1. Lyman Continuum leakage from massive leaky starbursts: A different class of emitters?
- Author
-
Roy, Namrata, Heckman, Timothy, Henry, Alaina, Chisholm, John, Flury, Sophia, Leitherer, Claus, Hayes, Matthew J., Jaskot, Anne, Ji, Zhiyuan, Schaerer, Daniel, Wang, Bingjie, Borthakur, Sanchayeeta, Xu, Xinfeng, and Östlin, Göran
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The origin of Lyman Continuum (LyC) photons responsible for reionizing the universe remains a mystery, with the fraction of escaping LyC photons from galaxies at z$\sim$ 6 to 12 being highly uncertain. While direct detection of LyC photons from this epoch is hindered by absorption from the intergalactic medium, lower redshift analogs offer a promising avenue to study LyC leakage. We present Hubble Space Telescope Cosmic Origins Spectrograph (HST COS) observations of five low redshift (z$\sim$ 0.3) massive starburst galaxies, selected for their high stellar mass and weak [SII] nebular emission - an indirect tracer of LyC escape. Three of the five galaxies show LyC leakage, highlighting the reliability of weak [SII] as a tracer, especially in light of recent JWST discoveries of z $>$ 5 galaxies with similarly weak [SII] emission. The dust corrected LyC escape fractions, which represent the LyC photons that would escape in the absence of dust, range from 33% to 84%. However, the absolute escape fractions, which show the LyC photons escaping after passing through both neutral hydrogen absorption and dust attenuation, are significantly lower, ranging between 1% and 3%. This suggests that while the galaxies are nearly optically thin to HI, their high dust content significantly suppresses LyC photon escape. These [SII] weak, massive leakers are distinct from typical low-redshift LyC emitters, showing higher metallicity, lower ionization states, more dust extinction and higher star formation surface densities. This suggests that these galaxies constitute a distinct population, likely governed by a different mechanism facilitating LyC photon escape. We propose that the feedback-driven winds in these compact starbursts create ionized channels through which LyC photons escape, aligning with a picket-fence model., Comment: 16 pages, 10 figures, 1 Table
- Published
- 2024