'électronique, automatique et mesures électriques (LEAME), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon, Département de Physique des Matériaux (DPM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Materials science ,business.industry ,Transconductance ,Doping ,chemistry.chemical_element ,Heterojunction ,02 engineering and technology ,High-electron-mobility transistor ,021001 nanoscience & nanotechnology ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Gallium arsenide ,Barrier layer ,chemistry.chemical_compound ,chemistry ,0103 physical sciences ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS ,Indium ,Molecular beam epitaxy - Abstract
Strained In/sub x/Ga/sub 1-x/As/InAlAs modulation-doped heterostructures on InP have been studied theoretically and experimentally. Simulations based on self-consistently solving the Schrodinger-Poisson equations have been performed to investigate the influeuce of the design parameters, namely the layer thicknesses and the doping level in the barrier layer, on the carrier concentration n, in the channel. Modulation-doped heterostructures with a 100 /spl Aring/ strained indium-rich channel have been grown by molecular beam epitaxy for different indium compositions and growth temperatures. The highest performances in terms of n,/spl times//spl mu/ parameter, have been obtained for an indium concentration of 75% in the channel, at a growth temperature of 500/spl deg/C. For higher indium concentration, the mobility drops sharply, which correlates with formation of misfit dislocations in the channel, observed on transmission electron microscopy micrographs of these structures. For an indium concentration of 75%, the mobility has been improved, first, by using a low V/III beam equivalent pressure ratio, that produces a close to stoichiometry material, second by using interface growth interruption under cation stabilization to reduce the interface roughness. HEMT devices have been processed on these heterostructures. The static I-V characteristics of 2/spl times/150 /spl mu/m/sup 2/ transistors revealed a 66% increase of the transconductance when the channel indium concentration is increased from 53% to 75%.
- Published
- 1996
46. Tailoring the absorption in a photonic crystal membrane: a modal approach
- Author
-
Christian Seassal, Guillaume Gomard, Emmanuel Drouard, Xavier Letartre, Romain Peretti, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), SPIE, and Orange Lab
- Subjects
Amorphous silicon ,Materials science ,Silicon ,Physics::Optics ,chemistry.chemical_element ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,photovoltaic solar cell ,chemistry.chemical_compound ,Optics ,sensor ,Robustness (computer science) ,0103 physical sciences ,Broadband ,Photonic crystal ,010306 general physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Photovoltaic system ,Finite-difference time-domain method ,indoor solar cell ,021001 nanoscience & nanotechnology ,absorption enhancement ,Modal ,chemistry ,0210 nano-technology ,business - Abstract
International audience; In order to achieve high efficiency photovoltaic devices and sensors, we propose to implement photonic crystals on thin absorbing layers in such a way to generate two Bloch mode resonances with opposite symmetries. Through FDTD and RCWA simulations, we track and adjust the characteristics of these modes so as to reach their degeneracy. Design and simulations were carried out considering a hydrogenated amorphous silicon layer. We demonstrate that up to 92% absorption can be achieved, far above the 50% limit corresponding to the critical coupling condition between an incident wave and an optical resonance. Moreover, the robustness of the absorption peak was tested by varying both the topographical parameters of the PhC membrane and the angle of incidence. Finally, some guidelines are provided to generalize our approach for the design of broadband absorbers.
- Published
- 2012
47. Modal approach for tailoring the absorption in a photonic crystal membrane
- Author
-
Romain Peretti, Guillaume Gomard, Xavier Letartre, Christian Seassal, Emmanuel Drouard, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Photovoltaïque (INL - PV), and OrangeLabs 0050012310-A09221 and the Rhone-Alpes region for the financial su
- Subjects
Materials science ,superlattices ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Coupled mode theory ,01 natural sciences ,emissivity) Elemental semiconductors and insulators Semiconductors ,0103 physical sciences ,Time domain ,010306 general physics ,Absorption (electromagnetic radiation) ,Photonic crystal ,reflection and transmission coefficients ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Degenerate energy levels ,Finite-difference time-domain method ,metamaterials Elemental semiconductors Amorphous semiconductors Optical constants (including refractive index ,021001 nanoscience & nanotechnology ,photonic structures ,Semiconductor ,Multilayers ,complex dielectric constant ,Optoelectronics ,0210 nano-technology ,business ,Refractive index ,absorption ,Optics (physics.optics) ,Physics - Optics - Abstract
International audience; In this paper, we propose a method for tailoring the absorption in a photonic crystal membrane. For that purpose, we first applied Time Domain Coupled Mode Theory to such a subwavelength membrane and demonstrated that 100% resonant absorption can be reached even for a symmetric membrane, if degenerate modes are involved. Design rules were then derived from this model in order to tune the absorption. Subsequently, Finite Difference Time Domain simulations were used as a proof of concept and carried out on a low absorbing material (extinction coefficient=10-2) with a high refractive index corresponding to the optical indices of amorphous silicon at around 720 nm. In doing so, 85% resonant absorption was obtained, which is significantly higher than the commonly reported 50% maximum value. Those results were finally analyzed and confronted to theory so as to extend our method to other materials, configurations and applications.
