111 results on '"Osoegawa, K."'
Search Results
2. Alphoid DNA from different chromosomes forms de novo minichromosomes with high efficiency
- Author
-
Kaname, T., McGuigan, A., Georghiou, A., Yurov, Y., Osoegawa, K., De Jong, P. J., Ioannou, P., and Huxley, C.
- Published
- 2005
- Full Text
- View/download PDF
3. Comparative analyses of multi-species sequences from targeted genomic regions
- Author
-
Thomas, J. W., Touchman, J. W., Blakesley, R. W., Bouffard, G. G., Beckstrom-Sternberg, S. M., Margulies, E. H., Blanchette, M., Siepel, A. C., Thomas, P. J., McDowell, J. C., Maskeri, B., Hansen, N. F., Schwartz, M. S., Weber, R. J., Kent, W. J., Karolchik, D., Bruen, T. C., Bevan, R., Cutler, D. J., Schwartz, S., Elnitski, L., Idol, J. R., Prasad, A. B., Lee-Lin, S.-Q., Maduro, V. V. B., Summers, T. J., Portnoy, M. E., Dietrich, N. L., Akhter, N., Ayele, K., Benjamin, B., Cariaga, K., Brinkley, C. P., Brooks, S. Y., Granite, S., Guan, X., Gupta, J., Haghighi, P., Ho, S.-L., Huang, M. C., Karlins, E., Laric, P. L., Legaspi, R., Lim, M. J., Maduro, Q. L., Masiello, C. A., Mastrian, S. D., McCloskey, J. C., Pearson, R., Stantripop, S., Tiongson, E. E., Tran, J. T., Tsurgeon, C., Vogt, J. L., Walker, M. A., Wetherby, K. D., Wiggins, L. S., Young, A. C., Zhang, L.-H., Osoegawa, K., Zhu, B., Zhao, B., Shu, C. L., De Jong, P. J., Lawrence, C. E., Smit, A. F., Chakravarti, A., Haussler, D., Green, P., Miller, W., and Green, E. D.
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): J. W. Thomas [1, 11]; J. W. Touchman [1, 2, 11]; R. W. Blakesley [1, 2]; G. G. Bouffard [1, 2]; S. M. Beckstrom-Sternberg [1, 2]; E. H. Margulies [...]
- Published
- 2003
- Full Text
- View/download PDF
4. Integration of cytogenetic landmarks into the draft sequence of the human genome
- Author
-
BAC Resource Consortium, The, Cheung, V. G., Nowak, N., Jang, W., Kirsch, I. R., Zhao, S., Chen, X.-N., Furey, T. S., Kim, U.-J., Kuo, W.-L., Olivier, M., Conroy, J., Kasprzyk, A., Massa, H., Yonescu, R., Sait, S., Thoreen, C., Snijders, A., Lemyre, E., Bailey, J. A., Bruzel, A., Burrill, W. D., Clegg, S. M., Collins, S., Dhami, P., Friedman, C., Han, C. S., Herrick, S., Lee, J., Ligon, A. H., Lowry, S., Morley, M., Narasimhan, S., Osoegawa, K., Peng, Z., Plajzer-Frick, I., Quade, B. J., Scott, D., Sirotkin, K., Thorpe, A. A., Gray, J. W., Hudson, J., Pinkel, D., Ried, T., Rowen, L., Shen-Ong, G. L., Strausberg, R. L., Birney, E., Callen, D. F., Cheng, J.-F., Cox, D. R., Doggett, N. A., Carter, N. P., Eichler, E. E., Haussler, D., Korenberg, J. R., Morton, C. C., Albertson, D., Schuler, G., de Jong, P. J., and Trask, B. J.
