62 results on '"Scheyer TM"'
Search Results
2. NEW INTERPRETATION OF THE POSTCRANIAL SKELETON AND OVERALL BODY SHAPE OF THE PLACODONT CYAMODUS HILDEGARDIS PEYER, 1931 (REPTILIA, SAUROPTERYGIA)
- Author
-
Scheyer TM
- Published
- 2010
3. The late Miocene caimanine fauna (Crocodylia: Alligatoroidea) of the Urumaco Formation, Venezuela
- Author
-
Scheyer, TM, primary and Delfino, M, additional
- Published
- 2016
- Full Text
- View/download PDF
4. Contrasting macroevolutionary patterns in pelagic tetrapods across the Triassic-Jurassic transition.
- Author
-
Laboury A, Stubbs TL, Wolniewicz AS, Liu J, Scheyer TM, Jones MEH, and Fischer V
- Abstract
The iconic marine raptorial predators Ichthyosauria and Eosauropterygia co-existed in the same ecosystems throughout most of the Mesozoic Era, facing similar evolutionary pressures and environmental perturbations. Both groups seemingly went through a massive macroevolutionary bottleneck across the Triassic-Jurassic (T/J) transition that greatly reduced their morphological diversity, leaving pelagic lineages as the only survivors. However, analyses of marine reptile disparity across the T/J transition have usually employed coarse morphological and temporal data. We comprehensively compare the evolution of ichthyosaurian and eosauropterygian morphology and body size across the Middle Triassic to Early Jurassic interval and find contrasting macroevolutionary patterns. The ecomorphospace of eosauropterygians predominantly reflects a strong phylogenetic signal, resulting in the clustering of three clades with clearly distinct craniodental phenotypes, suggesting 'leaps' towards novel feeding ecologies. Ichthyosaurian diversification lacks a discernible evolutionary trend, as we find evidence for a wide overlap of craniodental morphologies between Triassic and Early Jurassic forms. The temporal evolution of ecomorphological disparity, fin shape and body size of eosauropterygians and ichthyosaurians during the Late Triassic does not support the hypothesis of an abrupt macroevolutionary bottleneck near the T/J transition. Rather, an important turnover event should be sought earlier, during times of rapid sea level falls., (© The Author(s) 2024. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE). All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
5. Oldest record of Machimosaurini (Thalattosuchia, Teleosauroidea): teeth and scavenging traces from the Middle Jurassic (Bajocian) of Switzerland.
- Author
-
Scheyer TM, Johnson MM, Bastiaans D, Miedema F, Maxwell EE, and Klug C
- Abstract
The Jurassic period was a time of major diversification for Mesozoic marine reptiles, including Ichthyosauria, Plesiosauria and thalattosuchian Crocodylomorpha. The latter originated in the Early Jurassic and thrived during the Late Jurassic. Unfortunately, the Middle Jurassic, a crucial time in their evolution, has a poor fossil record. Here, we document the first evidence of macrophagous/durophagous Machimosaurini-tribe teleosauroid thalattosuchians from the late Bajocian ( ca 169 Ma) in the form of three robust tooth crowns with conical blunt shapes and anastomosed pattern of thick enamel ridges towards the apex, associated with the skeleton of a large ichthyosaur lacking preserved tooth crowns. The tooth crowns were found on the posterior section of the lower jaw (left angular), a lacrimal and the axis neural arch of the ichthyosaur. In addition, some of the distal sections of the posterior dorsal ribs of the ichthyosaur skeleton exhibit rounded bite marks and some elongated furrows that fit in size and shape with the Machimosaurini teeth. These marks, together with the absence of healing in the rib bone are interpreted here as the indicators of peri- to post-mortem scavenging by a Machimosaurini teleosauroid after the large ichthyosaur carcass settled on the floor of a shallow ocean., Competing Interests: We declare we have no competing interests., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
6. A large new Middle Jurassic ichthyosaur shows the importance of body size evolution in the origin of the Ophthalmosauria.
- Author
-
Miedema F, Bastiaans D, Scheyer TM, Klug C, and Maxwell EE
- Subjects
- Animals, Phylogeny, Reptiles anatomy & histology, Body Size, Fossils, Skull anatomy & histology
- Abstract
The Middle Jurassic is an important time period for the evolutionary history of marine reptiles as it represented a transitional phase for many clades. Notably, in ichthyosaurs, many early parvipelvian taxa went extinct. The Middle Jurassic saw the emergence of the derived Ophthalmosauria, ultimately becoming the dominant ichthyosaurian clade by the end of the epoch. Even though this is an important period in the evolutionary history of Ophthalmosauria, our understanding remains limited in terms of morphology and taxonomy due to the scarcity of vertebrate-bearing strata. Here we present a large new ichthyosaur from the Bajocian of Switzerland, represented by an almost complete skull with 3D-preserved bones, the (inter)clavicles and a large portion of the postcranial skeleton. After CT- and surface scanning, we reconstructed the 3D in vivo morphology. Our morphological observations and phylogenetic analyses show that the new taxon named Argovisaurus martafernandezi is nested at the base of the Ophthalmosauria. The holotype and only known specimen of Argovisaurus likely represents an adult individual. Bajocian members of the Ophthalmosauria (Mollesaurus and Argovisaurus) were large-bodied animals, a trait typically associated with the more derived Platypterygiinae. This hints at the importance of a large body size early in ophthalmosaurian evolution.LSID: urn:lsid:zoobank.org:act:C3312628-1544-4B87-BBE3-B12346A30BE3LSID: urn:lsid:zoobank.org:act:23C2BD71-8CF0-4D99-848A-0D631518415B., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Special Issue: 100 years of scientific excavations at UNESCO World Heritage Site Monte San Giorgio and global research on Triassic marine Lagerstätten.
- Author
-
Klug C, Scheyer TM, Klein N, Liu J, Albisetti D, Furrer H, and Stockar R
- Abstract
Only a few Swiss fossil localities are known globally and of which, the UNESCO World Heritage Site Monte San Giorgio, which extends from Switzerland into Italy, is the most important one. Following the discovery of the occurrence of articulated skeletons of marine reptiles in the local mines, large excavations were organized by Bernhard Peyer from the University of Zurich starting 1924. With this collection of articles, we commemorate the successful excavations and research, which initiated the publication of a series of monographies, mostly on the vertebrates but also on the invertebrates of this locality. Especially with the discovery of several remarkably similar Konservat-Lagerstätten in China, the discoveries from Monte San Giorgio gained global relevance. New methodologies such as computed tomography produced a wealth of new data, particularly on endocranial anatomy of several tetrapods., Competing Interests: Competing interestsThe authors declare to have no competing interests., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
8. Postcranial anatomy of Besanosaurus leptorhynchus (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio (Italy/Switzerland), with implications for reconstructing the swimming styles of Triassic ichthyosaurs.
- Author
-
Bindellini G, Wolniewicz AS, Miedema F, Dal Sasso C, and Scheyer TM
- Abstract
Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was originally described on the basis of a single complete fossil specimen excavated near Besano (Italy). However, a recent taxonomic revision and re-examination of the cranial osteology allowed for the assignment of five additional specimens to the taxon. Here, we analyse, describe and discuss the postcranial anatomy of Besanosaurus leptorhynchus in detail. The size of the specimens examined herein ranged from slightly more than one meter to eight meters. Overall, several diagnostic character states for this taxon are proposed, demonstrating a mosaic of plesiomorphic and derived features. This is best exemplified by the limbs, which show very rounded elements in the forelimbs, and pedal phalanges with retained rudimentary shafts. We suggest that the widely spaced phalanges in the forefins of Besanosaurus leptorhynchus were embedded in a fibrocartilage-rich connective tissue, like in modern cetaceans. We also review the similarities of Besanosaurus with Pessopteryx and Pessosaurus, allowing us to conclude that Besanosaurus is not a junior synonym of either of the two taxa. Lastly, to test the swimming capabilities of Besanosaurus leptorhynchus , we expanded on a previously published study focussing on reconstructing the swimming styles of ichthyosaurs. Besanosaurus leptorhynchus was found to possess a peculiar locomotory mode, somewhat intermediate between anguilliform swimmers, such as Cymbospondylus and Utatsusaurus , and some shastasaur-grade (e.g., Guizhouichthyosaurus ) and early-diverging euichthyosaurian (e.g., Californosaurus ) ichthyosaurs. Based on our results, we furthermore suggest that mixosaurids acquired their characteristic body profile (dorsal fin and forefins that are distinctly enlarged compared to the hindfins) independently and convergently to the one that later appeared in Parvipelvia. Moreover, the different swimming styles inferred for Cymbospondylus, Mixosauridae , and Besanosaurus strengthen the earlier hypothesis of niche partitioning among these three distinct ichthyosaur taxa from the Besano Formation., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00330-9., Competing Interests: Competing interestsThe authors declare that they have no competing interests, (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
