29 results on '"Potes Y"'
Search Results
2. Pig cognitive bias affects the conversion of muscle into meat by antioxidant and autophagy mechanisms
- Author
-
Potes, Y., primary, Oliván, M., additional, Rubio-González, A., additional, de Luxán-Delgado, B., additional, Díaz, F., additional, Sierra, V., additional, Arroyo, L., additional, Peña, R., additional, Bassols, A., additional, González, J., additional, Carreras, R., additional, Velarde, A., additional, Muñoz-Torres, M., additional, and Coto-Montes, A., additional
- Published
- 2017
- Full Text
- View/download PDF
3. Effect of animal mixing as a stressor on biomarkers of autophagy and oxidative stress during pig muscle maturation
- Author
-
Rubio-González, A., primary, Potes, Y., additional, Illán-Rodríguez, D., additional, Vega-Naredo, I., additional, Sierra, V., additional, Caballero, B., additional, Fàbrega, E., additional, Velarde, A., additional, Dalmau, A., additional, Oliván, M., additional, and Coto-Montes, A., additional
- Published
- 2015
- Full Text
- View/download PDF
4. Melatonin Alleviates Liver Mitochondrial Dysfunction in Leptin-Deficient Mice.
- Author
-
de Luxán-Delgado B, Potes Y, Rubio-González A, Solano JJ, Boga JA, Antuña E, Cachán-Vega C, Bermejo-Millo JC, Menéndez-Coto N, García-González C, Pereira GC, Caballero B, Coto-Montes A, and Vega-Naredo I
- Subjects
- Animals, Mice, Male, Reactive Oxygen Species metabolism, Adenosine Triphosphate metabolism, Obesity metabolism, Obesity drug therapy, Energy Metabolism drug effects, Liver metabolism, Liver drug effects, Mice, Inbred C57BL, Mice, Knockout, Melatonin pharmacology, Leptin metabolism, Leptin deficiency, Mitochondria, Liver metabolism, Mitochondria, Liver drug effects, Lipid Metabolism drug effects
- Abstract
Despite efforts to elucidate the cellular adaptations induced by obesity, cellular bioenergetics is currently considered a crucial target. New strategies to delay the onset of the hazardous adaptations induced by obesity are needed. Therefore, we evaluated the effects of 4 weeks of melatonin treatment on mitochondrial function and lipid metabolism in the livers of leptin-deficient mice. Our results revealed that the absence of leptin increased lipid storage in the liver and induced significant mitochondrial alterations, which were ultimately responsible for defective ATP production and reactive oxygen species overproduction. Moreover, leptin deficiency promoted mitochondrial biogenesis, fusion, and outer membrane permeabilization. Melatonin treatment reduced the bioenergetic deficit found in ob/ob mice, alleviating some mitochondrial alterations in the electron transport chain machinery, biogenesis, dynamics, respiration, ATP production, and mitochondrial outer membrane permeabilization. Given the role of melatonin in maintaining mitochondrial homeostasis, it could be used as a therapeutic agent against adipogenic steatosis.
- Published
- 2024
- Full Text
- View/download PDF
5. Effect of Melatonin on Herpesvirus Type 1 Replication.
- Author
-
Pérez-Martínez Z, Boga JA, Potes Y, Melón S, and Coto-Montes A
- Subjects
- Chlorocebus aethiops, Animals, Antioxidants pharmacology, Vero Cells, Melatonin pharmacology, Herpesvirus 1, Human, Pineal Gland
- Abstract
Acute HSV-1 infection is associated with mild symptoms, such as fever and lesions of the mouth, face and skin. This phase is followed by a latency period before reactivation, which is associated with symptoms ranging from ulcers to encephalitis. Despite available anti-HSV-1 drugs, the development of new antiviral agents is sought due to the presence of resistant viruses. Melatonin, a molecule secreted by the pineal gland, has been shown to be an antioxidant, inducer of antioxidant enzymes, and regulator of various biological processes. Clinical trials have explored its therapeutic utility in conditions including infections. This study focuses on melatonin's role in HSV-1 replication and the underlying mechanisms. Melatonin was found to decrease the synthesis of HSV-1 proteins in infected Vero cells measured by immunofluorescence, indicating an inhibition of HSV-1 replication. Additionally, it regulates the activities of antioxidant enzymes and affects proteasome activity. Melatonin activates the unfolded protein response (UPR) and autophagy and suppresses apoptosis in HSV-1-infected cells. In summary, melatonin demonstrates an inhibitory role in HSV-1 replication by modulating various cellular responses, suggesting its potential utility in the treatment of viral infections.
- Published
- 2024
- Full Text
- View/download PDF
6. p66Shc signaling and autophagy impact on C2C12 myoblast differentiation during senescence.