- Published
- 2001
- Full Text
- View/download PDF
5. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation
- Author
-
Osoegawa, K, Vessere, G M, Utami, K H, Mansilla, M A, Johnson, M K, Riley, B M, L’Heureux, J, Pfundt, R, Staaf, J, van der Vliet, W A, Lidral, A C, Schoenmakers, E F P M, Borg, A, Schutte, B C, Lammer, E J, Murray, J C, and de Jong, P J
- Published
- 2008
- Full Text
- View/download PDF
6. High resolution profiling of X chromosomal aberrations by array comparative genomic hybridisation
- Author
-
Veltman, J A, Yntema, H G, Lugtenberg, D, Arts, H, Briault, S, Huys, E H L P G, Osoegawa, K, de Jong, P, Brunner, H G, van Kessel, A Geurts, van Bokhoven, H, and Schoenmakers, E F P M
- Published
- 2004
7. Initial sequencing and analysis of the human genome
- Author
-
Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, Devon, K, Dewar, K, Doyle, M, FitzHugh, W, Funke, R, Gage, D, Harris, K, Heaford, A, Howland, J, Kann, L, Lehoczky, J, LeVine, R, McEwan, P, McKernan, K, Meldrim, J, Mesirov, JP, Miranda, C, Morris, W, Naylor, J, Raymond, C, Rosetti, M, Santos, R, Sheridan, A, Sougnez, C, Stange-Thomann, N, Stojanovic, N, Subramanian, A, Wyman, D, Rogers, J, Sulston, J, Ainscough, R, Beck, S, Bentley, D, Burton, J, Clee, C, Carter, N, Coulson, A, Deadman, R, Deloukas, P, Dunham, A, Dunham, I, Durbin, R, French, L, Grafham, D, Gregory, S, Hubbard, T, Humphray, S, Hunt, A, Jones, M, Lloyd, C, McMurray, A, Matthews, L, Mercer, S, Milne, S, Mullikin, JC, Mungall, A, Plumb, R, Ross, M, Shownkeen, R, Sims, S, Waterston, RH, Wilson, RK, Hillier, LW, McPherson, JD, Marra, MA, Mardis, ER, Fulton, LA, Chinwalla, AT, Pepin, KH, Gish, WR, Chissoe, SL, Wendl, MC, Delehaunty, KD, Miner, TL, Delehaunty, A, Kramer, JB, Cook, LL, Fulton, RS, Johnson, DL, Minx, PJ, Clifton, SW, Hawkins, T, Branscomb, E, Predki, P, Richardson, P, Wenning, S, Slezak, T, Doggett, N, Cheng, JF, Olsen, A, Lucas, S, Elkin, C, Uberbacher, E, Frazier, M, Gibbs, RA, Muzny, DM, Scherer, SE, Bouck, JB, Sodergren, EJ, Worley, KC, Rives, CM, Gorrell, JH, Metzker, ML, Naylor, SL, Kucherlapati, RS, Nelson, DL, Weinstock, GM, Sakaki, Y, Fujiyama, A, Hattori, M, Yada, T, Toyoda, A, Itoh, T, Kawagoe, C, Watanabe, H, Totoki, Y, Taylor, T, Weissenbach, J, Heilig, R, Saurin, W, Artiguenave, F, Brottier, P, Bruls, T, Pelletier, E, Robert, C, Wincker, P, Smith, DR, Doucette-Stamm, L, Rubenfield, M, Weinstock, K, Lee, HM, Dubois, J, Rosenthal, A, Platzer, M, Nyakatura, G, Taudien, S, Rump, A, Yang, H, Yu, J, Wang, J, Huang, G, Gu, J, Hood, L, Rowen, L, Madan, A, Qin, S, Davis, RW, Federspiel, NA, Abola, AP, Proctor, MJ, Myers, RM, Schmutz, J, Dickson, M, Grimwood, J, Cox, DR, Olson, MV, Kaul, R, Shimizu, N, Kawasaki, K, Minoshima, S, Evans, GA, Athanasiou, M, Schultz, R, Roe, BA, Chen, F, Pan, H, Ramser, J, Lehrach, H, Reinhardt, R, McCombie, WR, de la Bastide, M, Dedhia, N, Blöcker, H, Hornischer, K, Nordsiek, G, Agarwala, R, Aravind, L, Bailey, JA, Bateman, A, Batzoglou, S, Birney, E, Bork, P, Brown, DG, Burge, CB, Cerutti, L, Chen, HC, Church, D, Clamp, M, Copley, RR, Doerks, T, Eddy, SR, Eichler, EE, Furey, TS, Galagan, J, Gilbert, JG, Harmon, C, Hayashizaki, Y, Haussler, D, Hermjakob, H, Hokamp, K, Jang, W, Johnson, LS, Jones, TA, Kasif, S, Kaspryzk, A, Kennedy, S, Kent, WJ, Kitts, P, Koonin, EV, Korf, I, Kulp, D, Lancet, D, Lowe, TM, McLysaght, A, Mikkelsen, T, Moran, JV, Mulder, N, Pollara, VJ, Ponting, CP, Schuler, G, Schultz, J, Slater, G, Smit, AF, Stupka, E, Szustakowski, J, Thierry-Mieg, D, Thierry-Mieg, J, Wagner, L, Wallis, J, Wheeler, R, Williams, A, Wolf, YI, Wolfe, KH, Yang, SP, Yeh, RF, Collins, F, Guyer, MS, Peterson, J, Felsenfeld, A, Wetterstrand, KA, Patrinos, A, Morgan, MJ, de