1. Nonparametric Compositional Stochastic Optimization for Risk-Sensitive Kernel Learning
- Author
-
Bedi, Amrit Singh, Koppel, Alec, Rajawat, Ketan, and Sanyal, Panchajanya
- Subjects
Mathematics - Optimization and Control - Abstract
In this work, we address optimization problems where the objective function is a nonlinear function of an expected value, i.e., compositional stochastic {strongly convex programs}. We consider the case where the decision variable is not vector-valued but instead belongs to a reproducing Kernel Hilbert Space (RKHS), motivated by risk-aware formulations of supervised learning and Markov Decision Processes defined over continuous spaces. We develop the first memory-efficient stochastic algorithm for this setting, which we call Compositional Online Learning with Kernels (COLK). COLK, at its core a two-time-scale stochastic approximation method, addresses the fact that (i) compositions of expected value problems cannot be addressed by classical stochastic gradient due to the presence of the inner expectation; and (ii) the RKHS-induced parameterization has complexity which is proportional to the iteration index which is mitigated through greedily constructed subspace projections. We establish almost sure convergence of COLK with attenuating step-sizes, and linear convergence in mean to a neighborhood with constant step-sizes, as well as the fact that its complexity is at-worst finite. The experiments with robust formulations of supervised learning demonstrate that COLK reliably converges, attains consistent performance across training runs, and thus overcomes overfitting.
- Published
- 2019