- Author
-
Potes Y, Bermejo-Millo JC, Mendes C, Castelão-Baptista JP, Díaz-Luis A, Pérez-Martínez Z, Solano JJ, Sardão VA, Oliveira PJ, Caballero B, Coto-Montes A, and Vega-Naredo I
- Subjects
- Autophagy genetics, Cell Differentiation physiology, Cell Line, Muscle Development genetics, Src Homology 2 Domain-Containing, Transforming Protein 1 genetics, Src Homology 2 Domain-Containing, Transforming Protein 1 metabolism, Animals, Mice, Myoblasts metabolism, Signal Transduction
- Abstract
During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. NLRP3 Contributes to Sarcopenia Associated to Dependency Recapitulating Inflammatory-Associated Muscle Degeneration.
- Author
-
Antuña E, Potes Y, Baena-Huerta FJ, Cachán-Vega C, Menéndez-Coto N, Álvarez Darriba E, Fernández-Fernández M, Burgos Bencosme N, Bermúdez M, López Álvarez EM, Gutiérrez-Rodríguez J, Boga JA, Caballero B, Vega-Naredo I, Coto-Montes A, and Garcia-Gonzalez C
- Subjects
- Humans, Aged, Inflammasomes metabolism, Caspase 1 metabolism, Interleukin-1beta genetics, Interleukin-1beta metabolism, Muscle, Skeletal metabolism, NLR Family, Pyrin Domain-Containing 3 Protein metabolism, Sarcopenia etiology
- Abstract
Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1β and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.
- Published
- 2024
- Full Text
- View/download PDF
8. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity.
- Author
-
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, and Coto-Montes A
- Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
- Published
- 2023
- Full Text
- View/download PDF
9. Differential Cellular Interactome in Schizophrenia and Bipolar Disorder-Discriminatory Biomarker Role.
- Author
-
Menéndez-Valle I, Cachán-Vega C, Boga JA, González-Blanco L, Antuña E, Potes Y, Caballero B, Vega-Naredo I, Saiz P, Bobes J, García-Portilla P, and Coto-Montes A
- Abstract
Schizophrenia (SCH) and bipolar disorder (BD) are two of the most important psychiatric pathologies due to their high population incidence and disabling power, but they also present, mainly in their debut, high clinical similarities that make their discrimination difficult. In this work, the differential oxidative stress, present in both disorders, is shown as a concatenator of the systemic alterations-both plasma and erythrocyte, and even at the level of peripheral blood mononuclear cells (PBMC)-in which, for the first time, the different affectations that both disorders cause at the level of the cellular interactome were observed. A marked erythrocyte antioxidant imbalance only present in SCH generalizes to oxidative damage at the plasma level and shows a clear impact on cellular involvement. From the alteration of protein synthesis to the induction of death by apoptosis, including proteasomal damage, mitochondrial imbalance, and autophagic alteration, all the data show a greater cellular affectation in SCH than in BD, which could be linked to increased oxidative stress. Thus, patients with SCH in our study show increased endoplasmic reticulum (ER)stress that induces increased proteasomal activity and a multifactorial response to misfolded proteins (UPR), which, together with altered mitochondrial activity, generating free radicals and leading to insufficient energy production, is associated with defective autophagy and ultimately leads the cell to a high apoptotic predisposition. In BD, however, oxidative damage is much milder and without significant activation of survival mechanisms or inhibition of apoptosis. These clear differences identified at the molecular and cellular level between the two disorders, resulting from progressive afflictions in which oxidative stress can be both a cause and a consequence, significantly improve the understanding of both disorders to date and are essential for the development of targeted and preventive treatments.
- Published
- 2023
- Full Text
- View/download PDF
10. Special Issue on "Pleiotropic Benefits of Melatonin: From Basic Mechanisms to Disease".
- Author
-
Potes Y and Caballero B
- Subjects
- Circadian Rhythm physiology, Melatonin pharmacology, Melatonin physiology, Pineal Gland physiology
- Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional hormone that is naturally produced from tryptophan and released rhythmically throughout the night by the pineal gland to regulate sleep-wake cycles [...].
- Published
- 2023
- Full Text
- View/download PDF
11. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders.
- Author
-
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, and Caballero B
- Subjects
- Hippocampus, Neurogenesis, Neurons, Melatonin pharmacology, Neural Stem Cells
- Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
12. Inflammaging: Implications in Sarcopenia.
- Author
-
Antuña E, Cachán-Vega C, Bermejo-Millo JC, Potes Y, Caballero B, Vega-Naredo I, Coto-Montes A, and Garcia-Gonzalez C
- Subjects
- Humans, Aged, Muscle, Skeletal metabolism, Aging physiology, Inflammation pathology, Obesity metabolism, Sarcopenia metabolism
- Abstract
In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia., Competing Interests: The authors declare no conflicts of interest.
