14 results on '"Samoilova, Svetlana"'
Search Results
2. ANALYSIS OF FACTORS FOR FORMATION OF THE CHUMYSH RIVER MAXIMUM RUNOFF (WESTERN SIBERIA)
- Author
-
Samoilova, Svetlana Yu., primary, Lovtskaya, Olga V., additional, Kudishin, Aleksey V., additional, and Arnaut, Darya V., additional
- Published
- 2023
- Full Text
- View/download PDF
3. СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДИК ПРОГНОЗА МАКСИМАЛЬНЫХ УРОВНЕЙ И ОБЪЕМА СТОКА ПЕРИОДА ПОЛОВОДЬЯ ГОРНОЙ РЕКИ
- Author
-
Galakhov, Vladimir Prokopevich, Lovtskaya, Olga Volfovna, Samoilova, Svetlana Yurievna, Mardasova, Elena Vladimirovna, and Altai State University
- Subjects
вертикальные движения ,река Амыл ,зимние осадки ,Materials Science (miscellaneous) ,orographic correction to the velocity of vertical movements ,скорость ,Management, Monitoring, Policy and Law ,Zapadny Sayan ,снегозапасы ,множественная регрессия ,altitude dependence ,Waste Management and Disposal ,река Туба ,Amyl River basin ,winter precipitation ,таяние ,snow reserves ,Западный Саян ,река Енисей ,бассейны рек ,максимальные уровни воды ,Geotechnical Engineering and Engineering Geology ,статистические модели ,Tuba River ,statistical model of multiple regression ,Fuel Technology ,Economic Geology ,стоки рек ,высотная зависимость - Abstract
Актуальность работы обусловлена необходимостью анализа методов, используемых для оценки снегозапасов в речных бассейнах и прогнозирования половодья. В условиях недостаточности гидрометеорологической информации для прогноза объёма и максимальных уровней половодья, как правило, используются статистические модели, основанные на корреляционной зависимости параметров стока от снегозапасов, либо уравнения множественной линейной регрессии. При этом нет обоснованного сравнения традиционных методов прогноза, основанных на расчете суммы зимних осадков (снегозапасов), и статистических моделей множественной регрессии. Цель: сравнительный анализ методик расчета сумм зимних осадков в бассейне по традиционно применяемым высотным зависимостям и по авторской методике при помощи орографической добавки к скорости вертикальных движений воздушных масс; сравнительный анализ традиционных статистических методов прогноза и моделей множественной линейной регрессии на примере бассейна реки Амыл. Методы: комплексный географо-гидрометеорологический анализ; выявление зависимостей по данным многолетних гидрометеорологических наблюдений с использованием методов математической статистики (корреляционный и регрессионный анализ); моделирование снегозапасов с использованием орографической добавки к скорости вертикальных движений. Результаты. В результате использования двух разных подходов к определению сумм зимних осадков (по высотным зависимостям и с помощью орографической добавки к скорости вертикальных движений воздушных масс) получены идентичные статистические зависимости с близкими коэффициентами детерминации. Разработаны модели прогноза объема стока и максимальных уровней половодья на основе парной корреляции и с использованием множественного регрессионного анализа. Сравнительный анализ традиционных методов прогноза слоя стока, основанных на расчете суммы зимних осадков (снегозапасов), и статистических моделей множественной регрессии также показал идентичность результатов. Для прогноза максимальных уровней воды, вызванных таянием снега, предпочтительнее использование однофакторных зависимостей. The study topicality relates to the analysis of available methods for assessing snow reserves in river basins and forecasting floods. To predict runoff volume and maximum flood levels, statistical models resting on the correlation dependence of runoff parameters on snow reserves or multiple linear regression equations are usually used in the absence of sufficient hydrometeorological information. An important point is that there are no justified comparisons of traditional forecasting methods based on calculations of winter precipitation amount (snow reserves) and statistical models of multiple regression. The aim of the study is to carry out the comparative analysis of methods for calculating winter precipitation amounts in the basin by means of traditionally applied altitude dependencies and the author's estimation method using orographic correction to the velocity of vertical movements of air masses; to carry out the comparative analysis of traditional statistical forecasting methods and models of multiple linear regression by the example of the Amyl River basin. Methods: comprehensive geographical and hydrometeorological analysis; dependence establishment based on long-term hydrometeorological observations using methods of mathematical statistics (correlation and regression analysis); snow reserves simulation with the use of orographic correction to the velocity of vertical movements. Results. By altitude dependencies and the author's assessment considering orographic correction to the velocity of vertical movements of air masses, two different approaches to estimate of winter precipitation amounts suggest similar statistical dependences with close values of determination coefficients. Models for predicting runoff volumes and maximum flood stages based on pair correlation and multiple regression analysis were developed. The comparative analysis of traditional methods for forecasting runoff layers based on calculations of winter precipitation amount (snow reserves) and statistical models of multiple regression also showed similar results. The applied onefactor dependencies turned out to be the best in forecasting snowmelt-induced maximum levels.
