4 results on '"Peizhuan Chen"'
Search Results
2. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment
- Author
-
Guofu Hou, Peizhuan Chen, Yi Ding, and Qi Hua Fan
- Subjects
Materials science ,02 engineering and technology ,01 natural sciences ,Light scattering ,law.invention ,law ,0103 physical sciences ,Solar cell ,Materials Chemistry ,back reflector ,Thin film ,Optical path length ,Photonic crystal ,010302 applied physics ,business.industry ,Scattering ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,thin-film silicon solar cell ,Solar cell efficiency ,lcsh:TA1-2040 ,Optoelectronics ,light-trapping ,Photonics ,lcsh:Engineering (General). Civil engineering (General) ,0210 nano-technology ,business ,photonic crystal - Abstract
One of the foremost challenges in designing thin-film silicon solar cells (TFSC) is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption layer, respectively. In this paper, highly promising light-trapping structures based on a photonic crystal (PC) for TFSCs were investigated via simulation and experiment. Firstly, a highly-reflective one-dimensional photonic crystal (1D-PC) was designed and fabricated. Then, two types of 1D-PC-based back reflectors (BRs) were proposed: Flat 1D-PC with random-textured aluminum-doped zinc oxide (AZO) or random-textured 1D-PC with AZO. These two newly-designed BRs demonstrated not only high reflectivity and sufficient conductivity, but also a strong light scattering property, which made them efficient candidates as the electrical contact and back reflector since the intrinsic losses due to the surface plasmon modes of the rough metal BRs can be avoided. Secondly, conical two-dimensional photonic crystal (2D-PC)-based BRs were investigated and optimized for amorphous a-SiGe:H solar cells. The maximal absorption value can be obtained with an aspect ratio of 1/2 and a period of 0.75 µm. To improve the full-spectral optical properties of solar cells, a periodically-modulated PC back reflector was proposed and experimentally demonstrated in the a-SiGe:H solar cell. This periodically-modulated PC back reflector, also called the quasi-crystal structure (QCS), consists of a large periodic conical PC and a randomly-textured Ag layer with a feature size of 500–1000 nm. The large periodic conical PC enables conformal growth of the layer, while the small feature size of Ag can further enhance the light scattering. In summary, a comprehensive study of the design, simulation and fabrication of 1D-PC- and 2D-PC-based back reflectors for TFSCs was carried out. Total absorption and device performance enhancement were achieved with the novel PC light-trapping systems because of their high reflectivity or high scattering property. Further research is necessary to illuminate the optimal structure design of PC-based back reflectors and high solar cell efficiency.
- Published
- 2017
- Full Text
- View/download PDF
3. Investigation on high-efficiency Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications.
- Author
-
Lei Zhang, Pingjuan Niu, Yuqiang Li, Minghui Song, Jianxin Zhang, Pingfan Ning, and Peizhuan Chen
- Subjects
SILICON solar cells ,METAL organic chemical vapor deposition ,SOLAR cells ,SOLAR cell efficiency ,OPEN-circuit voltage - Abstract
Ga
0.51 In0.49 P/In0.01 Ga0.99 As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25°C. In addition, the In0.01 Ga0.99 As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment.
- Author
-
Yi Ding, Peizhuan Chen, Qi Hua Fan, and Guofu Hou
- Subjects
THIN films ,PHOTONIC crystals ,ZINC oxide - Abstract
One of the foremost challenges in designing thin-film silicon solar cells (TFSC) is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption layer, respectively. In this paper, highly promising light-trapping structures based on a photonic crystal (PC) for TFSCs were investigated via simulation and experiment. Firstly, a highly-reflective one-dimensional photonic crystal (1D-PC) was designed and fabricated. Then, two types of 1D-PC-based back reflectors (BRs) were proposed: Flat 1D-PC with random-textured aluminum-doped zinc oxide (AZO) or random-textured 1D-PC with AZO. These two newly-designed BRs demonstrated not only high reflectivity and sufficient conductivity, but also a strong light scattering property, which made them efficient candidates as the electrical contact and back reflector since the intrinsic losses due to the surface plasmon modes of the rough metal BRs can be avoided. Secondly, conical two-dimensional photonic crystal (2D-PC)-based BRs were investigated and optimized for amorphous a-SiGe:H solar cells. The maximal absorption value can be obtained with an aspect ratio of 1/2 and a period of 0.75 μm. To improve the full-spectral optical properties of solar cells, a periodically-modulated PC back reflector was proposed and experimentally demonstrated in the a-SiGe:H solar cell. This periodically-modulated PC back reflector, also called the quasi-crystal structure (QCS), consists of a large periodic conical PC and a randomly-textured Ag layer with a feature size of 500-1000 nm. The large periodic conical PC enables conformal growth of the layer, while the small feature size of Ag can further enhance the light scattering. In summary, a comprehensive study of the design, simulation and fabrication of 1D-PC- and 2D-PC-based back reflectors for TFSCs was carried out. Total absorption and device performance enhancement were achieved with the novel PC light-trapping systems because of their high reflectivity or high scattering property. Further research is necessary to illuminate the optimal structure design of PC-based back reflectors and high solar cell efficiency. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.