- Published
- 2022
- Full Text
- View/download PDF
13. Mitochondria-targeted anti-oxidant AntiOxCIN 4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems.
- Author
-
Amorim R, Simões ICM, Teixeira J, Cagide F, Potes Y, Soares P, Carvalho A, Tavares LC, Benfeito S, Pereira SP, Simões RF, Karkucinska-Wieckowska A, Viegas I, Szymanska S, Dąbrowski M, Janikiewicz J, Cunha-Oliveira T, Dobrzyń A, Jones JG, Borges F, Wieckowski MR, and Oliveira PJ
- Abstract
Non-alcoholic fatty liver disease (NAFLD) is a health concern affecting 24% of the population worldwide. Although the pathophysiologic mechanisms underlying disease are not fully clarified, mitochondrial dysfunction and oxidative stress are key players in disease progression. Consequently, efforts to develop more efficient pharmacologic strategies targeting mitochondria for NAFLD prevention/treatment are underway. The conjugation of caffeic acid anti-oxidant moiety with an alkyl linker and a triphenylphosphonium cation (TPP
+ ), guided by structure-activity relationships, led to the development of a mitochondria-targeted anti-oxidant (AntiOxCIN4 ) with remarkable anti-oxidant properties. Recently, we described that AntiOxCIN4 improved mitochondrial function, upregulated anti-oxidant defense systems, and cellular quality control mechanisms (mitophagy/autophagy) via activation of the Nrf2/Keap1 pathway, preventing fatty acid-induced cell damage. Despite the data obtained, AntiOxCIN4 effects on cellular and mitochondrial energy metabolism in vivo were not studied. In the present work, we proposed that AntiOxCIN4 (2.5 mg/day/animal) may prevent non-alcoholic fatty liver (NAFL) phenotype development in a C57BL/6J mice fed with 30% high-fat, 30% high-sucrose diet for 16 weeks. HepG2 cells treated with AntiOxCIN4 (100 μM, 48 h) before the exposure to supraphysiologic free fatty acids (FFAs) (250 μM, 24 h) were used for complementary studies. AntiOxCIN4 decreased body (by 43%), liver weight (by 39%), and plasma hepatocyte damage markers in WD-fed mice. Hepatic-related parameters associated with a reduction of fat liver accumulation (by 600%) and the remodeling of fatty acyl chain composition compared with the WD-fed group were improved. Data from human HepG2 cells confirmed that a reduction of lipid droplets size and number can be a result from AntiOxCIN4 -induced stimulation of fatty acid oxidation and mitochondrial OXPHOS remodeling. In WD-fed mice, AntiOxCIN4 also induced a hepatic metabolism remodeling by upregulating mitochondrial OXPHOS, anti-oxidant defense system and phospholipid membrane composition, which is mediated by the PGC-1α-SIRT3 axis. AntiOxCIN4 prevented lipid accumulation-driven autophagic flux impairment, by increasing lysosomal proteolytic capacity. AntiOxCIN4 improved NAFL phenotype of WD-fed mice, via three main mechanisms: a) increase mitochondrial function (fatty acid oxidation); b) stimulation anti-oxidant defense system (enzymatic and non-enzymatic) and; c) prevent the impairment in autophagy. Together, the findings support the potential use of AntiOxCIN4 in the prevention/treatment of NAFLD., Competing Interests: Declaration of competing interest Paulo J. Oliveira and Fernanda Borges are cofounders of the CNC-UP spin-off company MitoTAG (Coimbra, Portugal). This spin-off had no involvement in the data collection, analysis and interpretation, manuscript writing, and the decision to submit the manuscript for publication., (Copyright © 2022. Published by Elsevier B.V.)- Published
- 2022
- Full Text
- View/download PDF
14. Chronic Treatment with Melatonin Improves Hippocampal Neurogenesis in the Aged Brain and Under Neurodegeneration.
- Author
-
Cachán-Vega C, Vega-Naredo I, Potes Y, Bermejo-Millo JC, Rubio-González A, García-González C, Antuña E, Bermúdez M, Gutiérrez-Rodríguez J, Boga JA, Coto-Montes A, and Caballero B
- Subjects
- Aging, Animals, Hippocampus, Mice, Neurogenesis, Neurons, Melatonin pharmacology, Neural Stem Cells
- Abstract
Adult hippocampal neurogenesis is altered during aging and under different neuropsychiatric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties during aging and neuropathological conditions. In this study, we evaluated the effects of chronic treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics aging-related Alzheimer's pathology. Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age include the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations in neural processes and the length of neuronal prolongations and β-amyloid accumulation in the cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice. Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the functionality of adult hippocampal neurogenesis in aged SAMP8 mice.