9. Swiss ichthyosaurs: a review.
- Author
-
Klug C, Sivgin T, Miedema F, Scheffold B, Reisdorf AG, Stössel I, Maxwell EE, and Scheyer TM
- Abstract
Switzerland is an ichthyosaur country: it has a rich record of marine reptile fossils, particularly the fish-shaped ichthyosaurs, and the according research. Here, we provide an overview over the 12 or more genera and at least 13 species plus numerous fragmentary remains of ichthyosaurs from the Triassic to the Cretaceous that have been discovered in twelve cantons thus far, of which four species are based on Swiss holotypes. This wealth of ichthyosaur species can be explained by their abundance in the Middle Triassic conservation deposits (Konservat Lagerstätte) of Monte San Giorgio, as well as occasional discoveries in strata of Middle Triassic to Early Cretaceous age. The moderate abundance of outcrops in reasonable conditions in combination with the long history of palaeontological research in Switzerland explains this good fossil record. In addition to this unique overview, we provide more data for further studies and update the knowledge of these taxa., Competing Interests: Competing interestsThe authors declare to have no competing interests., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
10. The marine conservation deposits of Monte San Giorgio (Switzerland, Italy): the prototype of Triassic black shale Lagerstätten.
- Author
-
Klug C, Spiekman SNF, Bastiaans D, Scheffold B, and Scheyer TM
- Abstract
Marine conservation deposits ('Konservat-Lagerstätten') are characterized by their mode of fossil preservation, faunal composition and sedimentary facies. Here, we review these characteristics with respect to the famous conservation deposit of the Besano Formation (formerly Grenzbitumenzone; including the Anisian-Ladinian boundary), and the successively younger fossil-bearing units Cava inferiore, Cava superiore, Cassina beds and the Kalkschieferzone of Monte San Giorgio (Switzerland and Italy). We compare these units to a selection of important black shale-type Lagerstätten of the global Phanerozoic plus the Ediacaran in order to detect commonalities in their facies, genesis, and fossil content using principal component and hierarchical cluster analyses. Further, we put the Monte San Giorgio type Fossillagerstätten into the context of other comparable Triassic deposits worldwide based on their fossil content. The results of the principal component and cluster analyses allow a subdivision of the 45 analysed Lagerstätten into four groups, for which we suggest the use of the corresponding pioneering localities: Burgess type for the early Palaeozoic black shales, Monte San Giorgio type for the Triassic black shales, Holzmaden type for the pyrite-rich black shales and Solnhofen type for platy limestones., Competing Interests: Competing interestsWe have no competing interests., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
11. Complex dental wear analysis reveals dietary shift in Triassic placodonts (Sauropsida, Sauropterygia).
- Author
-
Gere K, Nagy AL, Scheyer TM, Werneburg I, and Ősi A
- Abstract
Placodonts were durophagous reptiles of the Triassic seas with robust skulls, jaws, and enlarged, flat, pebble-like teeth. During their evolution, they underwent gradual craniodental changes from the Early Anisian to the Rhaetian, such as a reduction in the number of teeth, an increase in the size of the posterior palatal teeth, an elongation of the premaxilla/rostrum, and a widening of the temporal region. These changes are presumably related to changes in dietary habits, which, we hypothesise, are due to changes in the type and quality of food they consumed. In the present study, the dental wear pattern of a total of nine European Middle to Late Triassic placodont species were investigated using 2D and 3D microwear analyses to demonstrate whether there could have been a dietary shift or grouping among the different species and, whether the possible changes could be correlated with environmental changes affecting their habitats. The 3D analysis shows overlap between species with high variance between values and there is no distinct separation. The 2D analysis has distinguished two main groups. The first is characterised by low number of wear features and high percentage of large pits. The other group have a high feature number, but low percentage of small pits. The 2D analysis showed a correlation between the wear data and the size of the enlarged posterior crushing teeth. Teeth with larger sizes showed less wear feature (with higher pit ratio) but larger individual features. In contrast, the dental wear facet of smaller crushing teeth shows more but smaller wear features (with higher scratch number). This observation may be related to the size of the food consumed, i.e., the wider the crown, the larger food it could crush, producing larger features. Comparison with marine mammals suggests that the dietary preference of Placochelys , Psephoderma and Paraplacodus was not exclusively hard, thick-shelled food. They may have had a more mixed diet, similar to that of modern sea otters. The diet of Henodus may have included plant food, similar to the modern herbivore marine mammals and lizards., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00304-x., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
12. To glide or to swim? A reinvestigation of the enigmatic Wapitisaurus problematicus (Reptilia) from the Early Triassic of British Columbia, Canada.
- Author
-
Bastiaans D, Buffa V, and Scheyer TM
- Abstract
Wapitisaurus problematicus was initially described as a member of the Weigeltisauridae, a clade of Late Permian gliding reptiles from Eurasia and Madagascar. However, the poor preservation of the holotype and only known specimen, from the lower Sulphur Mountain Formation at Ganoid Ridge (British Columbia, Canada), raised doubts about this assignment. Here, we redescribe W. problematicus and reassess its systematic position among diapsid reptiles. Comparison with all known weigeltisaurids, as well as contemporaneous reptiles from the Sulphur Mountain Formation, indicates that the taxon instead represents a thalattosauroid thalattosauriform, with noted similarities to Thalattosaurus and Paralonectes . This reidentification restricts weigeltisaurids to the Late Permian, with no occurrence in North America. Wapitisaurus problematicus potentially represents one of the oldest thalattosauriforms and increases our understanding of their diversity and disparity during the late Early and Middle Triassic. The close morphological similarities with later (thalattosauroid) thalattosauriforms and their high abundance in (shallow) marine settings may indicate an earlier invasion of this realm than previously assumed. This parallels observations in early ichthyopterygians with widespread opportunistic trophic niche diversification occurring relatively rapidly after the end-Permian mass extinction event., Competing Interests: We have no competing interests., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
13. High phenotypic plasticity at the dawn of the eosauropterygian radiation.
- Author
-
Laboury A, Scheyer TM, Klein N, Stubbs TL, and Fischer V
- Subjects
- Animals, Adaptation, Physiological, Multivariate Analysis, Phylogeny, Reptiles anatomy & histology, Reptiles classification, Fossils anatomy & histology, Phenotype
- Abstract
The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris , which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals., Competing Interests: The authors declare that they have no competing interests., (© 2023 Laboury et al.)
- Published
- 2023
- Full Text
- View/download PDF
14. Heads or tails first? Evolution of fetal orientation in ichthyosaurs, with a scrutiny of the prevailing hypothesis.
- Author
-
Miedema F, Klein N, Blackburn DG, Sander PM, Maxwell EE, Griebeler EM, and Scheyer TM
- Subjects
- Animals, Fetus, Reptiles anatomy & histology, Fossils
- Abstract
According to a longstanding paradigm, aquatic amniotes, including the Mesozoic marine reptile group Ichthyopterygia, give birth tail-first because head-first birth leads to increased asphyxiation risk of the fetus in the aquatic environment. Here, we draw upon published and original evidence to test two hypotheses: (1) Ichthyosaurs inherited viviparity from a terrestrial ancestor. (2) Asphyxiation risk is the main reason aquatic amniotes give birth tail-first. From the fossil evidence, we conclude that head-first birth is more prevalent in Ichthyopterygia than previously recognized and that a preference for tail-first birth likely arose in derived forms. This weakens the support for the terrestrial ancestry of viviparity in Ichthyopterygia. Our survey of extant viviparous amniotes indicates that fetal orientation at birth reflects a broad diversity of factors unrelated to aquatic vs. terrestrial habitat, further undermining the asphyxiation hypothesis. We propose that birth preference is based on parturitional mechanics or carrying efficiency rather than habitat., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
15. Semicircular canal shape diversity among modern lepidosaurs: life habit, size, allometry.
- Author
-
Latimer AE, Sherratt E, Bonnet T, and Scheyer TM
- Subjects
- Phylogeny, Semicircular Canals anatomy & histology
- Abstract
Background: The shape of the semicircular canals of the inner ear of living squamate reptiles has been used to infer phylogenetic relationships, body size, and life habits. Often these inferences are made without controlling for the effects of the other ones. Here we examine the semicircular canals of 94 species of extant limbed lepidosaurs using three-dimensional landmark-based geometric morphometrics, and analyze them in phylogenetic context to evaluate the relative contributions of life habit, size, and phylogeny on canal shape., Results: Life habit is not a strong predictor of semicircular canal shape across this broad sample. Instead, phylogeny plays a major role in predicting shape, with strong phylogenetic signal in shape as well as size. Allometry has a limited role in canal shape, but inner ear size and body mass are strongly correlated., Conclusions: Our wide sampling across limbed squamates suggests that semicircular canal shape and size are predominantly a factor of phylogenetic relatedness. Given the small proportion of variance in semicircular canal shape explained by life habit, it is unlikely that unknown life habit could be deduced from semicircular canal shape alone. Overall, semicircular canal size is a good estimator of body length and even better for body mass in limbed squamates. Semiaquatic taxa tend to be larger and heavier than non-aquatic taxa, but once body size and phylogeny are accounted for, they are hard to distinguish from their non-aquatic relatives based on bony labyrinth shape and morphology., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
16. Ontogenetic variation in the cranium of Mixosaurus cornalianus, with implications for the evolution of ichthyosaurian cranial development.
