128 results on '"Reschke, Millard"'
Search Results
2. Effects of motion paradigm on human perception of tilt and translation
- Author
-
Clément, Gilles, Beaton, Kara H., Reschke, Millard F., and Wood, Scott J.
- Published
- 2022
- Full Text
- View/download PDF
3. Special anatomy series. Imaging inner ear structures with high-frequency ultrasound: Application to physical rehabilitation space medicine
- Author
-
Strakowski, Jeffrey, primary, Zhang, Han, additional, Reschke, Millard, additional, and Chiou-Tan, Faye Y., additional
- Published
- 2024
- Full Text
- View/download PDF
4. Verbal reports of neurovestibular symptoms in astronauts after short-duration space flight
- Author
-
Reschke, Millard F. and Clément, Gilles
- Published
- 2018
- Full Text
- View/download PDF
5. Spaceflight Standard Measures
- Author
-
Clement, Gilles R, Mullenax, Carol A, Wood, Scott J, Zwart, Sara R, Crucian, Brian E, Lee, Stuart, Ott, Charlie M, Reschke, Millard F, Roma, Peter G, Smith, Scott M, and Stenger, Michael B
- Subjects
Astronautics (General) - Published
- 2020
6. Comparison of Asymmetry between Perceptual, Ocular, and Postural Vestibular Screening Tests
- Author
-
Macaulay, Timothy R., primary, Wood, Scott J., additional, Bollinger, Austin, additional, Schubert, Michael C., additional, Shelhamer, Mark, additional, Bishop, Michael O., additional, Reschke, Millard F., additional, and Clément, Gilles, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Pre-Flight Training of Autonomic Responses for Mitigating the Effects of Spatial Disorientation During Spaceflight
- Author
-
Cowings, Patricia, Toscano, William, and Reschke, Millard
- Subjects
Aerospace Medicine - Abstract
The National Aeronautics and Space Administration (NASA) has identified a potential risk of spatial disorientation, motion sickness, and degraded performance to astronauts during re-entry and landing of the proposed Orion crew vehicle. The purpose of this study was to determine if a physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these adverse effects. Fourteen men and six women were assigned to two groups (AFTE, no-treatment Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures in the rotating chair (Orion tests) simulating angular accelerations of the crew vehicle during re-entry. AFTE subjects received 2 hours of training before Orion tests 2, 3, and 4. Motion sickness symptoms, task performance, and physiological measures were recorded on all subjects. Results showed that the AFTE group had significantly lower symptom scores when compared to Controls on test 2 (p=.05), test 3 (p=.03), and test 4 (p=.02). Although there were no significant group differences on task performance, trends showed that AFTE subjects were less impaired than Controls. Heart rate change scores (20 revolutions per minute minus baseline) of AFTE subjects indicated significantly less reactivity on Test 4 compared to Test 1 (10.09 versus 16.59, p=.02), while Controls did not change significantly across tests. Results of this study indicate that AFTE may be an effective countermeasure for mitigating spatial dis-orientation and motion sickness in astronauts.
- Published
- 2018
8. Spaceflight Standard Measures
- Author
-
Zwart, Sara R, Mullenax, Carol, Bloomberg, Jacob, Crucian, Brian, Lee, Stuart, Ott, Mark, Reschke, Millard, Smith, Scott, Stenger, Michael, and Roma, Pete
- Subjects
Life Sciences (General) - Abstract
The main goal is to ensure that a minimal set of measures is consistently captured from all ISS crewmembers until the end of ISS to characterize the effects of space. The data from these measures will placed in an archive managed by HRP and can be made available to studies via data sharing agreements.