- Published
- 2022
- Full Text
- View/download PDF
15. Cell interactome in sarcopenia during aging.
- Author
-
González-Blanco L, Bermúdez M, Bermejo-Millo JC, Gutiérrez-Rodríguez J, Solano JJ, Antuña E, Menéndez-Valle I, Caballero B, Vega-Naredo I, Potes Y, and Coto-Montes A
- Subjects
- Aged, Aged, 80 and over, Aging, Autophagy, Female, Humans, Male, Muscle, Skeletal pathology, Oxidative Stress, Sarcopenia pathology
- Abstract
Background: The diversity between the muscle cellular interactome of dependent and independent elderly people is based on the interrelationships established between different cellular mechanisms, and alteration of this balance modulates cellular activity in muscle tissue with important functional implications., Methods: Thirty patients (85 ± 8 years old, 23% female) scheduled to undergo hip fracture surgery participated in this study. During the surgical procedures, skeletal muscle tissue was obtained from the Vastus lateralis. Two groups of participants were studied based on their Barthel index: 15 functional-independent individuals (100-90) and 15 severely functional-dependent individuals (40-0). The expression of proteins from the most important cellular mechanisms was studied by western blot., Results: Compared with independent elderly patients, dependent elderly showed an abrupt decrease in the capacity of protein synthesis; this decrease was only partially compensated for at the response to unfolded or misfolded proteins (UPR) level due to the increase in IRE1 (P < 0.001) and ATF6 (P < 0.05), which block autophagy, an essential mechanism for cell survival, by decreasing the expression of Beclin-1, LC3, and p62 (P < 0.001) and the antioxidant response. This lead to increased oxidative damage to lipids (P < 0.001) and that damage was directly associated with the mitochondrial impairment induced by the significant decreases in the I, III, IV, and V mitochondrial complexes (P < 0.01), which drastically reduced the energy capacity of the cell. The essential cellular mechanisms were generally impaired and the triggering of apoptosis was induced, as shown by the significantly elevated levels of most proapoptotic proteins (P < 0.05) and caspase-3/7 (P < 0.001) in dependents. The death of highly damaged cells is not detrimental to organs as long as the regenerative capacity remains unaltered, but in the dependent patients, this ability was also significantly altered, which was revealed by the reduction in the myogenic regulatory factors and satellite cell marker (P < 0.001), and the increase in myostatin (P < 0.01). Due to the severely disturbed cell interactome, the muscle contractile capacity showed significant damage., Conclusions: Functionally dependent patients exhibited severe alterations in their cellular interactome at the muscle level. Cell apoptosis was caused by a decrease in successful protein synthesis, to which the cellular control systems did not respond adequately; autophagy was simultaneously blocked, the mitochondrion malfunctioned, and as the essential recovery mechanisms failed, these cells could not be replaced, resulting in the muscle being condemned to a loss of mass and functionality., (© 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.)
- Published
- 2022
- Full Text
- View/download PDF
16. Removal of Environmental Nanoparticles Increases Protein Synthesis and Energy Production in Healthy Humans.
- Author
-
Antuña E, Carlos Bermejo-Millo J, Caso-Onzain E, Caso-Peláez E, Potes Y, and Coto-Montes A
- Abstract
Currently, industrial activity causes the environmental release of nanoparticles that have multiple adverse effects on population health. There is a clear correlation between the increase in particulate air pollution and the increases in mortality and morbidity rates in both adults and children, which demonstrates the toxic effects of these particles. However, the effect of particle removal on healthy individuals is unknown. Thus, in this preliminary study, we showed, for the first time, how the filtering equipment that we used significantly reduced a large amount of nanoparticles in a minimum time and induced a reduction of oxidative damage in healthy individuals of both sexes after 25, 50 and 100 days of exposure. These effects led to increased protein synthesis and enhanced mitochondrial efficiency, thus resulting in a highly significant triggering of ATP synthesis. These results not only provide insight into the chronic effects that environmental nanoparticles have on individuals prior to the development of pathologies but also demonstrate a system capable of reversing nanoparticle toxicity and allowing cellular energy recovery., Competing Interests: EC-O and EC-P was employed by the BiowAir Total Systems SL. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Antuña, Carlos Bermejo-Millo, Caso-Onzain, Caso-Peláez, Potes and Coto-Montes.)
- Published
- 2022
- Full Text
- View/download PDF
17. MARC1 p.A165T variant is associated with decreased markers of liver injury and enhanced antioxidant capacity in autoimmune hepatitis.