Jong, P, Catanese, JJ, Osoegawa, K, Shizuya, H, Choi, S, Chen, YJ, and Szustakowki, J
- Subjects
Genetics ,Cancer genome sequencing ,Chimpanzee genome project ,Multidisciplinary ,Cancer Genome Project ,Gene density ,DNA sequencing theory ,Hybrid genome assembly ,Computational biology ,Biology ,Genome ,Personal genomics - Abstract
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
- Published
- 2016
- Full Text
- View/download PDF
8. BAC Libraries From Non-human Primates and Other Model Organisms for Comparative Genome Analysis
- Author
-
Zhu, B., Osoegawa, K., Shu, C., and deJong, P.
- Subjects
Human genetics -- Research ,Genomics -- Comparative analysis ,Primates -- Research ,Data libraries -- Usage ,Biological sciences - Published
- 2001
9. Construction and application of BAC libraries constructed using sheared DNA
- Author
-
Osoegawa, K., Shu, C.-L., and de Jong, P.J.
- Subjects
Chromosome mapping -- Methods ,Human genetics -- Research ,Biological sciences - Published
- 2001
10. Islands of euchromatic-like sequence and expressed genes within the heterochromatic regions: lessons from the initial sequence analysis of 21p
- Author
-
Prandini, Paola, Lyle, R., Osoegawa, K., ten Hallers, B., Humphray, S., Zhu, B., Eyras, E., Castelo, R., Bird, C., Cruts, M., Dahoun, S., She, X., van Broeckhoven, C., Eichler, E., Guigo, R., Rogers, J., de Jong, P., Reymond, A., and Antonarakis, S. E.
- Published
- 2005
11. The zebrafish reference genome sequence and its relationship to the human genome.
- Author
-
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assuncao, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliot, D., Threadgold, G., Harden, G., Ware, D., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Urun, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberlander, M., Rudolph-Geiger, S., Teucke, M., Osoegawa, K., Zhu, B., rapp, A., Widaa, S., Langford, C., Yang, F., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M., Enright, A., Geisler, R., Plasterk, R.H.A., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nusslein-Volhard, C., Hubbard, T.J., Roest Crollius, H., Rogers, J., Stemple, D.L., Begum, S., Lloyd, C., Lanz, C., Raddatz, G., Schuster, S.C., Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assuncao, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliot, D., Threadgold, G., Harden, G., Ware, D., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Urun, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberlander, M., Rudolph-Geiger, S., Teucke, M., Osoegawa, K., Zhu, B., rapp, A., Widaa, S., Langford, C., Yang, F., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M., Enright, A., Geisler, R., Plasterk, R.H.A., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nusslein-Volhard, C., Hubbard, T.J., Roest Crollius, H., Rogers, J., Stemple, D.L., Begum, S., Lloyd, C., Lanz, C., Raddatz, G., and Schuster, S.C.