- Published
- 2018
9. Tandem Walk in Simulated Martian Gravity and Visual Environment
- Author
-
Rosenberg, Marissa J., primary, Koslovsky, Matthew, additional, Noyes, Matthew, additional, Reschke, Millard F., additional, and Clément, Gilles, additional
- Published
- 2022
- Full Text
- View/download PDF
10. Multiple field tests on landing day: Early mobility may improve postural recovery following spaceflight
- Author
-
Rosenberg, Marissa J., primary, Reschke, Millard F., additional, Tomilovskaya, Elena S., additional, and Wood, Scott J., additional
- Published
- 2022
- Full Text
- View/download PDF
11. Autogenic-Feedback Training Exercise (AFTE) Mitigates the Effects of Spatial Disorientation to Simulated Orion Spacecraft Re-Entry: Individual Differences
- Author
-
Cowings, Patricia S, Toscano, William B, Reschke, Millard F, Gebreyesus, Fiyori, and Rocha, Christopher
- Subjects
Aerospace Medicine - Abstract
NASA has identified a potential risk of spatial disorientation to future astronauts during re-entry of the proposed Orion spacecraft. The purpose of this study was to determine if a 6-hour physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these effects. Twenty subjects were assigned to two groups (AFTE and Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures to a simulated Orion re-entry test in the rotating chair. Treatment subjects were given two hours of AFTE training before each Orion test. A diagnostic scale was used to evaluate motion sickness symptom severity. Results showed that 2 hours of AFTE significantly reduced motion sickness symptoms during the second Orion test. AFTE subjects were able to maintain lower heart rates and skin conductance levels and other responses than the control group subjects during subsequent tests. Trends show that performance was less degraded for AFTE subjects. The results of this study indicate that astronauts could benefit from receiving at least 2 hours of preflight AFTE. In addition, flight crews could benefit further by practicing physiologic self-regulation using mobile devices.
- Published
- 2017
12. Effects of long-duration space flight on target acquisition
- Author
-
Tomilovskaya, Elena S., Reschke, Millard F., Krnavek, Jody M., and Kozlovskaya, Inessa
- Published
- 2011
- Full Text
- View/download PDF
13. Update of the Joint NASA Russian Field Test
- Author
-
Reschke, Millard F, Kozlovskaya, Inessa B, Kofman, I. S, Tomilovskaya, E. S, Cerisano, J. M, Stenger, M. B, Laurie, S, Rukavishnikov, I. V, Fomina, E. V, Lee, S. M. C, Wood, S. J, Mulavara, A. P, Feiveson, A. H, Fisher, E. A, Rosenberg, M. J, Kitov, V, Lysova, N, and Bloomberg, J. J
- Subjects
Aerospace Medicine - Published
- 2017
14. Results from a Joint NASA and Russian Field Test of Sensorimotor and Cardiovascular Function Following Long Duration Spaceflight
- Author
-
Reschke, Millard F, Kozlovskaya, Inessa B, Kofman, I. S, Tomilovskaya, E. S, Cerisano, J. M, Stenger, M. B, Laurie, S, Rukavishnikov, I. V, Fomina, E. V, Lee, S. M. C, Wood, S. J, Mulavara, A. P, Feiveson, A. H, Fisher, E. A, Rosenberg, M. J, Kitov, V, Lysova, N, and Bloomberg, J. J
- Subjects
Aerospace Medicine - Published
- 2016
15. Sensorimotor Results from the Joint NASA and Russian Pilot Field Test
- Author
-
Reschke, Millard, Kozlovskaya, I. B, Kofman, I. S, Tomilovskaya, E. S, Cerisano, J. M, Bloomberg, J. J, Stenger, M. B, Lee, S. M. C, Laurie, S. S, Rukavishnikov, I. V, Fomina, E. V, Wood, S. J, Mulavara, A. P, Feiveson, A. H, Fisher, E. A, Rosenberg, M. J. F, Kitov, V. V, and Lysova, N. Yu
- Subjects
Aerospace Medicine - Abstract
Testing of crew responses following long-duration flights has not previously been possible until a minimum of 24 hours after landing. As a result, it has not been possible to estimate the nonlinear trend of the early (<24 hours) recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented testing at the Soyuz landing site. This research effort has been identified as the Field Test (FT). For operational reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The PFT has now been completed with the landing of the crew of International Space Station Increment 42/43 (Soyuz expedition 41S). RESEARCH: The primary goal of this research was to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (< 2 hours) with an additional two follow-up measurement sessions within 24 hours after landing. This study goal has both sensorimotor and cardiovascular elements. The PFT represented a initial evaluation of the feasibility of testing in the field and was comprised of a jointly agreed upon subset of tests drawn from the full FT and relied heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Department for content and implementation. Data from the PFT was collected following several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall stand test where the crewmember begins in the prone position on the ground and then stands for 3.5 minutes while cardiovascular performance and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors, and severity of postflight motion sickness were collected during each test session. In addition our Russian investigators have made measurements associated with: (a) obstacle avoidance, (b) muscle compliance, (c) postural adjustments to perturbations (pushes) applied to the subject's chest area and (d) center of mass measurements made across most test objectives with insoles inserted into the subjects' shoes. Data from 18 subjects have been obtained for a majority of the PFT objectives. SUMMARY: The increased level of functional deficit observed in the crewmembers tested with the PFT objectives has been typically greater than previously observed when measurements were collected after the 2 hr window. Significant improvement in crew performance was observed within 24 hours, but full recovery appears to require 6 to 16 days. Clearly measureable performance parameters such as ability to perform a seat egress, recovery from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured.