- Author
-
Janik MK, Smyk W, Kruk B, Szczepankiewicz B, Górnicka B, Lebiedzińska-Arciszewska M, Potes Y, Simões ICM, Weber SN, Lammert F, Więckowski MR, Milkiewicz P, and Krawczyk M
- Subjects
- Adolescent, Adult, Aged, Child, Female, Genotype, Hepatitis, Autoimmune complications, Hepatitis, Autoimmune metabolism, Hepatitis, Autoimmune prevention & control, Humans, Liver Cirrhosis etiology, Liver Cirrhosis metabolism, Liver Cirrhosis prevention & control, Male, Middle Aged, Phenotype, Young Adult, Antioxidants metabolism, Genetic Predisposition to Disease genetics, Genome-Wide Association Study, Hepatitis, Autoimmune genetics, Liver Cirrhosis genetics, Mitochondrial Proteins genetics, Oxidoreductases genetics, Polymorphism, Genetic genetics, Polymorphism, Genetic physiology
- Abstract
The clinical picture of autoimmune hepatitis (AIH) varies markedly between patients, potentially due to genetic modifiers. The aim of this study was to evaluate genetic variants previously associated with fatty liver as potential modulators of the AIH phenotype. The study cohort comprised 313 non-transplanted adults with AIH. In all patients, the MARC1 (rs2642438), HSD17B13 (rs72613567), PNPLA3 (rs738409), TM6SF2 (rs58542926), and MBOAT7 (rs641738) variants were genotyped using TaqMan assays. Mitochondrial damage markers in serum were analyzed in relation to the MARC1 variant. Carriers of the protective MARC1 allele had lower ALT and AST (both P < 0.05). In patients treated for AIH for ≥ 6 months, MARC1 correlated with reduced AST, ALP, GGT (all P ≤ 0.01), and lower APRI (P = 0.02). Patients carrying the protective MARC1 genotype had higher total antioxidant activity (P < 0.01) and catalase levels (P = 0.02) in serum. The PNPLA3 risk variant was associated with higher MELD (P = 0.02) in treated patients, whereas MBOAT7 increased the odds for liver cancer (OR = 3.71). None of the variants modulated the risk of death or transplantation. In conclusion, the MARC1 polymorphism has protective effects in AIH. Genotyping of MARC1, PNPLA3, and MBOAT7 polymorphisms might help to stratify patients with AIH., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
18. The Interactome in the Evolution From Frailty to Sarcopenic Dependence.
- Author
-
Coto-Montes A, González-Blanco L, Antuña E, Menéndez-Valle I, Bermejo-Millo JC, Caballero B, Vega-Naredo I, and Potes Y
- Abstract
Biomarkers are essential tools for accurate diagnosis and effective prevention, but their validation is a pending challenge that limits their usefulness, even more so with constructs as complex as frailty. Sarcopenia shares multiple mechanisms with frailty which makes it a strong candidate to provide robust frailty biomarkers. Based on this premise, we studied the temporal evolution of cellular interactome in frailty, from independent patients to dependent ones. Overweight is a recognized cause of frailty in aging, so we studied the altered mechanisms in overweight independent elderly and evaluated their aggravation in dependent elderly. This evidence of the evolution of previously altered mechanisms would significantly support their role as real biomarkers of frailty. The results showed a preponderant role of autophagy in interactome control at both different functional points, modulating other essential mechanisms in the cell, such as mitochondrial capacity or oxidative stress. Thus, the overweight provoked in the muscle of the elderly an overload of autophagy that kept cell survival in apparently healthy individuals. This excessive and permanent autophagic effort did not seem to be able to be maintained over time. Indeed, in dependent elderly, the muscle showed a total autophagic inactivity, with devastating effects on the survival of the cell, which showed clear signs of apoptosis, and reduced functional capacity. The frail elderly are in a situation of weakness that is a precursor of dependence that can still be prevented if detection is early. Hence biomarkers are essential in this context., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Coto-Montes, González-Blanco, Antuña, Menéndez-Valle, Bermejo-Millo, Caballero, Vega-Naredo and Potes.)