- Published
- 2022
4. Analysis of factors for formation of the Chumysh River maximum runoff (Western Siberia)
- Author
-
Samoilova, Svetlana Yurievna, Lovtskaya, Olga Volfovna, Kudishin, Alexey Vasilyevich, and Arnaut, Daria Vasilievna
- Subjects
зимние осадки ,река Чумыш ,Materials Science (miscellaneous) ,maximum discharge ,the Chumysh River ,Management, Monitoring, Policy and Law ,flood ,Geotechnical Engineering and Engineering Geology ,слои ,половодье ,статистические модели ,Fuel Technology ,стоки ,statistical model of multiple regression ,множественная регрессия ,Economic Geology ,максимальные расходы ,Waste Management and Disposal ,runoff depth ,winter precipitation - Abstract
Актуальность работы связана с необходимостью совершенствования методик среднесрочных прогнозов половодья в условиях недостаточности гидрометеорологической информации. Цель: оценка возможности использования пространственно распределенных моделей атмосферных осадков для прогнозирования объема стока половодья; разработка стохастических моделей для прогноза объема и максимальных расходов половодья с использованием данных наблюдений сети Росгидромета и распределенных атмосферных осадков по данным реанализа и данных дистанционного зондирования земли высокого пространственного разрешения. Методы: геоинформационный, комплексный географо-гидрометеорологический анализ, статистические методы (корреляционный и регрессионный анализ). Результаты. Выполнена оценка атмосферного увлажнения бассейна р. Чумыш с использованием данных пространственно распределенных моделей атмосферных осадков и материалов наблюдений на метеорологических станциях; проанализирована связь сумм осадков с объемом стока и максимальными расходами половодья. Сравнительная оценка полученных зависимостей позволила выбрать наиболее значимые предикторы для построения уравнения множественной линейной регрессии. Разработана статистическая модель для прогноза объема и максимальных расходов половодья реки Чумыш в створе пгт Тальменка с использованием данных наблюдений сети Росгидромета и реанализов высокого пространственного разрешения. The relevance of the study stems from the necessity to refine the methods of medium-term flood forecasts when sufficient hydrometeorological data are not available. The purpose of the work is to assess probable application of spatially distributed precipitation models to forecast runoff volume of flood, to develop stochastic models for predicting flood volume and its maximum discharge using hydrometeorological observation data, distributed precipitation datasets from reanalysis and remote sensing data of high spatial and temporal resolution. Methods include geoinformation, complex geographical and hydrometeorological analysis, statistical methods (correlation and regression analysis). Results. The Chumysh basin moistening was estimated due to the data from spatially distributed precipitation models and hydrometeorological observation data; the relationship of total precipitation with runoff volume and maximum flood discharge was analyzed. A comparative evaluation of the obtained dependencies made it possible to identify key predictors for deriving the multiple linear regression equation. The statistical model was developed for predicting volumes and maximum discharges of Chumysh flood at Talmenka settlement using hydrometeorological observation data and reanalysis ones of high spatial and temporal resolution.
- Published
- 2023
5. Observations of the Horizontally Oriented Crystalline Particles with a Scanning Polarization Lidar
- Author
-
Kokhanenko Grigorii, Balin Yurii, Borovoi Anatolii, Klemasheva Marina, Nasonov Sergei, Novoselov Mikhail, Penner Ioganes, and Samoilova Svetlana
- Subjects
Physics ,QC1-999 - Abstract
Scanning lidar LOSA-M3 makes it possible to measure the polarization characteristics of backscattering signals from aerosol and clouds at wavelength 532 and 1064 nm. The lidar transceiver is placed on a scanning column, which allows changing the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter (linear or circular polarization) can be changed by rotating the phase plates synchronously with the laser pulses. Conical scanning of the lidar allows identifying cloud areas with preferential zenith or azimuthal orientation of the crystal particles. The article presents the results of observations of the cloud polarization structure carried out in Tomsk. Methods of the calibrations of lidar polarization channels are described.