- Published
- 2016
16. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight
- Author
-
Bloomberg, Jacob J, Reschke, Millard F, Clement, Gilles R, Mulavara, Ajitkumar P, and Taylor, Laura C
- Subjects
Behavioral Sciences ,Space Transportation And Safety - Abstract
Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional impacts is limited to studies performed in the space flight environment. Fortunately, many sensorimotor and vestibular experiments have been performed during and/or after space flight missions since 1959 (Reschke et al. 2007). While not all of these experiments were directly relevant to the question of vehicle/complex system control, most provide insight into changes in aspects of sensorimotor control that might bear on the physiological subsystems underlying this high-level integrated function.
- Published
- 2015
17. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts
- Author
-
Miller, Chris, Peters, Brian, Kofman, Igor, Philips, Tiffany, Batson, Crystal, Cerisano, Jody, Fisher, Elizabeth, Mulavara, Ajitkumar, Feiveson, Alan, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
- Published
- 2015
18. Determination of Functional Capabilities, the Level of Physical Performance and the State of Main Physiological Body Systems in the First Hours after the Accomplishment of Long-term Space Flights ('Field Test')
- Author
-
Kozlovskaya, Inesa, Tomilovskaya, Elena, Rukavishnikov, Ilya, Kitov, Vladimir, Reschke, Millard, and Kofman, Igor
- Subjects
Life Sciences (General) ,Aerospace Medicine - Abstract
Long-term stay in weightlessness is accompanied by alterations in the activity of main physiological body systems including sensory-motor, skeletal-muscular disturbances and cardiovascular deconditioning. However, up to now, there are no data on the state and level of functional performance of cosmonauts/astronauts directly after flight, nor are there data to help define the dynamic recovery of functional characteristics and work efficiency which are greatly needed to provide the safety and planning of their activity once they reach space objects. The Russian and American scientists are currently engaged in a joint experiment known as the "Field Test" with the goal of studying the functional performance and the state of main physiological body systems directly after landing and their temporal recovery dynamics. The functional performance is identified during the test by temporal characteristics of the movements of spatial translation, the stability of the vertical stance for 3.5 min, and the kinematic characteristics of walking - non-complicated and complicated. The following characteristics are identified as physiological characteristics of the test: a) orthostatic tolerance during stand test, b) back muscle tone; c) vertical stability - by characteristics of the correction responses to unexpected perturbations of the vertical stance, and d) support reactions during the performance of the full battery of tests. To date, a pilot version of the "Field Test" has been conducted with participation from four Russian cosmonauts. The results of studies have shown that in 1 - 5 hours after landing the functional abilities of the cosmonauts are considerably reduced. All the test movements at this time are considerably slower than preflight and the more complicated the task is, the greater significant reduction in orthostatic tolerance: during the first test that occurs 1 - 5 hours after landing. two of four cosmonauts declined to continue the task after the orthostatic test (one of them did not wear the anti-G suit "Centaurus" during testing). Blood pressure during moving out of prone posture to vertical stance in one of the cosmonauts and of sitting to standing position in the other dropped to the precollapse level. The results of the studies have confirmed the feasibility, the usefulness and the safety of conducting tests as close as possible to the landing. The program of "Field Test" experiment will be continued and extended.
- Published
- 2014
19. Improving Early Adaptation Following Long Duration Spaceflight by Enhancing Vestibular Information
- Author
-
Mulavara, Ajitkumar, Kofman, Igor, DeDios, Yiri E, Galvan, Raquel, Miller, Chris, Peters, Brian, Cohen, Helen, Jeevarajan, Jerome, Reschke, Millard, Wood, Scott, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after g-transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" -immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance (SR) to enhance information transfer by improving the brain's ability to detect vestibular signals especially when combined with balance training exercises for rapid improvement in functional skill, for standing and mobility. The countermeasure to improve post-flight balance and locomotor disturbances is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS). The techniques for improving signal detection using SVS may thus provide additional information to improve such strategic abilities and thus help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight. We have conducted a series of studies to document the efficacy of SVS stimulation on balance/locomotion tasks on unstable surfaces and motion tracking tasks during intra-vestibular system conflicts. In an initial study, we showed that SVS improved overall balance performance while standing on an unstable surface indicating that SVS may be sufficient to provide a comprehensive countermeasure approach for improving postural stability. In a second study, we showed that SVS improved locomotor performance on a treadmill mounted on an oscillating platform indicating that SVS may also be used to maximize locomotor performance during walking in unstable environments. In a third study, SVS was evaluated during an otolith-canal conflict scenario in a variable radius centrifuge at low frequency of oscillation (0.1 Hz) on both eye movements and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). Results show that SVS significantly reduced the timing difference between both the eye movement responses as well as the perceptual tracking responses with respect to the imposed tilt sensations. These results indicate that SVS can improve performance in sensory conflict scenarios like that experienced during space flight. Such a SR countermeasure will act synergistically along with the pre-and in-flight adaptability training protocols providing an integrated, multi-disciplinary countermeasure capable of fulfilling multiple requirements making it a comprehensive and cost effective countermeasure approach to enhance sensorimotor capabilities following long-duration space flight.