- Published
- 2021
- Full Text
- View/download PDF
19. Neurogenic Potential of the 18-kDa Mitochondrial Translocator Protein (TSPO) in Pluripotent P19 Stem Cells.
- Author
-
González-Blanco L, Bermejo-Millo JC, Oliveira G, Potes Y, Antuña E, Menéndez-Valle I, Vega-Naredo I, Coto-Montes A, and Caballero B
- Subjects
- Animals, Biomarkers metabolism, Cell Cycle drug effects, Cell Death drug effects, Cell Differentiation drug effects, Isoquinolines pharmacology, Mice, Mitochondria drug effects, Mitochondria metabolism, Molecular Weight, Neurons drug effects, Neurons metabolism, Pluripotent Stem Cells drug effects, Tretinoin pharmacology, Neurogenesis, Pluripotent Stem Cells metabolism, Receptors, GABA metabolism
- Abstract
The 18-kDa translocator protein (TSPO) is a key mitochondrial target by which different TSPO ligands exert neuroprotective effects. We assayed the neurogenic potential of TSPO to induce the neuronal differentiation of pluripotent P19 stem cells in vitro. We studied changes in cell morphology, cell proliferation, cell death, the cell cycle, mitochondrial functionality, and the levels of pluripotency and neurogenesis of P19 stem cells treated with the TSPO ligand, PK 11195, in comparison to differentiation induced by retinoid acid (RA) and undifferentiated P19 stem cells. We observed that PK 11195 was able to activate the differentiation of P19 stem cells by promoting the development of embryoid bodies. PK 11195 also induced changes in the cell cycle, decreased cell proliferation, and activated cell death. Mitochondrial metabolism was also enhanced by PK 11195, thus increasing the levels of reactive oxygen species, Ca
2+ , and ATP as well as the mitochondrial membrane potential. Markers of pluripotency and neurogenesis were also altered during the cell differentiation process, as PK 11195 induced the differentiation of P19 stem cells with a high predisposition toward a neuronal linage, compared to cell differentiation induced by RA. Thus, we suggest a relevant neurogenic potential of TSPO along with broad therapeutic implications.- Published
- 2021
- Full Text
- View/download PDF
20. The Alterations of Mitochondrial Function during NAFLD Progression-An Independent Effect of Mitochondrial ROS Production.
- Author
-
Simões ICM, Amorim R, Teixeira J, Karkucinska-Wieckowska A, Carvalho A, Pereira SP, Simões RF, Szymanska S, Dąbrowski M, Janikiewicz J, Dobrzyń A, Oliveira PJ, Potes Y, and Wieckowski MR
- Subjects
- Animals, Antioxidants metabolism, Autophagy, Cholesterol Esters metabolism, Computational Biology methods, Disease Susceptibility, Fibrosis, Hepatocytes metabolism, Lipid Metabolism, Liver metabolism, Male, Mice, Mitochondria genetics, Non-alcoholic Fatty Liver Disease pathology, Oxidation-Reduction, Oxidative Stress, Triglycerides metabolism, Mitochondria metabolism, Non-alcoholic Fatty Liver Disease etiology, Non-alcoholic Fatty Liver Disease metabolism, Reactive Oxygen Species metabolism
- Abstract
The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.
- Published
- 2021
- Full Text
- View/download PDF
21. Melatonin Ameliorates Autophagy Impairment in a Metabolic Syndrome Model.
- Author
-
Santos-Ledo A, Luxán-Delgado B, Caballero B, Potes Y, Rodríguez-González S, Boga JA, Coto-Montes A, and García-Macia M
- Abstract
Metabolic syndrome is a global health problem in adults and its prevalence among children and adolescents is rising. It is strongly linked to a lifestyle with high-caloric food, which causes obesity and lipid metabolism anomalies. Molecular damage due to excessive oxidative stress plays a major role during the development of metabolic syndrome complications. Among the different hormones, melatonin presents strong antioxidant properties, and it is used to treat metabolic diseases. However, there is not a consensus about its use as a metabolic syndrome treatment. The aim of this study was to identify melatonin effects in a metabolic syndrome model. Golden hamsters were fed with 60% fructose-enriched food to induce metabolic syndrome and were compared to hamsters fed with regular chow diet. Both groups were also treated with melatonin. Fructose-fed hamsters showed altered blood lipid levels (increased cholesterol and LDL) and phenotypes restored with the melatonin treatment. The Harderian gland (HG), which is an ideal model to study autophagy modulation through oxidative stress, was the organ that was most affected by a fructose diet. Redox balance was altered in fructose-fed HG, inducing autophagic activation. However, since LC3-II was not increased, the impairment must be in the last steps of autophagy. Lipophagy HG markers were also disturbed, contributing to the dyslipidemia. Melatonin treatment improved possible oxidative homeostasis through autophagic induction. All these results point to melatonin as a possible treatment of the metabolic syndrome.
- Published
- 2021
- Full Text
- View/download PDF
22. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy.
- Author
-
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, and Matter ML
- Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the "powerhouse" of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca
2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Ramaccini, Montoya-Uribe, Aan, Modesti, Potes, Wieckowski, Krga, Glibetić, Pinton, Giorgi and Matter.)- Published
- 2021
- Full Text
- View/download PDF
23. Western Diet Causes Obesity-Induced Nonalcoholic Fatty Liver Disease Development by Differentially Compromising the Autophagic Response.