- Author
-
Miedema F, Bindellini G, Dal Sasso C, Scheyer TM, and Maxwell EE
- Abstract
Relatively complete ontogenetic series are comparatively rare in the vertebrate fossil record. This can create biases in our understanding of morphology and evolution, since immaturity can represent a source of unrecognized intraspecific variation in both skeletal anatomy and ecology. In the extinct marine reptile clade Ichthyopterygia, ontogenetic series were widely studied only in some Jurassic genera, while the ontogeny of the oldest and most basal members of the clade is very poorly understood. Here, we investigate cranial ontogeny in Mixosaurus cornalianus , from the Middle Triassic Besano Formation of the Swiss and Italian Alps. This small-bodied taxon is represented by a wealth of material from multiple size classes, including fetal material. This allows us to assess ontogenetic changes in cranial morphology, and identify stages in the ontogenetic trajectory where divergence with more derived ichthyosaurs has occurred. Early ontogenetic stages of Mixosaurus show developmental patterns that are reminiscent of the presumed ancestral (early diverging sauropsid) condition. This is prominently visible in the late fetal stage in both the basioccipital, which shows morphology akin to basal tubera, and in the postorbital, which has a triradiate head. The ontogenetic trajectory of at least some of the cranial elements of Mixosaurus is therefore likely still very akin to the ancestral condition, even though the adult cranium diverges from the standard diapsid morphology., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00289-z., Competing Interests: Competing interestsThe authors declare no competing interests., (© Akademie der Naturwissenschaften Schweiz (SCNAT) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
17. Comparative bone histology of two thalattosaurians (Diapsida: Thalattosauria): Askeptosaurus italicus from the Alpine Triassic (Middle Triassic) and a Thalattosauroidea indet. from the Carnian of Oregon (Late Triassic).
- Author
-
Klein N, Sander PM, Liu J, Druckenmiller P, Metz ET, Kelley NP, and Scheyer TM
- Abstract
Here, we present the first bone histological and microanatomical study of thalattosaurians, an enigmatic group among Triassic marine reptiles. Two taxa of thalattosaurians, the askeptosauroid Askeptosaurus italicus and one as yet undescribed thalattosauroid, are examined. Both taxa have a rather different microanatomy, tissue type, and growth pattern. Askeptosaurus italicus from the late Anisian middle Besano Formation of the southern Alpine Triassic shows very compact tissue in vertebrae, rib, a gastralium, and femora, and all bones are without medullary cavities. The tissue shows moderate to low vascularization, dominated by highly organized and very coarse parallel-fibred bone, resembling interwoven tissue. Vascularization is dominated by simple longitudinal vascular canals, except for the larger femur of Askeptosaurus, where simple vascular canals dominate in a radial arrangement. Growth marks stratify the cortex of femora. The vertebrae and humeri from the undescribed thalattosauroid from the late Carnian of Oregon have primary and secondary cancellous bone, resulting in an overall low bone compactness. Two dorsal vertebral centra show dominantly secondary trabeculae, whereas a caudal vertebral centrum shows much primary trabecular bone, globuli ossei, and cartilage, indicating an earlier ontogenetic stage of the specimens or paedomorphosis. The humeri of the thalattosauroid show large, simple vascular canals that are dominantly radially oriented in a scaffold of woven and loosely organized parallel-fibred tissue. Few of the simple vascular canals are thinly but only incompletely lined by parallel-fibered tissue. In the Oregon material, changes in growth rate are only indicated by changes in vascular organization but no distinct growth marks were identified. The compact bone of Askeptosaurus is best comparable to some pachypleurosaurs, whereas its combination of tissue and vascularity is similar to eosauropterygians in general, except for the coarse nature of its parallel-fibred tissue. The cancellous bone of the Oregon thalattosauroid resembles what is documented in ichthyosaurs and plesiosaurs. However, in contrast to these its tissue does not consist of fibro-lamellar bone type. Tissue types of both thalattosaurian taxa indicate rather different growth rates and growth patterns, associated with different life history strategies. The microanatomy reflects different life styles that fit to the different environments in which they had been found (intraplatform basin vs. open marine). Both thalattosaurian taxa differ from each other but in sum also from all other marine reptile taxa studied so far. Thalattosaurian bone histology documents once more that bone histology provides for certain groups (i.e., Triassic Diapsida) only a poor phylogenetic signal and is more influenced by exogenous factors . Differences in lifestyle, life history traits, and growth rate and pattern enabled all these Triassic marine reptiles to live contemporaneously in the same habitat managing to avoid substantial competition., Competing Interests: Competing interestsThere are no competing interests., (© Akademie der Naturwissenschaften Schweiz (SCNAT) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
18. A forged 'chimera' including the second specimen of the protostegid sea turtle Santanachelys gaffneyi and shell parts of the pleurodire Araripemys from the Lower Cretaceous Santana Group of Brazil.
- Author
-
Scheyer TM, Oliveira GR, Romano PSR, Bastiaans D, Falco L, Ferreira GS, and Rabi M
- Abstract
Fossils of Cretaceous sea turtles adapted to an open marine lifestyle remain rare finds to date. Furthermore, the relationships between extant sea turtles, chelonioids, and other Mesozoic marine turtles are still contested, with one key species being Santanachelys gaffneyi Hirayama, 1998, long considered the earliest true sea turtle. The species is an Early Cretaceous member of Protostegidae , a controversial clade either placed within or closely related to Chelonioidea or, alternatively, along the stem lineage of hidden-neck turtles ( Cryptodira ) and representing an independent open marine radiation. Santanachelys gaffneyi is one of the most completely preserved early protostegids and is therefore critical for establishing the global phylogenetic position of the group. However, the single known specimen of this taxon is yet to be described in detail. Here we describe a second specimen of Santanachelys gaffneyi from its type horizon, the Romualdo Formation (late Aptian) of the Santana Group of the Araripe basin, NE Brazil. The skeletal elements preserved include the posterior part of the skull, neck vertebrae, shoulder girdle, anterior-most and left/central part of the carapace with few peripherals, and plastron lacking most of the hyoplastra. The remaining part of the carapace was apparently completed by fossil dealers using an anterior part of the pleurodiran Araripemydidae , tentatively identified as a shell portion of cf. Araripemys barretoi, a more common Santana fossil turtle, among other indeterminate turtle shell fragments. The purpose of this paper is to report the repatriation of the specimen to Brazil and to provide a preliminary description., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00271-9., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
19. Unique bone microanatomy reveals ancestry of subterranean specializations in mammals.
- Author
-
Amson E, Scheyer TM, Martinez Q, Schwermann AH, Koyabu D, He K, and Ziegler R
- Abstract
Acquiring a subterranean lifestyle entails a substantial shift for many aspects of terrestrial vertebrates' biology. Although this lifestyle is associated with multiple instances of convergent evolution, the relative success of some subterranean lineages largely remains unexplained. Here, we focus on the mammalian transitions to life underground, quantifying bone microanatomy through high-resolution X-ray tomography. The true moles stand out in this dataset. Examination of this family's bone histology reveals that the highly fossorial moles acquired a unique phenotype involving large amounts of compacted coarse cancellous bone. This phenotype exceeds the adaptive optimum seemingly shared by several other subterranean mammals and can be traced back to some of the first known members of the family. This remarkable microanatomy was acquired early in the history of the group and evolved faster than the gross morphology innovations of true moles' forelimb. This echoes the pattern described for other lifestyle transitions, such as the acquisition of bone mass specializations in secondarily aquatic tetrapods. Highly plastic traits-such as those pertaining to bone structure-are hence involved in the early stages of different types of lifestyle transitions., Competing Interests: The authors declare no conflict of interest., (© 2022 The Authors. Evolution Letters published by Wiley Periodicals LLC on behalf of Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEB).)
- Published
- 2022
- Full Text
- View/download PDF
20. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender.