- Published
- 2014
20. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance
- Author
-
Bloomberg, Jacob J, Batson, Crystal D, Buxton, Roxanne E, Feiveson, Al H, Kofman, Igor S, Lee, Stuart M. C, Miller, Chris A, Mulavara, Ajitkumar P, Peters, Brian T, Phillips, Tiffany, Platts, Steven H, Ploutz-Snyder, Lori L, Reschke, Millard F, Ryder, Jeff W, Stenger, Michael B, and Taylor, Laura C
- Subjects
Life Sciences (General) ,Aerospace Medicine - Abstract
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. ISS crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after reambulation.
- Published
- 2014
21. Postural Responses Following Space Flight and Ground Based Analogs
- Author
-
Kofman, Igor S, Reschke, Millard F, Cerisano, Jody M, Fisher, Elizabeth A, Tomilovskaya, Elena V, Kozlovskaya, Inessa B, and Bloomberg, Jacob B
- Subjects
Aerospace Medicine - Abstract
With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous changes between HDBR and space flight. Primary differences across short duration, long duration space flight and HDBR are related to the length of exposure associated with both space flight and HDBR.
- Published
- 2013
22. Efficacy of Gradient Compression Garments in the Hours After Long-Duration Spaceflight
- Author
-
Lee, Stuart M. C., primary, Ribeiro, L. Christine, additional, Laurie, Steven S., additional, Feiveson, Alan H., additional, Kitov, Vladimir V., additional, Kofman, Igor S., additional, Macias, Brandon R., additional, Rosenberg, Marissa, additional, Rukavishnikov, Ilya V., additional, Tomilovskaya, Elena S., additional, Bloomberg, Jacob J., additional, Kozlovskaya, Inessa B., additional, Reschke, Millard F., additional, and Stenger, Michael B., additional
- Published
- 2020
- Full Text
- View/download PDF
23. Challenges to the central nervous system during human spaceflight missions to Mars
- Author
-
Clément, Gilles R., primary, Boyle, Richard D., additional, George, Kerry A., additional, Nelson, Gregory A., additional, Reschke, Millard F., additional, Williams, Thomas J., additional, and Paloski, William H., additional
- Published
- 2020
- Full Text
- View/download PDF
24. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
- Author
-
Bloomberg, Jacob, Reschke, Millard, Mulavara, Ajitkumar, Wood, Scott, Serrador, Jorge, Fiedler, Matthew, Kofman, Igor, Peters, Brian T, and Cohen, Helen
- Subjects
Man/System Technology And Life Support - Abstract
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.
- Published
- 2012
25. Impact of Virtual Environments on Sensorimotor Coordination and User Safety
- Author
-
Harm, Deborah L, Taylor, Laura C, Kennedy, Robert S, and Reschke, Millard F
- Subjects
Aerospace Medicine - Abstract
One critical unresolved issue related to the safe use of virtual environments (VEs) is maladaptive sensorimotor coordination following exposure to VEs. Moving visual displays used in VEs, especially in the absence of concordant vestibular signals leads to adaptive responses during VE exposure, but maladaptive responses following return to the normal environment. In the current set of investigations, we examined the effect of HMD and dome VE displays on eye-head-hand coordination, gaze holding and postural equilibrium. Subjects (61) performed a navigation and a pick and place task. Further, we compared 30 min and 60 min exposures across 3 days (each separated by 1 day). A subset of these results will be presented. In general, we found significant decrements in all three measures following exposure to the VEs. In addition, we found that these disturbances generally recovered within 1-2 hrs and decreased across days. These findings suggest the need for post-VE monitoring of sensorimotor coordination and for developing a set of recommendations for users concerning activities that are safe to engage in following use of a VE.