- Author
-
Simoes ICM, Karkucinska-Wieckowska A, Janikiewicz J, Szymanska S, Pronicki M, Dobrzyn P, Dabrowski M, Dobrzyn A, Oliveira PJ, Zischka H, Potes Y, and Wieckowski MR
- Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the development of steatosis, which can ultimately compromise liver function. Mitochondria are key players in obesity-induced metabolic disorders; however, the distinct role of hypercaloric diet constituents in hepatic cellular oxidative stress and metabolism is unknown. Male mice were fed either a high-fat (HF) diet, a high-sucrose (HS) diet or a combined HF plus HS (HFHS) diet for 16 weeks. This study shows that hypercaloric diets caused steatosis; however, the HFHS diet induced severe fibrotic phenotype. At the mitochondrial level, lipidomic analysis showed an increased cardiolipin content for all tested diets. Despite this, no alterations were found in the coupling efficiency of oxidative phosphorylation and neither in mitochondrial fatty acid oxidation (FAO). Consistent with unchanged mitochondrial function, no alterations in mitochondrial-induced reactive oxygen species (ROS) and antioxidant capacity were found. In contrast, the HF and HS diets caused lipid peroxidation and provoked altered antioxidant enzyme levels/activities in liver tissue. Our work provides evidence that hepatic oxidative damage may be caused by augmented levels of peroxisomes and consequently higher peroxisomal FAO-induced ROS in the early NAFLD stage. Hepatic damage is also associated with autophagic flux impairment, which was demonstrated to be diet-type dependent. The HS diet induced a reduction in autophagosomal formation, while the HF diet reduced levels of cathepsins. The accumulation of damaged organelles could instigate hepatocyte injuries and NAFLD progression.
- Published
- 2020
- Full Text
- View/download PDF
24. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective.
- Author
-
Simoes ICM, Morciano G, Lebiedzinska-Arciszewska M, Aguiari G, Pinton P, Potes Y, and Wieckowski MR
- Subjects
- Autophagy, Calcium Signaling, Homeostasis, Humans, Lipid Metabolism, Protein Transport, Reactive Oxygen Species metabolism, Endoplasmic Reticulum metabolism, Mitochondria metabolism, Mitochondrial Membranes metabolism, Neoplasms metabolism, Neoplasms pathology
- Abstract
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca
2+ ) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
25. Cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells.
- Author
-
Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J, Potes Y, Coto-Montes A, Oliveira PJ, and Vega-Naredo I
- Subjects
- Activating Transcription Factor 6 metabolism, Animals, Antioxidants pharmacology, Apoptosis drug effects, Cardiolipins metabolism, Caspase Inhibitors pharmacology, Cell Compartmentation, Cell Line, Tumor, Endosomes metabolism, Endosomes ultrastructure, Eukaryotic Initiation Factor-2 metabolism, Lipids chemistry, Lysosomes metabolism, Lysosomes ultrastructure, Mice, Mitochondrial Dynamics drug effects, Mitophagy drug effects, Neoplastic Stem Cells drug effects, Neoplastic Stem Cells ultrastructure, Phosphatidylinositol 3-Kinases metabolism, Proteolysis drug effects, Proto-Oncogene Proteins c-akt metabolism, Signal Transduction drug effects, TOR Serine-Threonine Kinases metabolism, Unfolded Protein Response drug effects, Cell Differentiation drug effects, Neoplastic Stem Cells pathology
- Abstract
Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential. Abbreviations : 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
- Published
- 2020
- Full Text
- View/download PDF
26. Selective autophagy, lipophagy and mitophagy, in the Harderian gland along the oestrous cycle: a potential retrieval effect of melatonin.
- Author
-
García-Macia M, Santos-Ledo A, Caballero B, Rubio-González A, de Luxán-Delgado B, Potes Y, Rodríguez-González SM, Boga JA, and Coto-Montes A
- Subjects
- Animals, Female, Harderian Gland metabolism, Homeostasis, Lipids chemistry, Lysosomes metabolism, Mesocricetus, Mitochondria metabolism, Mitophagy, NF-kappa B metabolism, Sequestosome-1 Protein metabolism, Sex Factors, Autophagy, Estrous Cycle, Harderian Gland pathology, Melatonin metabolism, Oxidative Stress, Receptors, Melatonin metabolism
- Abstract
Sexual dimorphism has been reported in many processes. However, sexual bias in favour of the use of males is very present in science. One of the main reasons is that the impact of hormones in diverse pathways and processes such as autophagy have not been properly addressed in vivo. The Harderian gland is a perfect model to study autophagic modulation as it exhibits important changes during the oestrous cycle. The aim of this study is to identify the main processes behind Harderian gland differences under oestrous cycle and their modulator. In the present study we show that redox-sensitive transcription factors have an essential role: NF-κB may activate SQSTM1/p62 in oestrus, promoting selective types of autophagy: mitophagy and lipophagy. Nrf2 activation in dioestrus, leads the retrieval phase and restoration of mitochondrial homeostasis. Melatonin's receptors show higher expression in dioestrus, leading to decreases in pro-inflammatory mediators and enhanced Nrf2 expression. Consequently, autophagy is blocked, and porphyrin release is reduced. All these results point to melatonin as one of the main modulators of the changes in autophagy during the oestrous cycle.