- Abstract
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination., Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
- Published
- 2013
12. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis
- Author
-
Osoegawa K, Tateno M, Py, Woon, Eirik Frengen, Ag, Mammoser, Jj, Catanese, Hayashizaki Y, and Pj, Jong
- Subjects
Brain Chemistry ,Genetic Markers ,Resource ,Genomic Library ,Molecular Sequence Data ,food and beverages ,Reproducibility of Results ,DNA ,Sequence Analysis, DNA ,Chromosomes, Bacterial ,Kidney ,Mice, Inbred C57BL ,Mice ,Animals ,Female ,Bacteriophage P1 ,Spleen - Abstract
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries providing a combined 33-fold representation of the murine genome have been constructed using two different restriction enzymes for genomic digestion. A large-insert PAC library was prepared from the 129S6/SvEvTac strain in a bacterial/mammalian shuttle vector to facilitate functional gene studies. For genome mapping and sequencing, we prepared BAC libraries from the 129S6/SvEvTac and the C57BL/6J strains. The average insert sizes for the three libraries range between 130 kb and 200 kb. Based on the numbers of clones and the observed average insert sizes, we estimate each library to have slightly in excess of 10-fold genome representation. The average number of clones found after hybridization screening with 28 probes was in the range of 9-14 clones per marker. To explore the fidelity of the genomic representation in the three libraries, we analyzed three contigs, each established after screening with a single unique marker. New markers were established from the end sequences and screened against all the contig members to determine if any of the BACs and PACs are chimeric or rearranged. Only one chimeric clone and six potential deletions have been observed after extensive analysis of 113 PAC and BAC clones. Seventy-one of the 113 clones were conclusively nonchimeric because both end markers or sequences were mapped to the other confirmed contig members. We could not exclude chimerism for the remaining 41 clones because one or both of the insert termini did not contain unique sequence to design markers. The low rate of chimerism, approximately 1%, and the low level of detected rearrangements support the anticipated usefulness of the BAC libraries for genome research.
- Published
- 2000
13. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation.
- Author
-
Osoegawa, K., Vessere, G.M., Utami, K.H., Mansilla, M.A., Johnson, M.K., Riley, B.M., L'Heureux, J., Pfundt, R.P., Staaf, J., Vliet, W.A. van der, Lidral, A.C., Schoenmakers, E.F.P.M., Borg, A., Schutte, B.C., Lammer, E.J., Murray, J.C., Jong, P.J. de, Osoegawa, K., Vessere, G.M., Utami, K.H., Mansilla, M.A., Johnson, M.K., Riley, B.M., L'Heureux, J., Pfundt, R.P., Staaf, J., Vliet, W.A. van der, Lidral, A.C., Schoenmakers, E.F.P.M., Borg, A., Schutte, B.C., Lammer, E.J., Murray, J.C., and Jong, P.J. de
- Abstract
Contains fulltext : 69885.pdf (publisher's version ) (Closed access), AIM AND METHOD: We analysed DNA samples isolated from individuals born with cleft lip and cleft palate to identify deletions and duplications of candidate gene loci using array comparative genomic hybridisation (array-CGH). RESULTS: Of 83 syndromic cases analysed we identified one subject with a previously unknown 2.7 Mb deletion at 22q11.21 coinciding with the DiGeorge syndrome region. Eighteen of the syndromic cases had clinical features of Van der Woude syndrome and deletions were identified in five of these, all of which encompassed the interferon regulatory factor 6 (IRF6) gene. In a series of 104 non-syndromic cases we found one subject with a 3.2 Mb deletion at chromosome 6q25.1-25.2 and another with a 2.2 Mb deletion at 10q26.11-26.13. Analyses of parental DNA demonstrated that the two deletion cases at 22q11.21 and 6q25.1-25.2 were de novo, while the deletion of 10q26.11-26.13 was inherited from the mother, who also has a cleft lip. These deletions appear likely to be causally associated with the phenotypes of the subjects. Estrogen receptor 1 (ESR1) and fibroblast growth factor receptor 2 (FGFR2) genes from the 6q25.1-25.2 and 10q26.11-26.13, respectively, were identified as likely causative genes using a gene prioritization software. CONCLUSION: We have shown that array-CGH analysis of DNA samples derived from cleft lip and palate subjects is an efficient and productive method for identifying candidate chromosomal loci and genes, complementing traditional genetic mapping strategies.