- Published
- 2011
26. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
- Author
-
Reschke, Millard F, Bloomberg, J. J, Wood, S. J, and Harm, D. L
- Subjects
Behavioral Sciences - Abstract
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
- Published
- 2011
27. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments
- Author
-
Taylor, Laura C, Harm, Deborah L, Kennedy, Robert S, Reschke, Millard F, and Loftin, R. Bowen
- Subjects
Aerospace Medicine - Abstract
Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.
- Published
- 2011
28. Optimization of Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
- Author
-
Mulavara, Ajitkumar, Fiedler, Matthew, Kofman, Igor, Acock, Keena, DeDios, Yiri E, Heap, Erin, Peters, Brian, Wood, Scott, Serrador, Jorge, Cohen, Helen, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Behavioral Sciences - Abstract
Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic noise electrical stimulation to the vestibular system significantly improved balance and ocular motor responses. The goal of this study was to optimize the amplitude of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10-cm-thick medium-density foam with their eyes closed. Balance performance was measured using a force plate under the foam block and using inertial motion sensors placed on the torso and head segments. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process. Subjects were tested at seven amplitudes in the 0.01-30Hz frequency range. The root mean square of the signal increased by 30 microamperes for each +/-100 microampere increment in the current range of 0 - +/-700 microampere. Six balance parameters were calculated to characterize the performance of subjects during the baseline and the stimulus periods for all seven amplitudes. Optimal stimulus amplitude was determined as the one at which the ratio of parameters from the stimulus period to the baseline period for any amplitude range was less than that for the no stimulus condition on a minimum of four of six parameters. Results from this study showed that balance performance at the optimal stimulus amplitude showed significant improvement with the application of the vestibular SR stimulation. The amplitude of optimal stimulus for improving balance performance in normal subjects was in the range of +/-100 - +/-300 microamps.
- Published
- 2010
29. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics
- Author
-
Mulavara, Ajitkumar, FROM, Fiedler, Matthew, Kofman, Igor, Peters, Brian, Wood, Scott, Serrador, Jorge, Cohen, Helen, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.
- Published
- 2010
30. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development
- Author
-
Mulavara, Ajitkumar, Wood, Scott, Fiedler, Matthew, Kofman, Igor, Kulecz, Walter B, Miller, Chris, Peters, Brian, Serrador, Jorge, Cohen, Helen, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training to enhance adaptability, or as a miniature patch-type stimulator worn post flight.
- Published
- 2010
31. Effect of Passive Horizontal Rotations and Vertical Oscillations on Dynamic Visual Acuity
- Author
-
Mulavara, Ajitkumar, Peters, Brian, Wood, Scott, Cohen, Helen, Kulecz, Walter B, Miller, Chris, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Life Sciences (General) - Abstract
Astronauts experience sensorimotor disturbances after long duration space flight. These crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions following a water landing. Exposure to even low frequency motions induced by sea conditions surrounding a vessel can cause significant fine and gross motor control problems affecting critical functions. The objective of this study was to document human motor and visual performance during simulated wave motion in the 0.1 to 2.0 Hz range. We examined in 12 healthy subjects the changes in accuracy when performing a seated visual target acquisition task in which the location of target was offset vertically during horizontal full body rotation at an oscillating frequency of 0.8 Hz (peak velocity of 160 deg/s). The main finding was that the accuracy of performance degraded in 7 of 12 subjects when acquiring vertical targets at perturbing frequencies of 0.8 Hz in the horizontal plane by one step size. We also examined in a separate study on 12 healthy subjects seated dynamic visual acuity (DVA) task performance during vertical full body oscillations at perturbing frequencies of 2 Hz (peak to peak motion of 5 cm). The main finding was that DVA was significantly reduced when acquiring targets at perturbing oscillations at frequencies of 2 Hz in the vertical plane by approximately 1 chart line. Thus low frequencies of perturbations in the horizontal and vertical planes can cause decrement in visual performance.
- Published
- 2010
32. Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
- Author
-
Mulavara, Ajitkumar, Fiedler, Matthew, Kofman, Igor, Peters, Brian, Wood, Scott, Serrado, Jorge, Cohen, Helen, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.
- Published
- 2010
33. Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions
- Author
-
Reschke, Millard F, Kornilova, Ludmila, Tomilovskaya, Elena, Parker, Donald E, Leigh, R. John, and Kozlovskaya, Inessa
- Subjects
Life Sciences (General) - Abstract
Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.