- Published
- 2019
- Full Text
- View/download PDF
27. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease.
- Author
-
Simoes ICM, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, and Potes Y
- Subjects
- Animals, Choline Deficiency, Diabetes Mellitus, Type 2 complications, Diet, High-Fat adverse effects, Diet, Western adverse effects, Dietary Sugars adverse effects, Disease Models, Animal, Disease Progression, Fatty Liver complications, Mice, Non-alcoholic Fatty Liver Disease complications, Oxidative Stress, Phenotype, Rats, Reactive Oxygen Species, Rodentia, Fatty Acids metabolism, Lipid Metabolism, Mitochondria, Liver physiology, Non-alcoholic Fatty Liver Disease metabolism, Non-alcoholic Fatty Liver Disease physiopathology
- Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD., Competing Interests: The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
28. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity.
- Author
-
Potes Y, Pérez-Martinez Z, Bermejo-Millo JC, Rubio-Gonzalez A, Fernandez-Fernández M, Bermudez M, Arche JM, Solano JJ, Boga JA, Oliván M, Caballero B, Vega-Naredo I, and Coto-Montes A
- Abstract
Aging is characterized by a progressive loss of skeletal muscle mass and function (sarcopenia). Obesity exacerbates age-related decline and lead to frailty. Skeletal muscle fat infiltration increases with aging and seems to be crucial for the progression of sarcopenia. Additionally, skeletal muscle plasticity modulates metabolic adaptation to different pathophysiological situations. Thus, cellular bioenergetics and mitochondrial profile were studied in the skeletal muscle of overweight aged people without reaching obesity to prevent this extreme situation. Overweight aged muscle lacked ATP production, as indicated by defects in the phosphagen system, glycolysis and especially mostly by oxidative phosphorylation metabolic pathway. Overweight subjects exhibited an inhibition of mitophagy that was linked to an increase in mitochondrial biogenesis that underlies the accumulation of dysfunctional mitochondria and encourages the onset of sarcopenia. As a strategy to maintain cellular homeostasis, overweight subjects experienced a metabolic switch from oxidative to lactic acid fermentation metabolism, which allows continued ATP production under mitochondrial dysfunction, but without reaching physiological aged basal levels. This ATP depletion induced early signs of impaired contractile function and a decline in skeletal muscle structural integrity, evidenced by lower levels of filamin C. Our findings reveal the main effector pathways at an early stage of obesity and highlight the importance of mitochondrial metabolism in overweight and obese individuals. Exploiting mitochondrial profiles for therapeutic purposes in humans is an ambitious strategy for treating muscle impairment diseases., Competing Interests: Conflict of interest The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
29. Associations of the antioxidant capacity and hemoglobin levels with functional physical performance of the upper and lower body limbs.
- Author
-
Caballero B, Rubio-González A, Potes Y, Martínez-Reig M, Sánchez-Jurado PM, Romero L, Solano JJ, Abizanda P, and Coto-Montes A
- Subjects
- Activities of Daily Living, Aged, Female, Follow-Up Studies, Humans, Male, Oxidative Stress, Antioxidants metabolism, Hand Strength physiology, Hemoglobins metabolism, Lower Extremity physiology, Motor Activity physiology, Physical Fitness physiology, Upper Extremity physiology
- Abstract
Herein we considered the role of oxidative stress on deficiencies of functional physical performance that could affect a future pre-frailty condition. Using principal component analyses (PCA), we created new variables to better describe the functionality regarding the physical performance of the upper and lower body limbs. Gait speed and the Short Physical Performance Battery (SPPB) score were classified by PCA to describe functional performance of the lower body limbs. Variables describing the general physical status, including weekly consumption of kilocalories and the musculoskeletal index, were classified together with grip strength of the dominant hand as indicators of functional performance of the upper body limbs. An intimate association between the functional physical performance of the upper body limbs and the total antioxidant capacity was observed in older subjects. Low levels of total antioxidant capacity were found in women 76 years or younger with deficiencies in the physical performance of both upper and lower body limbs. Similarly, we observed a close association between the functional physical performance of the lower body limbs and the levels of hemoglobin. In particular, low levels of hemoglobin were mostly found in men older than 76 years of age, showing impaired functional physical performance. In addition, the physical performance of the lower body limbs was shown to be more important than that of the upper body limbs in the statistical association with pre-frailty in the elderly. Therefore, specific low levels of hemoglobin and deficient oxidative defense in the elderly could significantly affect the functional physical performance and future outcomes of pre-frailty.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.