- Published
- 2020
- Full Text
- View/download PDF
6. Analysis of the Results of Severe Intraepithelial Squamous Cell Lesions and Preinvasive Cervical Cancer Phototheranostics in Women of Reproductive Age
- Author
-
Gilyadova, Aida, primary, Ishchenko, Anton, additional, Ishenko, Anatoly, additional, Samoilova, Svetlana, additional, Shiryaev, Artem, additional, Kiseleva, Alevtina, additional, Petukhova, Natalya, additional, Efendiev, Kanamat, additional, Alekseeva, Polina, additional, Stranadko, Evgeny, additional, Loschenov, Victor, additional, and Reshetov, Igor, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Siberian lidar station: instruments and results
- Author
-
Matvienko Gennadii G., Balin Yurii S., Bobrovnikov Sergey M., Romanovskii Oleg A., Kokhanenko Grigirii P., Samoilova Svetlana V., Penner Ioganes E., Gorlov Evgenii V., Zharkov Victir I., Sadovnikov Sergey A., Yakovlev Semen V., Bazhenov Oleg E., Dolgii Sergey I., Makeev Andrey P., Nevzorov Alexey A., Nevzorov Alexey V., and Kharchenko Olga V.
- Subjects
Physics ,QC1-999 - Abstract
The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0–75 km. In this paper, the instruments and results received at the Station are described.
- Published
- 2018
- Full Text
- View/download PDF
8. Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar
- Author
-
Samoilova, Svetlana V. and Balin, Yurii S.
- Subjects
Algorithms -- Research ,Aerosols -- Optical properties ,Raman effect -- Research ,Optical radar -- Usage ,Algorithm ,Astronomy ,Physics - Abstract
A method of interpreting data of multifrequency Raman lidar sensing is developed. An algorithm for separating aerosol layers with different scattering properties and subsequently estimating the average value of the lidar ratio and Angstrom parameter within individual layers is suggested. The algorithm allows the error of reconstructing the backscattering coefficient from daytime observations to be at least halved. A well-posed numerical differentiation algorithm for determining the extinction coefficient is suggested for the interpretation of nighttime measurements based on the transformation of the range of allowable values that requires a solution of nonlinear equations. An iterative procedure envisaged for linearization improves the spatial resolution compared with the conventional methods. The methods can be successfully used to process routine lidar measurements under conditions of a priori uncertainty. OCIS codes: 010.3640, 290.5860.
- Published
- 2008
9. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing
- Author
-
Samoilova, Svetlana V., Balin, Yurii S., Krekova, Margarita M., and Winker, David M.
- Subjects
Optical radar -- Research ,Optics -- Research ,Algorithms -- Research ,Algorithms -- Technology application ,Monte Carlo method -- Research ,Algorithm ,Technology application ,Astronomy ,Physics - Abstract
Inversion of polarization lidar sensing data based on the form of the lidar sensing equation with allowance for contributions from multiple-scattering calls for a priori information on the scattering phase matrix. In the present study the parameters of the Stokes vectors for various propagation media, including those with the scattering phase matrices that vary along the measuring range, are investigated. It is demonstrated that, in spaceborne lidar sensing, a simple parameterization of the multiple-scattering contribution is applicable and the polarization signal's characteristics depend mainly on the lidar and depolarization ratios, whereas differences in the angular dependences of the matrix components are no longer determining factors. An algorithm for simultaneous reconstruction of the profiles of the backscattering coefficient and depolarization and lidar ratios in an inhomogeneous medium is suggested. Specific features of the methods are analyzed for the examples of interpretation of lidar signal profiles calculated by the Monte Carlo method and are measured experimentally. OCIS codes: 010.1290, 010.3640, 280.1310, 290.4210.
- Published
- 2005
10. Mobile Aerosol Raman Polarizing Lidar LOSA-A2 for Atmospheric Sounding
- Author
-
Nasonov, Sergei, primary, Balin, Yurii, additional, Klemasheva, Marina, additional, Kokhanenko, Grigorii, additional, Novoselov, Mikhail, additional, Penner, Iogannes, additional, Samoilova, Svetlana, additional, and Khodzher, Tamara, additional
- Published
- 2020
- Full Text
- View/download PDF
11. Scanning polarization lidar LOSA-M3: opportunity for research of crystalline particle orientation in the ice clouds
- Author
-
Kokhanenko, Grigorii P., primary, Balin, Yurii S., additional, Klemasheva, Marina G., additional, Nasonov, Sergei V., additional, Novoselov, Mikhail M., additional, Penner, Iogannes E., additional, and Samoilova, Svetlana V., additional
- Published
- 2020
- Full Text
- View/download PDF
12. Retrieval of cloud optical parameters from space-based backscatter lidar data
- Author
-
Balin, Yuri S., Samoilova, Svetlana V., Krekova, Margarita M., and Winker, David M.