- Published
- 2009
34. Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long Duration Spaceflight
- Author
-
Mulavara, Ajitkumar, Fiedler, Matthew, Kofman, Igor, Fisher, Elizabeth, Wood, Scott, Serrador, Jorge, Peters, Brian, Cohen, Helen, Reschke, Millard, and Bloomberg, Jacob
- Subjects
Aerospace Medicine - Abstract
Astronauts experience disturbances in sensorimotor function following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. As part of the Crew Exploration Vehicle design requirements, the crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions following a water landing. The act of emergency egress includes and is not limited to rapid motor control tasks (including both fine motor such as object manipulation and gross motor such as opening a hatch) and visual acuity tasks while maintaining spatial orientation and postural stability in time to escape safely. Exposure to even low frequency motions (0.2-2.0 Hz) induced by sea conditions surrounding a vessel can cause significant fine and gross motor control problems affecting critical functions. These motion frequencies coupled with the varying sea state conditions (frequencies ranging from 0.125-0.5 Hz) cause performance deficits by affecting the efficacy of motor and visual acuity dependent skills in tasks critical to emergency egress activities such as visual monitoring of displays, actuating discrete controls, operating auxiliary equipment and communicating with Mission Control and recovery teams. Thus, during exploration class missions the sensorimotor disturbances due to the crewmember's adaptation to microgravity may lead to disruption in the ability to maintain postural stability and perform functional egress tasks during the initial introduction to the Earth's gravitational environment. At present, the functional implication of the interactions between a debilitated crewmember during readaptation to Earth s gravity and the environmental constraints imposed by a water landing scenario is not defined and no operational countermeasure has been implemented to mitigate this risk. Stochastic resonance (SR) is a mechanism whereby noise can assist and hence enhance the response of neural systems to relevant, subthreshold sensory signals. Application of subthreshold stochastic resonance noise coupled to sensory input either through the proprioceptive, visual or vestibular sensory systems, has been shown to improve motor function. Crew members who have adapted to microgravity have acquired new sensorimotor strategies that take time to discard. We hypothesize that detection of time-critical subthreshold sensory signals will play a crucial role in improving strategic responses and thus the rate of skill re-acquisition will be faster, leading to faster recovery of function during their re-adaptation to Earth G. Therefore, we expect the use of stochastic resonance mechanisms will enhance the acquisition of new strategic abilities. This process should ensure rapid restoration of functional egress capabilities during the initial return to Earth G after prolonged space flight. Therefore, the overall goals of this project are to investigate performance of motor and visual tasks during varying sea state conditions and develop a countermeasure based on stochastic resonance that could be implemented to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to Earth s gravity, allowing rapid CEV egress on water in varying sea states following long-duration space flight.
- Published
- 2009
35. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects
- Author
-
Taylor, Laura C, Harm, Deborah L, Kozlovskaya, Inessa, Reschke, Millard F, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.
- Published
- 2009
36. Pilot Study: Measuring the Effects of Center of Gravity Shift on Postural Stability
- Author
-
Times-Marshall, Chelsea and Reschke, Millard
- Subjects
Aerospace Medicine - Abstract
It has been shown that astronauts returning from space often experience postural instability due to the stimulus rearrangement of the visual, vestibular, and proprioceptive systems. However, postural control may also be influenced by the head-ward shift in their center of gravity (CG) that occurs as a result of the expansion of their spinal column by as much as two inches during long duration space flight, as well as the CG shift that occurs from the Life Support Pack on the extra-vehicular activity (EVA) suit. This study investigated the effect on postural stability after (1) an immediate shift in the CG towards the head, (2) a 30 minute adaptation to the shifted CG, and (3) immediate shift of the CG back to normal, accomplished by donning and removing a modified backpack. We hypothesized that at each immediate shift in CG, postural performance will be compromised.
- Published
- 2009
37. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight
- Author
-
Clement, Gilles, Denise, Pierre, Reschke, Millard, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.
- Published
- 2007
38. Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects
- Author
-
Reschke, Millard F, Somers, Jeffery T, Krnavek, Jody, Fisher, Elizibeth, Ford, George, and Paloski, William H
- Subjects
Aerospace Medicine - Abstract
It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are typical of bed rested subjects. There also appears to be a trend in the treatment group where centrifugation results in peak latencies that are shorter than the control group. This trend is supported by the observation that peak reflex amplitudes are larger (up to 40% in magnitude)than those of the control subjects. Furthermore, centrifugation tends, by day 21 of bed rest, to normalize the peak amplitudes to the amplitudes observed prior to bed rest or centrifugation. From a preliminary point of view, centrifugation appears to have a positive effect on the sensorimotor system, and specifically on those muscles that provide anti-gravity and postural support.