- Author
-
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, and Scheyer TM
- Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo ). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
21. First evidence of Proganochelys quenstedtii (Testudinata) from the Plateosaurus bonebeds (Norian, Late Triassic) of Frick, Canton Aargau, Switzerland.
- Author
-
Scheyer TM, Klein N, Evers SW, Mautner AK, and Pabst B
- Abstract
Proganochelys quenstedtii represents the best-known stem turtle from the Late Triassic, with gross anatomical and internal descriptions of the shell, postcranial bones and skull based on several well-preserved specimens from Central European fossil locations. We here report on the first specimen of P. quenstedtii from the Late Triassic (Klettgau Formation) Frickberg near the town of Frick, Canton Aargau, Switzerland. Similar to other Late Triassic ' Plateosaurus -bearing bonebeds', Proganochelys is considered to be a rare faunal element in the Swiss locality of Frick as well. The specimen, which is largely complete but was found only partially articulated and mixed with large Plateosaurus bones, overall resembles the morphology of the classical specimens from Germany. Despite being disarticulated, most skull bones could be identified and micro-computed tomography (CT) scanning of the posterior skull region reveals new insights into the braincase and neurovascular anatomy, as well as the inner ear region. These include the presence of a fenestra perilymphatica, potentially elongated cochlear ducts, and intense vascularization of small tubercles on the posterior end of the skull roof, which we interpret as horn cores. Other aspects of the skull in the braincase region, such as the presence or absence of a supratemporal remain ambiguous due to the fusion of individual bones and thus lack of visible sutures (externally and internally). Based on the size of the shell and fusion of individual elements, the specimen is interpreted as a skeletally mature animal., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-022-00260-4., Competing Interests: Competing interestsThe authors declare no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
22. A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland.
- Author
-
Scheyer TM, Oberli U, Klein N, and Furrer H
- Abstract
An important component of the Alpine vertebrate record of Late Triassic age derives from the Kössen Formation, which crops out extensively in the eastern Alps. Here, we present an isolated and only partially preserved large rib, which carries an osteoderm on a low uncinate process. Osteological comparison indicates that the specimen likely belongs to a small clade of marine reptiles, Saurosphargidae. Members of the clade are restricted to the western (today Europe) and eastern margins of the Tethys (today China) and were so far known only from the Anisian stage of the Middle Triassic. The assignment of the new find to cf. Saurosphargidae, with potential affinities to the genus Largocephalosaurus from the Guanling Formation of Yunnan and Guizhou Provinces, China, would extend the occurrence of the clade about 35 million years into the Late Triassic., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
23. A new pachypleurosaur from the Early Ladinian Prosanto Formation in the Eastern Alps of Switzerland.
- Author
-
Klein N, Furrer H, Ehrbar I, Torres Ladeira M, Richter H, and Scheyer TM
- Abstract
The Alpine Prosanto Formation (Middle Triassic) cropping out in the Ducan region in eastern Switzerland has yielded a rich fish and reptile fauna. Here, we present new pachypleurosaur remains from the upper part of the formation (Early Ladinian), similar to the previously known pachypleurosaurs from the Middle Triassic UNESCO World Heritage Site of Monte San Giorgio in southern Switzerland/northern Italy. From these remains, a new pachypleurosaur species, Prosantosaurus scheffoldi nov. gen. et spec., is described on the basis of six fairly complete skeletons, one disarticulated specimen and an isolated skull. As is typical for pachypleurosaurs and most other Triassic marine reptiles, the new taxon is based to a large degree on a combination of characters (e.g., nasals articulating broadly with the anterior margins of the prefrontals and lacking posterior processes; postorbitals with rounded anterior processes that articulate with the postfrontals anterolaterally) rather than on many unambiguous autapomorphies, although a few of the latter were found including (1) a premaxilla which is excluded from entering both the external and internal nares and (2) a parietal, which is distinctly longer than wide and carrying distinct anterolaterally angled processes. Phylogenetic relationships of the new taxon are tested within European Pachypleurosauria, revealing that the new species is the sister taxon to a clade including Serpianosaurus , Proneusticosaurus , and the monophyletic Neusticosaurus spp. Mapping of palaeogeographic and stratigraphical distribution of valid European pachypleurosaurs shows that a formerly proposed scenario of migration of pachypleurosaurs from the eastern Palaeotethys during the Olenekian into the Germanic Basin and a subsequent diversification and invasion during the Anisian into the intraplatform basins of the South Alpine realm must be re-assessed. The exceptional preservation and preparation of the Ducan fossils further allow the description of tooth replacement patterns for the first time in a European pachypleurosaur species. The "alveolarization" of replacement teeth, the horizontal replacement pattern, and the subsequent remodelling of the functional alveoli during tooth replacement supports the monophyly of Sauropterygia as discussed before., Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-022-00254-2., Competing Interests: Competing interestsThere are no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
24. Modeling tooth enamel in FEA comparisons of skulls: Comparing common simplifications with biologically realistic models.
- Author
-
Herbst EC, Lautenschlager S, Bastiaans D, Miedema F, and Scheyer TM
- Abstract
Palaeontologists often use finite element analyses, in which forces propagate through objects with specific material properties, to investigate feeding biomechanics. Teeth are usually modeled with uniform properties (all bone or all enamel). In reality, most teeth are composed of pulp, dentine, and enamel. We tested how simplified teeth compare to more realistic models using mandible models of three reptiles. For each, we created models representing enamel thicknesses found in extant taxa, as well as simplified models (bone, dentine or enamel). Our results suggest that general comparisons of stress distribution among distantly related taxa do not require representation of dental tissues, as there was no noticeable effect on heatmap representations of stress. However, we find that representation of dental tissues impacts bite force estimates, although magnitude of these effects may differ depending on constraints. Thus, as others have shown, the detail necessary in a biomechanical model relates to the questions being examined., Competing Interests: The authors declare no competing interests., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
25. Lizards and snakes from the earliest Miocene of Saint-Gérand-le-Puy, France: an anatomical and histological approach of some of the oldest Neogene squamates from Europe.
- Author
-
Georgalis GL and Scheyer TM
- Subjects
- Animals, Europe, France, Phylogeny, Snakes, Lizards
- Abstract
Background: The earliest Miocene (Aquitanian) represents a crucial time interval in the evolution of European squamates (i.e., lizards and snakes), witnessing a high diversity of taxa, including an array of extinct forms but also representatives of extant genera. We here conduct a taxonomical survey along with a histological/microanatomical approach on new squamate remains from the earliest Miocene of Saint-Gérand-le-Puy, France, an area that has been well known for its fossil discoveries since the nineteenth century., Results: We document new occurrences of taxa, among which, the lacertid Janosikia and the anguid Ophisaurus holeci, were previously unknown from France. We provide a detailed description of the anatomical structures of the various cranial and postcranial remains of lizards and snakes from Saint-Gérand-le-Puy. By applying micro-CT scanning in the most complete cranial elements of our sample, we decipher previously unknown microanatomical features. We report in detail the subsurface distribution and 3D connectivity of vascular channels in the anguid parietal. The fine meshwork of channels and cavities or sinuses in the parietal of Ophisaurus could indicate some thermoregulatory function, as it has recently been demonstrated for other vertebrate groups, providing implications for the palaeophysiology of this earliest Miocene anguine lizard., Conclusions: A combination of anatomical and micro-anatomical/histological approach, aided by micro-CT scanning, enabled the documentation of these new earliest Miocene squamate remains. A distinct geographic expansion is provided for the extinct anguine Ophisaurus holeci and the lacertid Janosikia (the closest relative of the extant insular Gallotia from the Canary Islands)., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
26. Dentition and feeding in Placodontia: tooth replacement in Henodus chelyops.
- Author
-
Pommery Y, Scheyer TM, Neenan JM, Reich T, Fernandez V, Voeten DFAE, Losko AS, and Werneburg I
- Subjects
- Animals, Jaw, Odontogenesis, Phylogeny, Dentition, Tooth diagnostic imaging
- Abstract
Background: Placodontia is a Triassic sauropterygian reptile group characterized by flat and enlarged crushing teeth adapted to a durophagous diet. The enigmatic placodont Henodus chelyops has numerous autapomorphic character states, including extreme tooth count reduction to only a single pair of palatine and dentary crushing teeth. This renders the species unusual among placodonts and challenges identification of its phylogenetic position., Results: The skulls of two Henodus chelyops specimens were visualized with synchrotron tomography to investigate the complete anatomy of their functional and replacement crushing dentition in 3D. All teeth of both specimens were segmented, measured, and statistically compared to reveal that H. chelyops teeth are much smaller than the posterior palatine teeth of other cyamodontoid placodonts with the exception of Parahenodus atancensis from the Iberian Peninsula. The replacement teeth of this species are quite similar in size and morphology to the functional teeth., Conclusion: As other placodonts, Henodus chelyops exhibits vertical tooth replacement. This suggests that vertical tooth replacement arose relatively early in placodont phylogeny. Analysis of dental morphology in H. chelyops revealed a concave shape of the occlusal surface and the notable absence of a central cusp. This dental morphology could have reduced dental wear and protected against failure. Hence, the concave teeth of H. chelyops appear to be adapted to process small invertebrate items, such as branchiopod crustaceans. Small gastropods were encountered in the matrix close to both studied skulls.