- Published
- 2008
14. A high-resolution map of synteny disruptions in gibbon and human genomes
- Author
-
Carbone, L, Vessere, GM, ten Hallers, BFH, Zhu, B, Osoegawa, K, Mootnick, A, Kofler, A, Wienberg, J, Rogers, J, Humphray, S, Scott, C, Harris, RA, Milosavljevic, A, de Jong, PJ, Carbone, L, Vessere, GM, ten Hallers, BFH, Zhu, B, Osoegawa, K, Mootnick, A, Kofler, A, Wienberg, J, Rogers, J, Humphray, S, Scott, C, Harris, RA, Milosavljevic, A, and de Jong, PJ
- Abstract
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.
- Published
- 2006
15. A set of BAC clones spanning the human genome.
- Author
-
Krzywinski, M., Bosdet, I., Smailus, D., Chiu, R., Mathewson, C., Wye, N., Barber, S., Brown-John, M., Chan, S., Chand, S., Cloutier, A., Girn, N., Lee, D., Masson, A., Mayo, M., Olson, T., Pandoh, P., Prabhu, A.L., Schoenmakers, E.F.P.M., Tsai, M.Y., Albertson, D., Lam, W.W., Choy, C.O., Osoegawa, K., Zhao, S., Jong, P.J. de, Schein, J., Jones, S., Marra, M.A., Krzywinski, M., Bosdet, I., Smailus, D., Chiu, R., Mathewson, C., Wye, N., Barber, S., Brown-John, M., Chan, S., Chand, S., Cloutier, A., Girn, N., Lee, D., Masson, A., Mayo, M., Olson, T., Pandoh, P., Prabhu, A.L., Schoenmakers, E.F.P.M., Tsai, M.Y., Albertson, D., Lam, W.W., Choy, C.O., Osoegawa, K., Zhao, S., Jong, P.J. de, Schein, J., Jones, S., and Marra, M.A.
- Abstract
Contains fulltext : 57492.pdf (publisher's version ) (Open Access), Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human fingerprint map, 99% of the current assembled sequence and has an effective resolving power of 79 kb. We have made the clone set publicly available, anticipating that it will generally facilitate FISH or array-CGH-based identification and characterization of chromosomal alterations relevant to disease.
- Published
- 2004
16. High resolution profiling of X chromosomal aberrations by array comparative genomic hybridisation.
- Author
-
Veltman, J.A., Yntema, H.G., Lugtenberg, D., Arts, H.H., Briault, S., Huys, E., Osoegawa, K., Jong, P. de, Brunner, H.G., Geurts van Kessel, A.H.M., Bokhoven, J.H.L.M. van, Schoenmakers, E.F.P.M., Veltman, J.A., Yntema, H.G., Lugtenberg, D., Arts, H.H., Briault, S., Huys, E., Osoegawa, K., Jong, P. de, Brunner, H.G., Geurts van Kessel, A.H.M., Bokhoven, J.H.L.M. van, and Schoenmakers, E.F.P.M.
- Abstract
Contains fulltext : 58308.pdf (publisher's version ) (Closed access)
- Published
- 2004
17. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities.
- Author
-
Vissers, L.E.L.M., Vries, L.B.A. de, Osoegawa, K., Janssen, I.M., Feuth, A.B., Choy, C.O., Straatman, H.M.P.M., Vliet, W. van der, Huys, E., Rijk, A. van de, Smeets, D.F.C.M., Ravenswaaij-Arts, C.M.A. van, Knoers, N.V.A.M., Burgt, C.J.A.M. van der, Jong, P.J. de, Brunner, H.G., Geurts van Kessel, A.H.M., Schoenmakers, E.F.P.M., Veltman, J.A., Vissers, L.E.L.M., Vries, L.B.A. de, Osoegawa, K., Janssen, I.M., Feuth, A.B., Choy, C.O., Straatman, H.M.P.M., Vliet, W. van der, Huys, E., Rijk, A. van de, Smeets, D.F.C.M., Ravenswaaij-Arts, C.M.A. van, Knoers, N.V.A.M., Burgt, C.J.A.M. van der, Jong, P.J. de, Brunner, H.G., Geurts van Kessel, A.H.M., Schoenmakers, E.F.P.M., and Veltman, J.A.