- Published
- 2007
39. Vestibulo-Cervico-Ocular Responses and Tracking Eye Movements after Prolonged Exposure to Microgravity
- Author
-
Kornilova, L. N, Naumov, I. A, Azarov, K. A, Sagalovitch, S. V, Reschke, Millard F, and Kozlovskaya, I. B
- Subjects
Aerospace Medicine - Abstract
The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).
- Published
- 2007
40. Stroboscopic Vision as a Treatment for Space Motion Sickness
- Author
-
Reschke, Millard F, Somers, Jeffrey T, Ford, George, and Krnavek, Jody M
- Subjects
Aerospace Medicine - Abstract
Results obtained from space flight indicate that most space crews will experience some symptoms of motion sickness causing significant impact on the operational objectives that must be accomplished to assure mission success. Based on the initial work of Melvill Jones we have evaluated stroboscopic vision as a method of preventing motion sickness. Given that the data presented by professor Melvill Jones were primarily post hoc results following a study not designed to investigate motion sickness, it is unclear how motion sickness results were actually determined. Building on these original results, we undertook a three part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness using: (1) visual field reversal, (2) Reading while riding in a car (with or without external vision present), and (3) making large pitch head movements during parabolic flight.
- Published
- 2007
41. Vestibulospinal Reflexes as a Function of Microgravity
- Author
-
Reschke, Millard F., Anderson, David J., and Homick, Jerry L.
- Published
- 1984
42. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
- Author
-
O'Sullivan, Brita M, Harm, Deborah L, Reschke, Millard F, and Wood, Scott J
- Subjects
Aerospace Medicine - Abstract
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
- Published
- 2006
43. Stroboscopic Vision as a Treatment for Space Motion Sickness
- Author
-
Reschke, Millard F, Somers, J.T, Ford, G, Krnavek, J.M, and Hwang, E.Y
- Subjects
Aerospace Medicine - Abstract
Stroboscopic illumination reduces the severity of motion sickness symptoms, and shutter glasses with a flash frequency of 4 Hz are as effective as a strobe light. Stroboscopic illumination appears to be an effective countermeasure where retinal slip is a significant factor in eliciting motion sickness. Additional research is currently underway to evaluate the stroboscopic glasses efficacy in a variety of different motion environments. Specifically, carsickness, sickness during the microgravity periods of parabolic flight and sea sickness. Possible mechanisms underlying the effectiveness of the glasses are also being investigated. There is evidence from pilot studies showing that the glasses, when strobed at the 4 Hz frequency, reduce saccade velocity to visually presented targets is reduced by approximately half of the normal values. It is interesting to note that adaptation to space flight may also slow saccade velocity.
- Published
- 2006
44. Stroboscopic Vision as a Treatment Motion Sickness
- Author
-
Reschke, Millard F, Somers, J. T, Ford, G, Krnavek, J. M, Hwang, E. y, Kornilova, L. N, and Leigh, R. J
- Subjects
Aerospace Medicine - Abstract
Results obtained from space flight indicate that most space crews will experience some symptoms of motion sickness causing significant impact on the operational objectives that must be accomplished to assure mission success. Based on the initial work of Melvill-Jones, we have evaluated stroboscopic vision as a method of preventing motion sickness. Methods: Nineteen subjects read text while making +/-20deg head movements in the horizontal plane at 0.2 Hz while wearing left-right reversing prisms during exposure to 4 Hz stroboscopic or normal room illumination. Testing was repeated using LCD shutter glasses as the stroboscopic source with an additional 19 subjects. Results: With Strobe, motion sickness was significantly lower than with normal room illumination. Results with the LCD shutter glasses were analogous to those observed with environmental strobe. Conclusions: Stroboscopic illumination appears to be effective where retinal slip is a factor in eliciting motion sickness. Additional research is evaluating the glasses efficacy for, carsickness, sickness in parabolic flight and seasickness. There is evidence from pilot studies showing that the glasses reduce saccade velocity to visually presented targets by approximately half of the normal values. It is interesting to note that adaptation to space flight may also slow saccade velocity.