- Published
- 2021
- Full Text
- View/download PDF
27. Cranial anatomy of Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio, Italy/Switzerland: taxonomic and palaeobiological implications.
- Author
-
Bindellini G, Wolniewicz AS, Miedema F, Scheyer TM, and Dal Sasso C
- Abstract
Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was described on the basis of a single fossil excavated near Besano (Italy) nearly three decades ago. Here, we re-examine its cranial osteology and assign five additional specimens to B. leptorhynchus , four of which were so far undescribed. All of the referred specimens were collected from the Middle Triassic outcrops of the Monte San Giorgio area (Italy/Switzerland) and are housed in various museum collections in Europe. The revised diagnosis of the taxon includes the following combination of cranial characters: extreme longirostry; an elongate frontal not participating in the supratemporal fenestra; a prominent 'triangular process' of the quadrate; a caudoventral exposure of the postorbital on the skull roof; a prominent coronoid (preglenoid) process of the surangular; tiny conical teeth with coarsely-striated crown surfaces and deeply-grooved roots; mesial maxillary teeth set in sockets; distal maxillary teeth set in a short groove. All these characters are shared with the holotype of Mikadocephalus gracilirostris Maisch & Matzke, 1997, which we consider as a junior synonym of B. leptorhynchus . An updated phylogenetic analysis, which includes revised scores for B. leptorhynchus and several other shastasaurids, recovers B. leptorhynchus as a basal merriamosaurian, but it is unclear if Shastasauridae form a clade, or represent a paraphyletic group. The inferred body length of the examined specimens ranges from 1 m to about 8 m. The extreme longirostry suggests that B. leptorhynchus primarily fed on small and elusive prey, feeding lower in the food web than an apex predator: a novel ecological specialisation never reported before the Anisian in a large diapsid. This specialization might have triggered an increase of body size and helped to maintain low competition among the diverse ichthyosaur fauna of the Besano Formation., Competing Interests: Cristiano Dal Sasso is an employee of the Museo di Storia Naturale di Milano, Italy. Torsten Michael Scheyer is an employee of the Paläontologisches Institut und Museum, Universität Zürich, Switzerland., (© 2021 Bindellini et al.)
- Published
- 2021
- Full Text
- View/download PDF
28. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other "protorosaurs", and its implications for the early evolution of stem archosaurs.
- Author
-
Spiekman SNF, Fraser NC, and Scheyer TM
- Abstract
The historical clade "Protorosauria" represents an important group of archosauromorph reptiles that had a wide geographic distribution between the Late Permian and Late Triassic. "Protorosaurs" are characterized by their long necks, which are epitomized in the genus Tanystropheus and in Dinocephalosaurus orientalis . Recent phylogenetic analyses have indicated that "Protorosauria" is a polyphyletic clade, but the exact relationships of the various "protorosaur" taxa within the archosauromorph lineage is currently uncertain. Several taxa, although represented by relatively complete material, have previously not been assessed phylogenetically. We present a new phylogenetic hypothesis that comprises a wide range of archosauromorphs, including the most exhaustive sample of "protorosaurs" to date and several "protorosaur" taxa from the eastern Tethys margin that have not been included in any previous analysis. The polyphyly of "Protorosauria" is confirmed and therefore we suggest the usage of this term should be abandoned. Tanystropheidae is recovered as a monophyletic group and the Chinese taxa Dinocephalosaurus orientalis and Pectodens zhenyuensis form a new archosauromorph clade, Dinocephalosauridae, which is closely related to Tanystropheidae. The well-known crocopod and former "protorosaur" Prolacerta broomi is considerably less closely related to Archosauriformes than was previously considered., Competing Interests: The authors declare that they have no competing interests., (© 2021 Spiekman et al.)
- Published
- 2021
- Full Text
- View/download PDF
29. A Pliocene-Pleistocene continental biota from Venezuela.
- Author
-
Carrillo-Briceño JD, Sánchez R, Scheyer TM, Carrillo JD, Delfino M, Georgalis GL, Kerber L, Ruiz-Ramoni D, Birindelli JLO, Cadena EA, Rincón AF, Chavez-Hoffmeister M, Carlini AA, Carvalho MR, Trejos-Tamayo R, Vallejo F, Jaramillo C, Jones DS, and Sánchez-Villagra MR
- Abstract
The Pliocene-Pleistocene transition in the Neotropics is poorly understood despite the major climatic changes that occurred at the onset of the Quaternary. The San Gregorio Formation, the younger unit of the Urumaco Sequence, preserves a fauna that documents this critical transition. We report stingrays, freshwater bony fishes, amphibians, crocodiles, lizards, snakes, aquatic and terrestrial turtles, and mammals. A total of 49 taxa are reported from the Vergel Member (late Pliocene) and nine taxa from the Cocuiza Member (Early Pleistocene), with 28 and 18 taxa reported for the first time in the Urumaco sequence and Venezuela, respectively. Our findings include the first fossil record of the freshwater fishes Megaleporinus , Schizodon , Amblydoras , Scorpiodoras , and the pipesnake Anilius scytale , all from Pliocene strata. The late Pliocene and Early Pleistocene ages proposed here for the Vergel and Cocuiza members, respectively, are supported by their stratigraphic position, palynology, nannoplankton, and
86 Sr/88 Sr dating. Mammals from the Vergel Member are associated with the first major pulse of the Great American Biotic Interchange. In contrast to the dry conditions prevailing today, the San Gregorio Formation documents mixed open grassland/forest areas surrounding permanent freshwater systems, following the isolation of the northern South American basin from western Amazonia. These findings support the hypothesis that range contraction of many taxa to their current distribution in northern South America occurred rapidly during at least the last 1.5 million years., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2021.)- Published
- 2021
- Full Text
- View/download PDF
30. The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography.
- Author
-
Spiekman SNF, Neenan JM, Fraser NC, Fernandez V, Rieppel O, Nosotti S, and Scheyer TM
- Abstract
The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic., Competing Interests: The authors declare that they have no competing interests., (© 2020 Spiekman et al.)
- Published
- 2020
- Full Text
- View/download PDF
31. Aquatic Habits and Niche Partitioning in the Extraordinarily Long-Necked Triassic Reptile Tanystropheus.
- Author
-
Spiekman SNF, Neenan JM, Fraser NC, Fernandez V, Rieppel O, Nosotti S, and Scheyer TM
- Subjects
- Adaptation, Biological genetics, Adaptation, Biological physiology, Animals, Biological Evolution, Ear, Inner anatomy & histology, Ecosystem, Fossils, Phylogeny, Reptiles anatomy & histology, Spine anatomy & histology, Tooth anatomy & histology, Dinosaurs anatomy & histology, Neck anatomy & histology, Skull anatomy & histology
- Abstract
Tanystropheus longobardicus is one of the most remarkable and iconic Triassic reptiles. Mainly known from the Middle Triassic conservation Lagerstätte of Monte San Giorgio on the Swiss-Italian border, it is characterized by an extraordinarily long and stiffened neck that is almost three times the length of the trunk, despite being composed of only 13 hyper-elongate cervical vertebrae [1-8]. Its paleobiology remains contentious, with both aquatic and terrestrial lifestyles having been proposed [1, 9-12]. Among the Tanystropheus specimens, a small morphotype bearing tricuspid teeth and a large morphotype bearing single-cusped teeth can be recognized, historically considered as juveniles and adults of the same species [4]. Using high-resolution synchrotron radiation microtomography (SRμCT), we three-dimensionally reconstruct a virtually complete but disarticulated skull of the large morphotype, including its endocast and inner ear, to reveal its morphology for the first time. The skull is specialized toward hunting in an aquatic environment, indicated by the placement of the nares on the top of the snout and a "fish-trap"-type dentition. The SRμCT data and limb bone paleohistology reveal that the large morphotype represents a separate species (Tanystropheus hydroides sp. nov.). Skeletochronology of the small morphotype specimens indicates that they are skeletally mature despite their small size, thus representing adult individuals of Tanystropheus longobardicus. The co-occurrence of these two species of disparate size ranges and dentitions provides strong evidence for niche partitioning, highlighting the surprising versatility of the Tanystropheus bauplan and the complexity of Middle Triassic nearshore ecosystems., Competing Interests: Declaration of Interests The authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