- Abstract
Item does not contain fulltext, Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using approximately 3,500 flourescent in situ hybridization-verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome.
- Published
- 2003
18. Source and component genes of a 6-200 Mb gene cluster in the house mouse.
- Author
-
Weichenhan, D., Kunze, B., Winking, H., Geel, M. van, Osoegawa, K., Jong, P.J. de, Traut, W., Weichenhan, D., Kunze, B., Winking, H., Geel, M. van, Osoegawa, K., Jong, P.J. de, and Traut, W.
- Abstract
Item does not contain fulltext, We identified and analyzed the genes Sp100, Csprs, and Ifi75 in two members of the genus Mus, M. musculus and M. caroli. Sp100 is a nuclear dot gene; Csprs and Ifi75 are novel genes encoding a putative G-protein coupled receptor (GPCR) and a putative transcriptional coactivator, respectively. A fourth gene, Sp100-rs, occurs in M. musculus, but not in M. caroli. Sp100-rs is a chimeric gene which arose by fusion of Sp100 and Csprs copies. Sp100-rs and Ifi75 are components of a repeat cluster that extends over 6-200 Mb of the M. musculus genome. The Sp100-rs fusion gene arose only 1-2 million years ago and has become fixed and amplified in M. musculus. Although the gene is transcribed, it appears to have no function. The repeat cluster may have become fixed in the species as a 'hitchhiker' in a 'selective sweep'.
- Published
- 2001
19. Islands of euchromatin-like sequence and expressed polymorphic sequences within the short arm of human chromosome 21
- Author
-
Lyle, R., primary, Prandini, P., additional, Osoegawa, K., additional, ten Hallers, B., additional, Humphray, S., additional, Zhu, B., additional, Eyras, E., additional, Castelo, R., additional, Bird, C. P., additional, Gagos, S., additional, Scott, C., additional, Cox, A., additional, Deutsch, S., additional, Ucla, C., additional, Cruts, M., additional, Dahoun, S., additional, She, X., additional, Bena, F., additional, Wang, S.-Y., additional, Van Broeckhoven, C., additional, Eichler, E. E., additional, Guigo, R., additional, Rogers, J., additional, de Jong, P. J., additional, Reymond, A., additional, and Antonarakis, S. E., additional
- Published
- 2007
- Full Text
- View/download PDF
20. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation
- Author
-
Osoegawa, K, primary, Vessere, G M, additional, Utami, K H, additional, Mansilla, M A, additional, Johnson, M K, additional, Riley, B M, additional, L'Heureux, J, additional, Pfundt, R, additional, Staaf, J, additional, van der Vliet, W A, additional, Lidral, A C, additional, Schoenmakers, E F P M, additional, Borg, A, additional, Schutte, B C, additional, Lammer, E J, additional, Murray, J C, additional, and de Jong, P J, additional
- Published
- 2007
- Full Text
- View/download PDF
21. A 19-kb CpG Island Associated with Single-minded Gene 2 in Down Syndrome Chromosomal Region
- Author
-
Osoegawa, K., primary, Okano, S., additional, Kato, Y., additional, Nishimura, Y., additional, and Soeda, E., additional
- Published
- 1996
- Full Text
- View/download PDF
22. A bacterial artificial chromosome library for sequencing the complete human genome.
- Author
-
Osoegawa, K, Mammoser, A G, Wu, C, Frengen, E, Zeng, C, Catanese, J J, and de Jong, P J
- Abstract
A 30-fold redundant human bacterial artificial chromosome (BAC) library with a large average insert size (178 kb) has been constructed to provide the intermediate substrate for the international genome sequencing effort. The DNA was obtained from a single anonymous volunteer, whose identity was protected through a double-blind donor selection protocol. DNA fragments were generated by partial digestion with EcoRI (library segments 1--4: 24-fold) and MboI (segment 5: sixfold) and cloned into the pBACe3.6 and pTARBAC1 vectors, respectively. The quality of the library was assessed by extensive analysis of 169 clones for rearrangements and artifacts. Eighteen BACs (11%) revealed minor insert rearrangements, and none was chimeric. This BAC library, designated as "RPCI-11," has been used widely as the central resource for insert-end sequencing, clone fingerprinting, high-throughput sequence analysis and as a source of mapped clones for diagnostic and functional studies.