- Published
- 2006
45. Studies of the Ability to Hold the Eye in Eccentric Gaze: Measurements in Normal Subjects with the Head Erect
- Author
-
Reschke, Millard F, Somers, Jeffrey T, Feiveson, Alan H, Leigh, R. John, Wood, Scott J, Paloski, William H, and Kornilova, Ludmila
- Subjects
Life Sciences (General) - Abstract
We studied the ability to hold the eyes in eccentric horizontal or vertical gaze angles in 68 normal humans, age range 19-56. Subjects attempted to sustain visual fixation of a briefly flashed target located 30 in the horizontal plane and 15 in the vertical plane in a dark environment. Conventionally, the ability to hold eccentric gaze is estimated by fitting centripetal eye drifts by exponential curves and calculating the time constant (t(sub c)) of these slow phases of gazeevoked nystagmus. Although the distribution of time-constant measurements (t(sub c)) in our normal subjects was extremely skewed due to occasional test runs that exhibited near-perfect stability (large t(sub c) values), we found that log10(tc) was approximately normally distributed within classes of target direction. Therefore, statistical estimation and inference on the effect of target direction was performed on values of z identical with log10t(sub c). Subjects showed considerable variation in their eyedrift performance over repeated trials; nonetheless, statistically significant differences emerged: values of tc were significantly higher for gaze elicited to targets in the horizontal plane than for the vertical plane (P less than 10(exp -5), suggesting eccentric gazeholding is more stable in the horizontal than in the vertical plane. Furthermore, centrifugal eye drifts were observed in 13.3, 16.0 and 55.6% of cases for horizontal, upgaze and downgaze tests, respectively. Fifth percentile values of the time constant were estimated to be 10.2 sec, 3.3 sec and 3.8 sec for horizontal, upward and downward gaze, respectively. The difference between horizontal and vertical gazeholding may be ascribed to separate components of the velocity position neural integrator for eye movements, and to differences in orbital mechanics. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied in a clinical setting to patients who were exposed to environments that may have modified their central integrators and thus require monitoring. Patients with gaze-evoked nystagmus can be flagged by comparing to the above established normative criteria.
- Published
- 2006
46. Tilt and Translation Motion Perception during Off Vertical Axis Rotation
- Author
-
Wood, Scott J, Reschke, Millard F, and Clement, Gilles
- Subjects
Aerospace Medicine - Abstract
The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception.
- Published
- 2006
47. Motion Sickness Treatment Apparatus and Method
- Author
-
Reschke, Millard F, Somers, Jeffrey T, and Ford, George A
- Subjects
Optics - Abstract
Methods and apparatus are disclosed for treating motion sickness. In a preferred embodiment a method of the invention comprises operating eyewear having shutter lenses to open said shutter lenses at a selected operating frequency ranging from within about 3 Hz to about 50 Hz. The shutter lenses are opened for a short duration at the selected operating frequency wherein the duration is selected to prevent retinal slip. The shutter lenses may be operated at a relatively slow frequency of about 4 Hz when the user is in passive activity such as riding in a boat or car or in limited motion situations in a spacecraft. The shutter lenses may be operated at faster frequencies related to motion of the user's head when the user is active.
- Published
- 2005
48. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position
- Author
-
Wood, Scott, Clement, Gilles, Denise, Pierre, and Reschke, Millard
- Subjects
Behavioral Sciences - Abstract
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.
- Published
- 2005
49. Neurovestibular and Sensorimotor Studies in Space and Earth Benefits
- Author
-
Clement, Gilles, Reschke, Millard, and Wood, Scott
- Subjects
Aerospace Medicine - Abstract
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight, both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
- Published
- 2005
50. Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions
- Author
-
Reschke, Millard, Somers, Jeffrey T, Leigh, R. John, Krnavek, Jody M, Kornilova, Ludmila, Kozlovskaya, Inessa, Bloomberg, Jacob J, and Paloski, William H
- Subjects
Aerospace Medicine - Abstract
Square-wave jerks (SWJs) are small, involuntary saccades that disrupt steady fixation. We report the case of an astronaut (approximately 140 d on orbit) who showed frequent SWJs, especially postflight, but who showed no impairment of vision or decrement of postflight performance. These data support the view that SWJs do not impair vision because they are paired movements, consisting of a small saccade away from the fixation position followed, within 200 ms, by a corrective saccade that brings the eye back on target. Since many returning astronauts show a decrement of dynamic visual function during postflight locomotion, it seems possible that frequent SWJs improved this astronaut's visual function by providing postsaccadic enhancement of visual fixation, which aided postflight performance. Certainly, frequent SWJs did not impair performance in this astronaut, who had no other neurological disorder.
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.