32. Cranial morphology of the tanystropheid Macrocnemus bassanii unveiled using synchrotron microtomography.
- Author
-
Miedema F, Spiekman SNF, Fernandez V, Reumer JWF, and Scheyer TM
- Subjects
- Animals, Fossils anatomy & histology, Fossils diagnostic imaging, Imaging, Three-Dimensional, Skull diagnostic imaging, Switzerland, Synchrotrons, X-Ray Microtomography instrumentation, Dinosaurs anatomy & histology, Skull anatomy & histology
- Abstract
The genus Macrocnemus is a member of the Tanystropheidae, a clade of non-archosauriform archosauromorphs well known for their very characteristic, elongated cervical vertebrae. Articulated specimens are known from the Middle Triassic of Alpine Europe and China. Although multiple articulated specimens are known, description of the cranial morphology has proven challenging due to the crushed preservation of the specimens. Here we use synchrotron micro computed tomography to analyse the cranial morphology of a specimen of the type species Macrocnemus bassanii from the Besano Formation of Monte San Giorgio, Ticino, Switzerland. The skull is virtually complete and we identify and describe the braincase and palatal elements as well the atlas-axis complex for the first time. Moreover, we add to the knowledge of the morphology of the skull roof, rostrum and hemimandible, and reconstruct the cranium of M. bassanii in 3D using the rendered models of the elements. The circumorbital bones were found to be similar in morphology to those of the archosauromorphs Prolacerta broomi and Protorosaurus speneri. In addition, we confirm the palatine, vomer and pterygoid to be tooth-bearing palatal bones, but also observed heterodonty on the pterygoid and the palatine.
- Published
- 2020
- Full Text
- View/download PDF
33. Colobops : a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite.
- Author
-
Scheyer TM, Spiekman SNF, Sues HD, Ezcurra MD, Butler RJ, and Jones MEH
- Abstract
Correctly identifying taxa at the root of major clades or the oldest clade-representatives is critical for meaningful interpretations of evolution. A small, partially crushed skull from the Late Triassic (Norian) of Connecticut, USA, originally described as an indeterminate rhynchocephalian saurian, was recently named Colobops noviportensis and reinterpreted as sister to all remaining Rhynchosauria, one of the earliest and globally distributed groups of herbivorous reptiles. It was also interpreted as having an exceptionally reinforced snout and powerful bite based on an especially large supratemporal fenestra. Here, after a re-analysis of the original scan data, we show that the skull was strongly dorsoventrally compressed post-mortem, with most bones out of life position. The cranial anatomy is consistent with that of other rhynchocephalian lepidosauromorphs, not rhynchosaurs. The 'reinforced snout' region and the 'exceptionally enlarged temporal region' are preservational artefacts and not exceptional among clevosaurid rhynchocephalians. Colobops is thus not a key taxon for understanding diapsid feeding apparatus evolution., Competing Interests: We declare we have no competing interests., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
34. The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations.
- Author
-
Clarac F, Scheyer TM, Desojo JB, Cerda IA, and Sanchez S
- Subjects
- Animals, Bone and Bones anatomy & histology, Fossils anatomy & histology, Reptiles anatomy & histology, Turtles anatomy & histology, Turtles physiology, Adaptation, Biological, Biological Evolution, Bone and Bones physiology, Reptiles physiology
- Abstract
Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.
- Published
- 2020
- Full Text
- View/download PDF
35. The anatomy, paleobiology, and evolutionary relationships of the largest extinct side-necked turtle.
- Author
-
Cadena EA, Scheyer TM, Carrillo-Briceño JD, Sánchez R, Aguilera-Socorro OA, Vanegas A, Pardo M, Hansen DM, and Sánchez-Villagra MR
- Subjects
- Animal Shells anatomy & histology, Animals, Body Size, Body Weight, Bone and Bones anatomy & histology, Climate, Diet, Female, Geography, Geological Phenomena, Male, Phylogeny, Time Factors, Venezuela, Biological Evolution, Extinction, Biological, Paleontology, Turtles anatomy & histology
- Abstract
Despite being among the largest turtles that ever lived, the biology and systematics of Stupendemys geographicus remain largely unknown because of scant, fragmentary finds. We describe exceptional specimens and new localities of S. geographicus from the Miocene of Venezuela and Colombia. We document the largest shell reported for any extant or extinct turtle, with a carapace length of 2.40 m and estimated mass of 1.145 kg, almost 100 times the size of its closest living relative, the Amazon river turtle Peltocephalus dumerilianus , and twice that of the largest extant turtle, the marine leatherback Dermochelys coriacea . The new specimens greatly increase knowledge of the biology and evolution of this iconic species. Our findings suggest the existence of a single giant turtle species across the northern Neotropics, but with two shell morphotypes, suggestive of sexual dimorphism. Bite marks and punctured bones indicate interactions with large caimans that also inhabited the northern Neotropics., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
36. Giant extinct caiman breaks constraint on the axial skeleton of extant crocodylians.
- Author
-
Scheyer TM, Hutchinson JR, Strauss O, Delfino M, Carrillo-Briceño JD, Sánchez R, and Sánchez-Villagra MR
- Subjects
- Animals, Paleontology, Phylogeny, Alligators and Crocodiles anatomy & histology, Bone and Bones anatomy & histology, Extinction, Biological
- Abstract
The number of precaudal vertebrae in all extant crocodylians is remarkably conservative, with nine cervicals, 15 dorsals and two sacrals, a pattern present also in their closest extinct relatives. The consistent vertebral count indicates a tight control of axial patterning by Hox genes during development. Here we report on a deviation from this pattern based on an associated skeleton of the giant caimanine Purussaurus , a member of crown Crocodylia, and several other specimens from the Neogene of the northern neotropics. P. mirandai is the first crown-crocodylian to have three sacrals, two true sacral vertebrae and one non-pathological and functional dorsosacral, to articulate with the ilium (pelvis). The giant body size of this caiman relates to locomotory and postural changes. The iliosacral configuration, a more vertically oriented pectoral girdle, and low torsion of the femoral head relative to the condyles are hypothesized specializations for more upright limb orientation or weight support., Competing Interests: TS, JH, OS, MD, JC, RS, MS No competing interests declared, (© 2019, Scheyer et al.)
- Published
- 2019
- Full Text
- View/download PDF
37. Microanatomy of the stem-turtle Pappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell.
- Author
-
Schoch RR, Klein N, Scheyer TM, and Sues HD
- Subjects
- Adaptation, Physiological physiology, Animals, Biological Evolution, Bone Plates, Phylogeny, Ribs anatomy & histology, Skull anatomy & histology, Spine anatomy & histology, Animal Shells anatomy & histology, Fossils anatomy & histology, Turtles anatomy & histology
- Abstract
Unlike any other tetrapod, turtles form their dorsal bony shell (carapace) not from osteoderms, but by contribution of the ribs and vertebrae that expand into the dermis to form plate-like shell components. Although this was known from embryological studies in extant turtles, important steps in this evolutionary sequence have recently been highlighted by the Triassic taxa Pappochelys, Eorhynchochelys and Odontochelys, and the Permian Eunotosaurus. The discovery of Pappochelys shed light on the origin of the ventral bony shell (plastron), which formed from enlarged gastralia. A major question is whether the turtle shell evolved in the context of a terrestrial or aquatic environment. Whereas Odontochelys was controversially interpreted as aquatic, a terrestrial origin of turtles was proposed based on evidence of fossorial adaptations in Eunotosaurus. We report palaeohistological data for Pappochelys, a taxon that exemplifies earlier evolutionary stages in the formation of the bony shell than Odontochelys. Bone histological evidence reveals (1) evolutionary changes in bone microstructure in ribs and gastralia approaching the turtle condition and (2) evidence for a predominantly amphibious or fossorial mode of life in Pappochelys, which support the hypothesis that crucial steps in the evolution of the shell occurred in a terrestrial rather than fully aquatic environment.
- Published
- 2019
- Full Text
- View/download PDF
38. Palaeohistology and life history evolution in cave bears, Ursus spelaeus sensu lato.
- Author
-
Veitschegger K, Kolb C, Amson E, Scheyer TM, and Sánchez-Villagra MR
- Subjects
- Altitude, Animals, Bone Remodeling, Europe, Femur cytology, Phylogeny, Species Specificity, Ursidae anatomy & histology, Ursidae genetics, Femur growth & development, Fossils, Ursidae growth & development
- Abstract
The abundance of skeletal remains of cave bears in Pleistocene deposits can offer crucial information on the biology and life history of this megafaunal element. The histological study of 62 femora from 23 different European localities and comparisons with specimens of five extant ursid species revealed novel data on tissue types and growth patterns. Cave bear's femoral bone microstructure is characterized by a fibrolamellar complex with increasing amounts of parallel-fibered and lamellar bone towards the outer cortex. Remodelling of the primary bone tissue initially occurs close to the perimedullary margin of the bone cortex around the linea aspera. Although similar histological traits can be observed in many extant bear species, the composition of the fibrolamellar complex can vary greatly. Cave bears reached skeletal maturity between the ages of 10 and 14, which is late compared to other bear species. There is a significant correlation between altitude and growth, which reflects the different body sizes of cave bears from different altitudes., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
39. Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene.