- Published
- 2001
- Full Text
- View/download PDF
23. Isolation of a cosmid clone corresponding to an inv(21) breakpoint of a patient with transient abnormal myelopoiesis
- Author
-
Ohta, T., Nakano, M., Tsujita, T., Abe, K., Osoegawa, K., Tetsushi Yamagata, Yoshiura, K. -I, Jinno, Y., Soeda, E., Nakamura, Y., and Niikawa, N.
- Subjects
Adult ,Male ,Myeloproliferative Disorders ,Base Sequence ,Chromosomes, Human, Pair 21 ,Molecular Sequence Data ,Infant, Newborn ,Cosmids ,Chromosome Walking ,Chromosome Inversion ,Humans ,Female ,Cloning, Molecular ,Down Syndrome ,Research Article ,Sequence Tagged Sites - Abstract
Transient abnormal myelopoiesis (TAM) is a leukemoid reaction occurring occasionally on Down syndrome (DS) newborn infants. It has been hypothesized that "disomic homozygosity" in 21-trisomic cells plays an important role in the genesis of TAM, and the putative TAM gene was suggested to be mapped at a 21q11 region. We encountered a DS-associated TAM infant with a 47,XY,inv(21)(q11.1q22.13),+inv(21)(q11.1q22.13) karyotype. On the basis of another presumption that in this patient the putative TAM gene is disrupted by the break, we tried to isolate a breakpoint DNA. FISH analysis with cosmid clones corresponding to various sequence-tagged-site (STS) markers mapped at around 21q11.1-q11.2, we confirmed that the proximal breakpoint of the inv(21) was located between two STSs, G51E07 and D21S215, the latter locus being consistent with the previous tentative mapping. After construction of a cosmid contig encompassing between the two markers, we have isolated a cosmid clone corresponding to the proximal breakpoint of the inversion. This breakpoint was located near a previously identified duplicated region that is homologous to the sequence at 21q22.1. The isolated cosmid clone is useful for analysis of other TAM patients and for a search for a transcript at or flanking the breakpoint.
24. High-resolution DNA methylation screening of the major histocompatibility complex in multiple sclerosis.
- Author
-
Ma Q, Augusto DG, Montero-Martin G, Caillier SJ, Osoegawa K, Cree BAC, Hauser SL, Didonna A, Hollenbach JA, Norman PJ, Fernandez-Vina M, and Oksenberg JR
- Abstract
Background: The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods., Methods: We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls., Results: We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen ( HLA ) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk., Results: The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2023 Ma, Augusto, Montero-Martin, Caillier, Osoegawa, Cree, Hauser, Didonna, Hollenbach, Norman, Fernandez-Vina and Oksenberg.)
- Published
- 2023
- Full Text
- View/download PDF
25. Deconvoluting complex correlates of COVID-19 severity with a multi-omic pandemic tracking strategy.
- Author
-
Parikh VN, Ioannidis AG, Jimenez-Morales D, Gorzynski JE, De Jong HN, Liu X, Roque J, Cepeda-Espinoza VP, Osoegawa K, Hughes C, Sutton SC, Youlton N, Joshi R, Amar D, Tanigawa Y, Russo D, Wong J, Lauzon JT, Edelson J, Mas Montserrat D, Kwon Y, Rubinacci S, Delaneau O, Cappello L, Kim J, Shoura MJ, Raja AN, Watson N, Hammond N, Spiteri E, Mallempati KC, Montero-Martín G, Christle J, Kim J, Kirillova A, Seo K, Huang Y, Zhao C, Moreno-Grau S, Hershman SG, Dalton KP, Zhen J, Kamm J, Bhatt KD, Isakova A, Morri M, Ranganath T, Blish CA, Rogers AJ, Nadeau K, Yang S, Blomkalns A, O'Hara R, Neff NF, DeBoever C, Szalma S, Wheeler MT, Gates CM, Farh K, Schroth GP, Febbo P, deSouza F, Cornejo OE, Fernandez-Vina M, Kistler A, Palacios JA, Pinsky BA, Bustamante CD, Rivas MA, and Ashley EA
- Subjects
- Genome, Viral, Genome-Wide Association Study, Humans, SARS-CoV-2 genetics, COVID-19 epidemiology, Pandemics