- Published
- 2012
48. 3D optical micro-resonators by curving nanostructures using intrinsic stress
- Author
-
Philippe Regreny, J. L. Leclercq, Xavier Letartre, Céline Chevalier, Pierre Viktorovitch, C. Sieutat, Geneviève Grenet, A. Danescu, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Photovoltaïque (INL - PV), INL - Hétéroepitaxie et Nanostructures (INL - H&N), and Bourse région Rhône-Alpes
- Subjects
Electromagnetic field ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Photon ,Fabrication ,Materials science ,business.industry ,optical microcavity ,Nanophotonics ,01 natural sciences ,Optical microcavity ,law.invention ,010309 optics ,Resonator ,Optics ,Semiconductor ,law ,Etching (microfabrication) ,3D Photonic crystal ,0103 physical sciences ,Optoelectronics ,nanophotonics ,microresonator ,010306 general physics ,business - Abstract
International audience; We propose a new approach for the 3D control of light in real 3D optical micro-resonators that can be assimilated to 'cages', where photons are efficiently trapped. The main attractive feature of this photon cages lies in their ability to result in a considerable enhancement of the electromagnetic field in the central part of the cage, that is in the air region, opening the way to new sensing or trapping of nanoparticles in fluidic (gas or liquid) ambiances. Fabrication of three dimensional structures consists in exploiting the process of elastic relaxation of patterns formed in pre-stressed multi-layer structures. The final shape of these objects can be predetermined by the distribution of the deformations in the various semiconductor layers, imposed during their epitaxial growth, before their freestanding from the substrate by selective etching. We will present the basic concepts and fabrication we exploit to confine photons in air using spherical structures based on progressive relaxation of pre-stressed InGaP/InAsP bilayer films. It is worthwhile to notice that the formed microstructures exhibit patterns with dimensions compatible with optical operation in the visible/NIR wavelength range.
- Published
- 2012
49. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures
- Author
-
Suraj P. Khanna, Raffaele Colombelli, David A. Ritchie, A. Giles Davies, Harvey E. Beere, Gangyi Xu, Lianhe Li, Xavier Letartre, Edmund H. Linfield, and Ali Belarouci
- Subjects
Surface (mathematics) ,Materials science ,Physics::Optics ,General Physics and Astronomy ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Semiconductor laser theory ,law.invention ,010309 optics ,Optics ,Power extraction ,law ,0103 physical sciences ,Photonic crystal ,Photons ,Multidisciplinary ,business.industry ,Heterojunction ,General Chemistry ,021001 nanoscience & nanotechnology ,Laser ,Antenna efficiency ,Optoelectronics ,Photonics ,Lasers, Semiconductor ,0210 nano-technology ,business - Abstract
Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric mode in the device centre and confine the antisymmetric modes close to the laser facet. This modal spatial separation is combined with absorbing boundaries to increase the antisymmetric mode loss, and force device operation on the symmetric mode, with elevated radiation efficiency. Application of this concept to terahertz quantum cascade lasers leads to record-high peak-power surface emission (100 mW) and differential efficiencies (230 mW A(-1)), together with low-divergence, single-lobed emission patterns, and is also applicable to continuous-wave operation. Such flexible tuning of the radiation loss using graded photonic heterostructures, with only a minimal influence on threshold current, is highly desirable for optimizing second-order distributed feedback lasers.
- Published
- 2012
50. Dual-wavelength micro-resonator combining photonic crystal membrane and Fabry-Perot cavity
- Author
-
Taha Benyattou, Koku Kusiaku, Xavier Letartre, Ounsi El Daif, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal, and Pedro Rojo-Romeo
- Subjects
Coupling ,Materials science ,business.industry ,Transfer-matrix method (optics) ,Finite-difference time-domain method ,Physics::Optics ,Coupled mode theory ,Atomic and Molecular Physics, and Optics ,Brillouin zone ,Resonator ,Optics ,Optoelectronics ,business ,Fabry–Pérot interferometer ,Photonic crystal - Abstract
We propose a novel system of dual-wavelength micro-cavity based on the coupling between a photonic crystal membrane (PCM); operating at the Γ- point of the Brillouin zone, with a Fabry-Perot vertical cavity (FP). The optical coupling, which can be adjusted by the overlap between both optical modes, leads to the generation of two hybrid modes separated by a frequency difference which can be tuned using micro-opto-electromechanical structures. The proposed dual-wavelength micro-cavity is attractive for application where dual-mode behaviour is desirable as dual-lasing, frequency conversion. An analytical model, numerical (FDTD) and transfer matrix method investigations are presented.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.