18 results on '"Schoch RR"'
Search Results
2. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)
- Author
-
Jones, MEH, Anderson, CL, Hipsley, CA, Mueller, J, Evans, SE, Schoch, RR, Jones, MEH, Anderson, CL, Hipsley, CA, Mueller, J, Evans, SE, and Schoch, RR
- Abstract
BACKGROUND: Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS: Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION: A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vell
- Published
- 2013
3. Paleobiological implications of chevron pathology in the sauropodomorph Plateosaurus trossingensis from the Upper Triassic of SW Germany.
- Author
-
Schaeffer J, Wolff E, Witzmann F, Ferreira GS, Schoch RR, and Mujal E
- Subjects
- Animals, Germany, Paleopathology, Bone and Bones pathology, Bone and Bones anatomy & histology, Fossils, Dinosaurs anatomy & histology
- Abstract
Paleopathology, the study of diseases and injuries from the fossil record, allows for a unique view into the life of prehistoric animals. Pathologies have nowadays been described in nearly all groups of fossil vertebrates, especially dinosaurs. Despite the large number of skeletons, pathologies had never been reported in the sauropodomorph Plateosaurus trossingensis. Here we describe the first pathologies of Plateosaurus using two individuals with pathologies in the chevrons of the tail, from the Upper Triassic of Trossingen, SW Germany. The two specimens each contain three consecutive pathological chevrons. Our results show that the pathologies were caused by external trauma in one individual and potentially tendinous trauma in the other. Healing of the lesions allowed survival of both animals. Using additional pathological specimens found in other collections and from multiple localities, we observe that 14.8% of all individuals of Plateosaurus contain pathologies within their chevrons, suggesting it was a vulnerable bone., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Schaeffer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
4. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition.
- Author
-
Schwarz D, Heiss E, Pierson TW, Konow N, and Schoch RR
- Subjects
- Animals, Vertebrates physiology, Biological Evolution, Urodela, Water
- Abstract
The vertebrate water-to-land transition and the rise of tetrapods brought about fundamental changes for the groups undergoing these evolutionary changes (i.e. stem and early tetrapods). These groups were forced to adapt to new conditions, including the distinct physical properties of water and air, requiring fundamental changes in anatomy. Nutrition (or feeding) was one of the prime physiological processes these vertebrates had to successfully adjust to change from aquatic to terrestrial life. The basal gnathostome feeding mode involves either jaw prehension or using water flows to aid in ingestion, transportation and food orientation. Meanwhile, processing was limited primarily to simple chewing bites. However, given their comparatively massive and relatively inflexible hyobranchial system (compared to the more muscular tongue of many tetrapods), it remains fraught with speculation how stem and early tetrapods managed to feed in both media. Here, we explore ontogenetic water-to-land transitions of salamanders as functional analogues to model potential changes in the feeding behaviour of stem and early tetrapods. Our data suggest two scenarios for terrestrial feeding in stem and early tetrapods as well as the presence of complex chewing behaviours, including excursions of the jaw in more than one dimension during early developmental stages. Our results demonstrate that terrestrial feeding may have been possible before flexible tongues evolved. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
- Published
- 2023
- Full Text
- View/download PDF
5. A new Middle Triassic (Ladinian) trilophosaurid stem-archosaur from Germany increases diversity and temporal range of this clade.
- Author
-
Sues HD and Schoch RR
- Abstract
We report the first trilophosaurid stem-archosaur from Central Europe, Rutiotomodon tytthos gen. et sp. nov., from the Middle Triassic (Ladinian) Erfurt Formation of Baden-Württemberg (Germany). It is currently known from two jaw fragments with distinctive teeth. The labiolingually wide but mesiodistally narrow maxillary and dentary teeth each have a large labial cusp from which an occlusal ridge extends lingually to a small lingual cusp. A mesial and a distal cingulum extend between the labial and lingual cusps. The mesial and distal faces of the labial cusp each bear three prominent, lingually curved apicobasal ridges (arrises). A referred partial dentary has an edentulous, expanded symphysis similar to the mandibular 'beak' in Trilophosaurus buettneri . A review of Coelodontognathus ricovi , from the Lower Triassic (Olenekian) of southwestern Russia, supports its referral to Trilophosauridae rather than Procolophonidae. Based on this reassessment and the new material from the Middle Triassic, the temporal range of trilophosaurids now spans nearly the entire Triassic Period, from the Olenekian to the Rhaetian. Trilophosaurids present craniodental features that indicate omnivory or herbivory with limited oral food processing. They were more diverse in terms of dental structure (and presumably diet) than previously assumed., Competing Interests: We declare we have no competing interests., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