- Author
-
Scheyer TM, Delfino M, Klein N, Bunbury N, Fleischer-Dogley F, and Hansen DM
- Abstract
Today, the UNESCO World Heritage Site of Aldabra Atoll is home to about 100 000 giant tortoises, Aldabrachelys gigantea , whose fossil record goes back to the Late Pleistocene. New Late Pleistocene fossils (age ca . 90-125 000 years) from the atoll revealed some appendicular bones and numerous shell fragments of giant tortoises and cranial and postcranial elements of crocodylians. Several tortoise bones show circular holes, pits and scratch marks that are interpreted as bite marks of crocodylians. The presence of a Late Pleistocene crocodylian species, Aldabrachampsus dilophus , has been known for some time, but the recently found crocodylian remains presented herein are distinctly larger than those previously described. This indicates the presence of at least some larger crocodylians, either of the same or of a different species, on the atoll. These larger crocodylians, likely the apex predators in the Aldabra ecosystem at the time, were well capable of inflicting damage on even very large giant tortoises. We thus propose an extinct predator-prey interaction between crocodylians and giant tortoises during the Late Pleistocene, when both groups were living sympatrically on Aldabra, and we discuss scenarios for the crocodylians directly attacking the tortoises or scavenging on recently deceased animals., Competing Interests: We have no competing interests.
- Published
- 2018
- Full Text
- View/download PDF
40. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia.
- Author
-
Voeten DFAE, Reich T, Araújo R, and Scheyer TM
- Subjects
- Adaptation, Physiological, Animals, Dinosaurs physiology, Skull physiology, Dinosaurs anatomy & histology, Fossils, Skull anatomy & histology, Synchrotrons
- Abstract
Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian 'foramina eustachii' arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group's explosive invasion of shallow marine habitats in the late Early Triassic.
- Published
- 2018
- Full Text
- View/download PDF
41. A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny.
- Author
-
Scheyer TM, Neenan JM, Bodogan T, Furrer H, Obrist C, and Plamondon M
- Subjects
- Animals, Biological Evolution, Reptiles anatomy & histology, Fossils, Phylogeny, Reptiles classification, Reptiles genetics
- Abstract
Recently it was suggested that the phylogenetic clustering of Mesozoic marine reptile lineages, such as thalattosaurs, the very successful fish-shaped ichthyosaurs and sauropterygians (including plesiosaurs), among others, in a so-called 'superclade' is an artefact linked to convergent evolution of morphological characters associated with a shared marine lifestyle. Accordingly, partial 'un-scoring' of the problematic phylogenetic characters was proposed. Here we report a new, exceptionally preserved and mostly articulated juvenile skeleton of the diapsid reptile, Eusaurosphargis dalsassoi, a species previously recovered within the marine reptile 'superclade', for which we now provide a revised diagnosis. Using micro-computed tomography, we show that besides having a deep skull with a short and broad rostrum, the most outstanding feature of the new specimen is extensive, complex body armour, mostly preserved in situ, along its vertebrae, ribs, and forelimbs, as well as a row of flat, keeled ventrolateral osteoderms associated with the gastralia. As a whole, the anatomical features support an essentially terrestrial lifestyle of the animal. A review of the proposed partial character 'un-scoring' using three published data matrices indicate that this approach is flawed and should be avoided, and that within the marine reptile 'superclade' E. dalsassoi potentially is the sister taxon of Sauropterygia.
- Published
- 2017
- Full Text
- View/download PDF
42. Fossorial Origin of the Turtle Shell.
- Author
-
Lyson TR, Rubidge BS, Scheyer TM, de Queiroz K, Schachner ER, Smith RM, Botha-Brink J, and Bever GS
- Subjects
- Animals, Locomotion, Phylogeny, South Africa, Animal Shells anatomy & histology, Biological Evolution, Fossils anatomy & histology, Life History Traits, Turtles anatomy & histology
- Abstract
The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
43. Diverse Aquatic Adaptations in Nothosaurus spp. (Sauropterygia)-Inferences from Humeral Histology and Microanatomy.
- Author
-
Klein N, Sander PM, Krahl A, Scheyer TM, and Houssaye A
- Subjects
- Animals, Bone Density physiology, Dinosaurs physiology, Periosteum physiology, Tibia physiology, Dinosaurs anatomy & histology, Haversian System anatomy & histology, Periosteum anatomy & histology, Tibia anatomy & histology
- Abstract
Mid-diaphyseal cortical bone tissue in humeri of Nothosaurus spp. consists of coarse parallel-fibered bone, finer and higher organized parallel-fibered bone, and lamellar bone. Vascular canals are mainly arranged longitudinally and radially in a dominantly radial system. Blood vessels are represented by simple vascular canals, incompletely lined primary osteons, and fully developed primary osteons. Nothosaurus spp. shows a variety of diaphyseal microanatomical patterns, ranging from thick to very thin-walled cortices. In the early Anisian (Lower Muschelkalk), small- and large-bodied Nothosaurus spp. generally exhibit bone mass increase (BMI). In the middle to late Anisian (Middle Muschelkalk) small-bodied nothosaurs retain BMI whereas larger-bodied forms tend to show a decrease in bone mass (BMD). During the latest Anisian to early Ladinian (Upper Muschelkalk), small- and few large-bodied nothosaurs retain BMI, whereas the majority of large-bodied forms exhibit BMD. The stratigraphically youngest nothosaurs document five microanatomical categories, two of which are unique among marine amniotes: One consists of a very heterogeneously distributed spongy periosteal organization, the other of very thin-walled cortices. The functional significance of the two unique microanatomical specializations seen in large-bodied nothosaurs is the reduction of bone mass, which minimizes inertia of the limbs, and thus saves energy during locomotion. Transitions between the various microanatomical categories are rather gradual. Our results suggest that small-bodied Nothosaurus marchicus and other, not further assignable small-bodied nothosaurs seem to have been bound to near-shore, shallow marine environments throughout their evolution. Some large-bodied Nothosaurus spp. followed the same trend but others became more active swimmers and possibly inhabited open marine environments. The variety of microanatomical patterns may be related to taxonomic differences, developmental plasticity, and possibly sexual dimorphism. Humeral microanatomy documents the diversification of nothosaur species into different environments to avoid intraclade competition as well as competition with other marine reptiles. Nothosaur microanatomy indicates that knowledge of processes involved in secondary aquatic adaptation and their interaction are more complex than previously believed.
- Published
- 2016
- Full Text
- View/download PDF
44. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms.
- Author
-
Kolb C, Scheyer TM, Veitschegger K, Forasiepi AM, Amson E, Van der Geer AA, Van den Hoek Ostende LW, Hayashi S, and Sánchez-Villagra MR
- Abstract
The interest in mammalian palaeohistology has increased dramatically in the last two decades. Starting in 1849 via descriptive approaches, it has been demonstrated that bone tissue and vascularisation types correlate with several biological variables such as ontogenetic stage, growth rate, and ecology. Mammalian bone displays a large variety of bone tissues and vascularisation patterns reaching from lamellar or parallel-fibred to fibrolamellar or woven-fibred bone, depending on taxon and individual age. Here we systematically review the knowledge and methods on cynodont and mammalian bone microstructure as well as palaeohistology and discuss potential future research fields and techniques. We present new data on the bone microstructure of two extant marsupial species and of several extinct continental and island placental mammals. Extant marsupials display mainly parallel-fibred primary bone with radial and oblique but mainly longitudinal vascular canals. Three juvenile specimens of the dwarf island hippopotamid Hippopotamus minor from the Late Pleistocene of Cyprus show reticular to plexiform fibrolamellar bone. The island murid Mikrotia magna from the Late Miocene of Gargano, Italy displays parallel-fibred primary bone with reticular vascularisation and strong remodelling in the middle part of the cortex. Leithia sp., the dormouse from the Pleistocene of Sicily, is characterised by a primary bone cortex consisting of lamellar bone and a high amount of compact coarse cancellous bone. The bone cortex of the fossil continental lagomorph Prolagus oeningensis and three fossil species of insular Prolagus displays mainly parallel-fibred primary bone and reticular, radial as well as longitudinal vascularisation. Typical for large mammals, secondary bone in the giant rhinocerotoid Paraceratherium sp. from the Late Oligocene of Turkey is represented by dense Haversian bone. The skeletochronological features of Sinomegaceros yabei, a large-sized deer from the Pleistocene of Japan closely related to Megaloceros, indicate a high growth rate. These examples and the synthesis of existing data show the potential of bone microstructure to reveal essential information on life history evolution. The bone tissue and the skeletochronological data of the sampled island species suggest the presence of various modes of bone histological modification and mammalian life history evolution on islands to depend on factors of island evolution such as island size, distance from mainland, climate, phylogeny, and time of evolution.