- Subjects
Optical radar -- Evaluation ,Monte Carlo method -- Evaluation ,Liquefied gases -- Research ,Astronomy ,Physics - Abstract
We present an approach to estimating the multiple-scattering (MS) contribution to lidar return signals from clouds recorded from space that enables us to describe in more detail the return formation at the depth where first orders of scattering dominate. Estimates made have enabled us to propose a method for correcting solutions of single-scattering lidar equations for the MS contribution. We also describe an algorithm for reconstructing the profiles of the cloud scattering coefficient and the optical thickness tau under conditions of a priori uncertainties. The approach proposed is illustrated with results for optical parameters of cirrus and stratiform clouds determined from return signals calculated by the Monte Carlo method as well ast from return signals acquired with the American spaceborne lidar during the Lidar In-Space Technology Experiment (LITE).
- Published
- 1999
13. Observations of the Horizontally Oriented Crystalline Particles with a Scanning Polarization Lidar.
- Author
-
Liu, D., Wang, Y., Wu, Y., Gross, B., Moshary, F., Kokhanenko, Grigorii, Balin, Yurii, Borovoi, Anatolii, Klemasheva, Marina, Nasonov, Sergei, Novoselov, Mikhail, Penner, Ioganes, and Samoilova, Svetlana
- Subjects
DOPPLER lidar ,POLARIZATION (Nuclear physics) ,AEROSOLS ,LASERS ,BACKSCATTERING - Abstract
Scanning lidar LOSA-M3 makes it possible to measure the polarization characteristics of backscattering signals from aerosol and clouds at wavelength 532 and 1064 nm. The lidar transceiver is placed on a scanning column, which allows changing the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter (linear or circular polarization) can be changed by rotating the phase plates synchronously with the laser pulses. Conical scanning of the lidar allows identifying cloud areas with preferential zenith or azimuthal orientation of the crystal particles. The article presents the results of observations of the cloud polarization structure carried out in Tomsk. Methods of the calibrations of lidar polarization channels are described. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
14. Scanning Polarization Lidar LOSA-M3: Opportunity for Research of Crystalline Particle Orientation in the Clouds of Upper Layers.
- Author
-
Kokhanenko, Grigorii P., Balin, Yurii S., Klemasheva, Marina G., Nasonov, Sergei V., Novoselov, Mikhail M., Penner, Iogannes E., and Samoilova, Svetlana V.
- Subjects
LIDAR ,POLARIZATION (Nuclear physics) ,S-matrix theory ,MEASUREMENT errors ,ICE clouds ,PARTICLES ,RADARSAT satellites ,DEPTH sounding - Abstract
The article describes a scanning polarization lidar LOSA-M3, developed at the Institute of Atmospheric Optics, the Siberian Branch of Russian Academy of Sciences (IAO SB RAS). The first results of studying the crystalline particles orientation by means of this lidar are presented herein. The main features of LOSA-M3 lidar are the following: 1) an automatic scanning device, which allows to change the sounding direction in the upper hemisphere at the speed up to 1.5 degrees per second with the accuracy of angle measurement setting at least 1 arc minute; 2) separation of polarization components of the received radiation is carried out directly behind the receiving telescope, without installing the elements distorting polarization, such as dichroic mirrors and beamsplitters; and 3) continuous alternation of the initial polarization state (linear - circular) from pulse to pulse that makes it possible to evaluate some elements of the scattering matrix. Several series of measurements of the ice cloud structure of the upper layers in the zenith scan mode were carried out in Tomsk in April-October 2018. The results show that the degree of horizontal orientation of particles can vary significantly in different parts of the cloud. The dependence of signal intensity on the tilt angle reflects the distribution of particle deflection relative to the horizontal plane, and is well described by the exponential dependence. The values of cross-polarized component in most cases show a weak decline of intensity with the angle. However, these variations are smaller than the measurement errors. We can conclude that it is practically independent of the tilt angle. In most cases the scattering intensity at the wavelength of 532nm has a wider distribution than at 1064nm. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.