6. Cranial shape evolution of extant and fossil crocodile newts and its relation to reproduction and ecology.
- Author
-
Pogoda P, Zuber M, Baumbach T, Schoch RR, and Kupfer A
- Subjects
- Animals, Biological Evolution, Fossils, Reproduction physiology, Salamandridae anatomy & histology, Skull anatomy & histology
- Abstract
The diversity of the vertebrate cranial shape of phylogenetically related taxa allows conclusions on ecology and life history. As pleurodeline newts (the genera Echinotriton, Pleurodeles and Tylototriton) have polymorphic reproductive modes, they are highly suitable for following cranial shape evolution in relation to reproduction and environment. We investigated interspecific differences externally and differences in the cranial shape of pleurodeline newts via two-dimensional geometric morphometrics. Our analyses also included the closely related but extinct genus Chelotriton to better follow the evolutionary history of cranial shape. Pleurodeles was morphologically distinct in relation to other phylogenetically basal salamanders. The subgenera within Tylototriton (Tylototriton and Yaotriton) were well separated in morphospace, whereas Echinotriton resembled the subgenus Yaotriton more than Tylototriton. Oviposition site choice correlated with phylogeny and morphology. Only the mating mode, with a random distribution along the phylogenetic tree, separated crocodile newts into two morphologically distinct groups. Extinct Chelotriton likely represented several species and were morphologically and ecologically more similar to Echinotriton and Yaotriton than to Tylototriton subgenera. Our data also provide the first comprehensive morphological support for the molecular phylogeny of pleurodeline newts., (© 2020 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.)
- Published
- 2020
- Full Text
- View/download PDF
7. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders.
- Author
-
Schoch RR, Werneburg R, and Voigt S
- Subjects
- Animals, Fossils, History, Ancient, Kyrgyzstan, Phylogeny, Biological Evolution, Urodela anatomy & histology, Urodela classification
- Abstract
The origin of extant amphibians remains largely obscure, with only a few early Mesozoic stem taxa known, as opposed to a much better fossil record from the mid-Jurassic on. In recent time, anurans have been traced back to Early Triassic forms and caecilians have been traced back to the Late Jurassic Eocaecilia , both of which exemplify the stepwise acquisition of apomorphies. Yet the most ancient stem-salamanders, known from mid-Jurassic rocks, shed little light on the origin of the clade. The gap between salamanders and other lissamphibians, as well as Paleozoic tetrapods, remains considerable. Here we report a new specimen of Triassurus sixtelae , a hitherto enigmatic tetrapod from the Middle/Late Triassic of Kyrgyzstan, which we identify as the geologically oldest stem-group salamander. This sheds light not only on the early evolution of the salamander body plan, but also on the origin of the group as a whole. The new, second specimen is derived from the same beds as the holotype, the Madygen Formation of southwestern Kyrgyzstan. It reveals a range of salamander characters in this taxon, pushing back the rock record of urodeles by at least 60 to 74 Ma (Carnian-Bathonian). In addition, this stem-salamander shares plesiomorphic characters with temnospondyls, especially branchiosaurids and amphibamiforms., Competing Interests: The authors declare no competing interest.
- Published
- 2020
- Full Text
- View/download PDF
8. A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna.
- Author
-
Sobral G, Simões TR, and Schoch RR
- Subjects
- Animals, Germany, Biological Evolution, Facial Bones anatomy & histology, Fossils, Lizards anatomy & histology
- Abstract
The Middle Triassic was a time of major changes in tetrapod faunas worldwide, but the fossil record for this interval is largely obscure for terrestrial faunas. This poses a severe limitation to our understanding on the earliest stages of diversification of lineages representing some of the most diverse faunas in the world today, such as lepidosauromorphs (e.g., lizards and tuataras). Here, we report a tiny new lepidosauromorph from the Middle Triassic from Vellberg (Germany), which combines a mosaic of features from both early evolving squamates and rhynchocephalians, such as the simultaneous occurrence of a splenial bone and partial development of acrodonty. Phylogenetic analyses applying different optimality criteria, and combined morphological and molecular data, consistently recover the new taxon as a stem-lepidosauromorph, implying stem-lepidosauromorph species coinhabited areas comprising today's central Europe at the same time as the earliest known rhynchocephalians and squamates. It further demonstrates a more complex evolutionary scenario for dental evolution in early lepidosauromorphs, with independent acquisitions of acrodonty early in their evolutionary history. The small size of most terrestrial vertebrates from Vellberg is conspicuous, contrasting to younger Triassic deposits worldwide, but comparable to Early Triassic faunas, suggesting a potential long-lasting Lilliput effect in this fauna.