- Published
- 2015
- Full Text
- View/download PDF
45. Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia).
- Author
-
Klein N, Neenan JM, Scheyer TM, and Griebeler EM
- Abstract
Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out.
- Published
- 2015
- Full Text
- View/download PDF
46. Growth in fossil and extant deer and implications for body size and life history evolution.
- Author
-
Kolb C, Scheyer TM, Lister AM, Azorit C, de Vos J, Schlingemann MA, Rössner GE, Monaghan NT, and Sánchez-Villagra MR
- Subjects
- Animals, Biological Evolution, Body Size, Bone and Bones anatomy & histology, Deer anatomy & histology, Deer classification, Greece, Phylogeny, Skeleton, Deer genetics, Deer physiology, Fossils anatomy & histology
- Abstract
Background: Body size variation within clades of mammals is widespread, but the developmental and life-history mechanisms by which this variation is achieved are poorly understood, especially in extinct forms. An illustrative case study is that of the dwarfed morphotypes of Candiacervus from the Pleistocene of Crete versus the giant deer Megaloceros giganteus, both in a clade together with Dama dama among extant species. Histological analyses of long bones and teeth in a phylogenetic context have been shown to provide reliable estimates of growth and life history patterns in extant and extinct mammals., Results: Similarity of bone tissue types across the eight species examined indicates a comparable mode of growth in deer, with long bones mainly possessing primary plexiform fibrolamellar bone. Low absolute growth rates characterize dwarf Candiacervus sp. II and C. ropalophorus compared to Megaloceros giganteus displaying high rates, whereas Dama dama is characterized by intermediate to low growth rates. The lowest recorded rates are those of the Miocene small stem cervid Procervulus praelucidus. Skeletal maturity estimates indicate late attainment in sampled Candiacervus and Procervulus praelucidus. Tooth cementum analysis of first molars of two senile Megaloceros giganteus specimens revealed ages of 16 and 19 years whereas two old dwarf Candiacervus specimens gave ages of 12 and 18 years., Conclusions: There is a rich histological record of growth across deer species recorded in long bones and teeth, which can be used to understand ontogenetic patterns within species and phylogenetic ones across species. Growth rates sensu Sander & Tückmantel plotted against the anteroposterior bone diameter as a proxy for body mass indicate three groups: one with high growth rates including Megaloceros, Cervus, Alces, and Dama; an intermediate group with Capreolus and Muntiacus; and a group showing low growth rates, including dwarf Candiacervus and Procervulus. Dwarf Candiacervus, in an allometric context, show an extended lifespan compared to other deer of similar body size such as Mazama which has a maximum longevity of 12 years in the wild. Comparison with other clades of mammals reveals that changes in size and life history in evolution have occurred in parallel, with various modes of skeletal tissue modification.
- Published
- 2015
- Full Text
- View/download PDF
47. Origin of the unique ventilatory apparatus of turtles.
- Author
-
Lyson TR, Schachner ER, Botha-Brink J, Scheyer TM, Lambertz M, Bever GS, Rubidge BS, and de Queiroz K
- Subjects
- Abdominal Muscles diagnostic imaging, Abdominal Muscles physiology, Anatomy, Comparative, Animal Shells anatomy & histology, Animal Shells diagnostic imaging, Animal Shells physiology, Animals, Female, Lung diagnostic imaging, Lung physiology, Phylogeny, Pulmonary Ventilation physiology, Respiratory Muscles diagnostic imaging, Respiratory Muscles physiology, Ribs diagnostic imaging, Ribs physiology, Tomography, X-Ray Computed, Turtles genetics, Turtles physiology, Abdominal Muscles anatomy & histology, Biological Evolution, Lung anatomy & histology, Respiratory Muscles anatomy & histology, Ribs anatomy & histology, Turtles anatomy & histology
- Abstract
The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.
- Published
- 2014
- Full Text
- View/download PDF
48. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.
- Author
-
Barrett PM, Butler RJ, Mundil R, Scheyer TM, Irmis RB, and Sánchez-Villagra MR
- Subjects
- Animals, Geologic Sediments, Phylogeny, Venezuela, Biological Evolution, Dinosaurs anatomy & histology, Dinosaurs classification, Fossils anatomy & histology
- Abstract
Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history., (© 2014 The Author(s) Published by the Royal Society. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
49. Unique method of tooth replacement in durophagous placodont marine reptiles, with new data on the dentition of Chinese taxa.
- Author
-
Neenan JM, Li C, Rieppel O, Bernardini F, Tuniz C, Muscio G, and Scheyer TM
- Subjects
- Animals, Biological Evolution, Dentition, X-Ray Microtomography, Reptiles growth & development, Tooth growth & development
- Abstract
The placodonts of the Triassic period (~252-201 mya) represent one of the earliest and most extreme specialisations to a durophagous diet of any known reptile group. Exceptionally enlarged crushing tooth plates on the maxilla, dentary and palatine cooperated to form functional crushing areas in the buccal cavity. However, the extreme size of these teeth, combined with the unusual way they occluded, constrained how replacement occurred. Using an extensive micro-computed tomographic dataset of 11 specimens that span all geographic regions and placodont morphotypes, tooth replacement patterns were investigated. In addition, the previously undescribed dental morphologies and formulae of Chinese taxa are described for the first time and incorporated into the analysis. Placodonts have a unique tooth replacement pattern and results follow a phylogenetic trend. The plesiomorphic Placodus species show many replacement teeth at various stages of growth, with little or no discernible pattern. On the other hand, the more derived cyamodontoids tend to have fewer replacement teeth growing at any one time, replacing teeth unilaterally and/or in functional units, thus maintaining at least one functional crushing area at all times. The highly derived placochelyids have fewer teeth and, as a result, only have one or two replacement teeth in the upper jaw. This supports previous suggestions that these taxa had an alternative diet to other placodonts. Importantly, all specimens show at least one replacement tooth growing at the most posterior palatine tooth plates, indicating increased wear at this point and thus the most efficient functional crushing area., (© 2014 Anatomical Society.)
- Published
- 2014
- Full Text
- View/download PDF
50. A new look at ichthyosaur long bone microanatomy and histology: implications for their adaptation to an aquatic life.
- Author
-
Houssaye A, Scheyer TM, Kolb C, Fischer V, and Sander PM
- Subjects
- Animals, Adaptation, Physiological, Aquatic Organisms physiology, Fossils, Humerus anatomy & histology, Humerus cytology, Reptiles anatomy & histology
- Abstract
Background: Ichthyosaurs are Mesozoic reptiles considered as active swimmers highly adapted to a fully open-marine life. They display a wide range of morphologies illustrating diverse ecological grades. Data concerning their bone microanatomical and histological features are rather limited and suggest that ichthyosaurs display a spongious, "osteoporotic-like" bone inner structure, like extant cetaceans. However, some taxa exhibit peculiar features, suggesting that the analysis of the microanatomical and histological characteristics of various ichthyosaur long bones should match the anatomical diversity and provide information about their diverse locomotor abilities and physiology., Methodology/principal Findings: The material analyzed for this study essentially consists of mid-diaphyseal transverse sections from stylopod bones of various ichthyosaurs and of a few microtomographic (both conventional and synchrotron) data. The present contribution discusses the histological and microanatomical variation observed within ichthyosaurs and the peculiarities of some taxa (Mixosaurus, Pessopteryx). Four microanatomical types are described. If Mixosaurus sections differ from those of the other taxa analyzed, the other microanatomical types, characterized by the relative proportion of compact and loose spongiosa of periosteal and endochondral origin respectively, seem to rather especially illustrate variation along the diaphysis in taxa with similar microanatomical features. Our analysis also reveals that primary bone in all the ichthyosaur taxa sampled (to the possible exception of Mixosaurus) is spongy in origin, that cyclical growth is a common pattern among ichthyosaurs, and confirms the previous assumptions of high growth rates in ichthyosaurs., Conclusions/significance: The occurrence of two types of remodelling patterns along the diaphysis, characterized by bone mass decrease and increase respectively is described for the first time. It raises questions about the definition of the osseous microanatomical specializations bone mass increase and osteoporosis, notably based on the processes involved, and reveals the difficulty in determining the true occurrence of these osseous specializations in ichthyosaurs.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.