- Published
- 2020
- Full Text
- View/download PDF
9. Microanatomy of the stem-turtle Pappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell.
- Author
-
Schoch RR, Klein N, Scheyer TM, and Sues HD
- Subjects
- Adaptation, Physiological physiology, Animals, Biological Evolution, Bone Plates, Phylogeny, Ribs anatomy & histology, Skull anatomy & histology, Spine anatomy & histology, Animal Shells anatomy & histology, Fossils anatomy & histology, Turtles anatomy & histology
- Abstract
Unlike any other tetrapod, turtles form their dorsal bony shell (carapace) not from osteoderms, but by contribution of the ribs and vertebrae that expand into the dermis to form plate-like shell components. Although this was known from embryological studies in extant turtles, important steps in this evolutionary sequence have recently been highlighted by the Triassic taxa Pappochelys, Eorhynchochelys and Odontochelys, and the Permian Eunotosaurus. The discovery of Pappochelys shed light on the origin of the ventral bony shell (plastron), which formed from enlarged gastralia. A major question is whether the turtle shell evolved in the context of a terrestrial or aquatic environment. Whereas Odontochelys was controversially interpreted as aquatic, a terrestrial origin of turtles was proposed based on evidence of fossorial adaptations in Eunotosaurus. We report palaeohistological data for Pappochelys, a taxon that exemplifies earlier evolutionary stages in the formation of the bony shell than Odontochelys. Bone histological evidence reveals (1) evolutionary changes in bone microstructure in ribs and gastralia approaching the turtle condition and (2) evidence for a predominantly amphibious or fossorial mode of life in Pappochelys, which support the hypothesis that crucial steps in the evolution of the shell occurred in a terrestrial rather than fully aquatic environment.
- Published
- 2019
- Full Text
- View/download PDF
10. A Middle Triassic stem-turtle and the evolution of the turtle body plan.
- Author
-
Schoch RR and Sues HD
- Subjects
- Animal Shells, Animals, Germany, Phylogeny, Skull anatomy & histology, Turtles classification, Biological Evolution, Fossils, Turtles anatomy & histology
- Abstract
The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.
- Published
- 2015
- Full Text
- View/download PDF
11. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.
- Author
-
Joyce WG, Schoch RR, and Lyson TR
- Subjects
- Animals, Fossils, Germany, Pelvis anatomy & histology, Phylogeny, Scapula anatomy & histology, Spine, Biological Evolution, Turtles anatomy & histology, Turtles genetics
- Abstract
Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position., Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs., Conclusions: The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.
- Published
- 2013
- Full Text
- View/download PDF
12. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara).
- Author
-
Jones ME, Anderson CL, Hipsley CA, Müller J, Evans SE, and Schoch RR
- Subjects
- Animals, Extinction, Biological, Germany, Lizards genetics, Reptiles genetics, Snakes genetics, Biological Evolution, Fossils, Lizards anatomy & histology, Lizards classification, Phylogeny, Reptiles anatomy & histology, Reptiles classification, Snakes anatomy & histology, Snakes classification
- Abstract
Background: Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole., Results: Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213)., Conclusion: A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
- Published
- 2013
- Full Text
- View/download PDF
13. The cranial osteology and feeding ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from the late Jurassic of Europe.
- Author
-
Young MT, Brusatte SL, de Andrade MB, Desojo JB, Beatty BL, Steel L, Fernández MS, Sakamoto M, Ruiz-Omeñaca JI, and Schoch RR
- Subjects
- Alligators and Crocodiles classification, Animals, Bone and Bones anatomy & histology, Dentition, Europe, Geography, Paleontology, Phylogeny, Time Factors, Alligators and Crocodiles anatomy & histology, Alligators and Crocodiles physiology, Feeding Behavior, Osteology, Skull anatomy & histology
- Abstract
Background: Dakosaurus and Plesiosuchus are characteristic genera of aquatic, large-bodied, macrophagous metriorhynchid crocodylomorphs. Recent studies show that these genera were apex predators in marine ecosystems during the latter part of the Late Jurassic, with robust skulls and strong bite forces optimized for feeding on large prey., Methodology/principal Findings: Here we present comprehensive osteological descriptions and systematic revisions of the type species of both genera, and in doing so we resurrect the genus Plesiosuchus for the species Dakosaurus manselii. Both species are diagnosed with numerous autapomorphies. Dakosaurus maximus has premaxillary 'lateral plates'; strongly ornamented maxillae; macroziphodont dentition; tightly fitting tooth-to-tooth occlusion; and extensive macrowear on the mesial and distal margins. Plesiosuchus manselii is distinct in having: non-amblygnathous rostrum; long mandibular symphysis; microziphodont teeth; tooth-crown apices that lack spalled surfaces or breaks; and no evidence for occlusal wear facets. Our phylogenetic analysis finds Dakosaurus maximus to be the sister taxon of the South American Dakosaurus andiniensis, and Plesiosuchus manselii in a polytomy at the base of Geosaurini (the subclade of macrophagous metriorhynchids that includes Dakosaurus, Geosaurus and Torvoneustes)., Conclusions/significance: The sympatry of Dakosaurus and Plesiosuchus is curiously similar to North Atlantic killer whales, which have one larger 'type' that lacks tooth-crown breakage being sympatric with a smaller 'type' that has extensive crown breakage. Assuming this morphofunctional complex is indicative of diet, then Plesiosuchus would be a specialist feeding on other marine reptiles while Dakosaurus would be a generalist and possible suction-feeder. This hypothesis is supported by Plesiosuchus manselii having a very large optimum gape (gape at which multiple teeth come into contact with a prey-item), while Dakosaurus maximus possesses craniomandibular characteristics observed in extant suction-feeding odontocetes: shortened tooth-row, amblygnathous rostrum and a very short mandibular symphysis. We hypothesise that trophic specialisation enabled these two large-bodied species to coexist in the same ecosystem.
- Published
- 2012
- Full Text
- View/download PDF
14. First diagnostic marine reptile remains from the Aalenian (Middle Jurassic): a new ichthyosaur from southwestern Germany.
- Author
-
Maxwell EE, Fernández MS, and Schoch RR
- Subjects
- Animals, Germany, Oceans and Seas, Ecosystem, Fossils, Reptiles anatomy & histology, Reptiles classification, Reptiles physiology
- Abstract
Background: The Middle Jurassic was a critical time in the evolutionary history of ichthyosaurs. During this time interval, the diverse, well-studied faunas of the Lower Jurassic were entirely replaced by ophthalmosaurids, a new group that arose sometime prior to the Aalenian-Bajocian boundary and by the latest middle Jurassic comprised the only surviving group of ichthyosaurs. Thus, the Middle Jurassic Aalenian-Bathonian interval (176-165 million years ago) comprises the time frame during which ophthalmosaurids not only originated but also achieved taxonomic dominance. However, diagnostic ichthyosaur remains have been described previously from only a single locality from this interval, from the Bajocian of Argentina., Methodology/principal Findings: In this paper, we describe a new species of ichthyosaur based on a partial articulated specimen from the Middle Jurassic of southwestern Germany. This specimen was recovered from the Opalinuston Formation (early Aalenian) and is referable to Stenopterygius aaleniensis sp. nov. reflecting features of the skull and forefin. The genus Stenopterygius is diverse and abundant in the Lower Jurassic of Europe, but its presence has not previously been confirmed in younger (Middle Jurassic) rocks from the northern hemisphere., Conclusions/significance: This specimen represents the only diagnostic ichthyosaur remains reported from the Aalenian. It bears numerous similarities in size and in morphology to the Lower Jurassic species of the genus Stenopterygius and provides additional evidence that the major ecological changes hypothesized to have occurred at the end of the Toarcian took place sometime after this point and most likely did not occur suddenly. There is currently no evidence for the presence of ophthalmosaurids in the northern hemisphere during the Aalenian-Bathonian interval.
- Published
- 2012
- Full Text
- View/download PDF
15. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation.
- Author
-
Butler RJ, Brusatte SL, Reich M, Nesbitt SJ, Schoch RR, and Hornung JJ
- Subjects
- Animals, Dinosaurs genetics, Fossils, Germany, Paleontology, Phylogeny, Time Factors, Biological Evolution, Dinosaurs anatomy & histology, Phylogeography
- Abstract
Background: Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains., Methodology/principal Findings: We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation., Conclusions/significance: Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.
- Published
- 2011
- Full Text
- View/download PDF
16. Life-cycle evolution as response to diverse lake habitats in Paleozoic amphibians.
- Author
-
Schoch RR
- Subjects
- Amphibians genetics, Animals, Fresh Water, Amphibians physiology, Biological Evolution, Ecosystem, Life Cycle Stages
- Abstract
The evolution of life cycles forms the subject of numerous studies on extant organisms, but is rarely documented in the fossil record. Here, I analyze patterns of development in time-averaged samples of late Carboniferous and early Permian amphibians, and compare them to paleoecological patterns derived from the same deposits located within a large sedimentary basin (Saar-Nahe, Germany). In 300-297 million years (myr) old Sclerocephalus haeuseri (1-1.7 m), adult size, morphology, and the course of ontogeny varied with respect to the habitats in which the species existed. These differences are best exemplified by ontogenetic trajectories, which reveal a full range of modifications correlating with environmental parameters (lake properties, food resources, competitors). In a 2- to 3-myr-long interval, six different lake habitats were inhabited by this species, which responded to changes by modification of growth rate, adult size, developmental sequence, skeletal features, prey preference, and relative degree of terrestriality.
- Published
- 2009
- Full Text
- View/download PDF
17. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians.
- Author
-
Fröbisch NB and Schoch RR
- Subjects
- Amphibians growth & development, Animals, Bayes Theorem, Amphibians genetics, Body Size, Fossils, Phylogeny
- Abstract
Among the diverse clade of Paleozoic dissorophoid amphibians, the small, terrestrial amphibamids and the neotenic branchiosaurids have frequently been suggested as possible antecedents of either all or some of the modern amphibian clades. Classically, amphibamids and branchiosaurids have been considered to represent distinct, but closely related clades within dissorophoids, but despite their importance for the controversial lissamphibian origins, a comprehensive phylogenetic analysis of small dissorophoids has thus far not been attempted. On the basis of an integrated data set, the relationships of amphibamids and branchiosaurids were analyzed using parsimony and Bayesian approaches. Both groups represent miniaturized forms and it was tested whether similar developmental pathways, associated with miniaturization, lead to an artificial close relationship of branchiosaurids and amphibamids. Moreover, the fit of the resulting tree topologies to the distribution of fossil taxa in the stratigraphic rock record was assessed as an additional source of information. The results show that characters associated with a miniaturized morphology are not responsible for the close clustering of branchiosaurids and amphibamids. Instead, all analyses invariably demonstrate a monophyletic clade of branchiosaurids highly nested within derived amphibamids, indicating that branchiosaurids represent a group of secondarily neotenic amphibamid dissorophoids. This understanding of the phylogenetic relationships of small dissorophoid amphibians provides a new framework for the discussion of their evolutionary history and the evolution of characters shared by branchiosaurids and/or amphibamids with modern amphibian taxa.
- Published
- 2009
- Full Text
- View/download PDF
18. Metamorphosis and neoteny: alternative pathways in an extinct amphibian clade.
- Author
-
Schoch RR and Fröbisch NB
- Subjects
- Animals, Fossils, Larva anatomy & histology, Sexual Maturation, Amphibians anatomy & histology, Amphibians classification, Amphibians growth & development, Biological Evolution, Metamorphosis, Biological
- Abstract
The Branchiosauridae was a clade of small amphibians from the Permo-Carboniferous with an overall salamander-like appearance. The clade is distinguished by an extraordinary fossil record that comprises hundreds of well-preserved specimens, representing a wide range of ontogenetic stages. Branchiosaurids had external gills and weakly ossified skeletons, and due to this larval appearance their status as neotenic (perennibranchiate) forms has long been accepted. Despite their extensive fossil record large specimens with an adult morphology appeared to be lacking altogether, but recently two adult specimens were identified in a rich sample of Apateon gracilis collected in the 19th century from a locality near Dresden, Saxony. These specimens are unique among branchiosaurids in showing a high level of ossification, including bones that have never been reported in a branchiosaur. These highlight the successive formation of features believed to indicate terrestrial locomotion, as well as feeding on larger prey items. Moreover, these transformations occurred in a small time window (whereas the degree of size increase is used as a proxy of time) and the degree of concentration of developmental events in branchiosaurids is unique among tetrapods outside the lissamphibians. These specimens are compared with large adults of the neotenic branchiosaurid Apateon caducus from the Saar-Nahe Basin, which despite their larger body size lack the features found in the adult A. gracilis specimens. These specimens give new insight into patterns of metamorphosis (morphological transformation) in branchiosaurids that are believed to be correlated to a change of habitat, and clearly show that different life-history pathways comparable to those of modern salamanders were already established in this Paleozoic clade.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.