- Abstract
The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
26. High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility.
- Author
-
Osoegawa K, Creary LE, Montero-Martín G, Mallempati KC, Gangavarapu S, Caillier SJ, Santaniello A, Isobe N, Hollenbach JA, Hauser SL, Oksenberg JR, and Fernández-Viňa MA
- Subjects
- Adolescent, Adult, Case-Control Studies, Child, Female, Genotyping Techniques, Humans, Male, Middle Aged, Alleles, Genetic Predisposition to Disease, HLA-DP Antigens genetics, HLA-DP Antigens immunology, Haplotypes, Multiple Sclerosis genetics, Multiple Sclerosis immunology
- Abstract
Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Osoegawa, Creary, Montero-Martín, Mallempati, Gangavarapu, Caillier, Santaniello, Isobe, Hollenbach, Hauser, Oksenberg and Fernández-Viňa.)
- Published
- 2021
- Full Text
- View/download PDF
27. Assessment by Extended-Coverage Next-Generation Sequencing Typing of DPA1 and DPB1 Mismatches in Siblings Matching at HLA-A, -B, -C, -DRB1, and -DQ Loci.
- Author
-
Mariano L, Zhang BM, Osoegawa K, Lowsky R, and Fernandez-Vina M
- Subjects
- Algorithms, Allografts, Female, Hematopoietic Stem Cell Transplantation, High-Throughput Nucleotide Sequencing, Humans, Male, Donor Selection, Epitopes, T-Lymphocyte genetics, Genetic Loci, HLA-A Antigens genetics, HLA-B Antigens genetics, HLA-C Antigens genetics, HLA-DQ Antigens genetics, HLA-DRB1 Chains genetics, Histocompatibility Testing, Siblings
- Abstract
Allogeneic hematopoietic stem cell transplant from an HLA matched sibling donor is usually the preferable choice. The use of next-generation sequencing (NGS) for HLA typing in clinical practice provides broader coverage and higher resolution of HLA genes. We evaluated the frequency of DPB1 crossing-over events among patients and potential related donors typed with NGS. From July 2016 to January 2018, 593 patients and 2385 siblings were typed. We evaluated sibling matching status in 546 patients, and 44.8% of these patients had siblings that matched at HLA-A, -B, -C, -DRB1, and -DQB1 loci. In 306 patient-HLA matched sibling pairs, we found 6 pairs (1.96%) with 1 DPB1 mismatch, and 5 of these pairs included an additional mismatch in DPA1. No additional mismatches were observed at the low expression loci. Using the T cell epitope algorithm, 4 of these DP mismatches were classified as permissive, 1 as nonpermissive in the host-versus-graft direction, and 1 as nonpermissive in the graft-versus-host direction. The frequency of DPB1 and DPA1 mismatches is low, and their impact in related donor transplants is not well established. Although DP typing in related transplants goes beyond guidelines, it is especially relevant for sensitized patients. NGS-based HLA typing provides full gene coverage, and its use in clinical practice can enable better donor selection., (Copyright © 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
28. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson's disease.
- Author
-
Hollenbach JA, Norman PJ, Creary LE, Damotte V, Montero-Martin G, Caillier S, Anderson KM, Misra MK, Nemat-Gorgani N, Osoegawa K, Santaniello A, Renschen A, Marin WM, Dandekar R, Parham P, Tanner CM, Hauser SL, Fernandez-Viña M, and Oksenberg JR
- Subjects
- Amino Acid Motifs, Female, Genotyping Techniques, Humans, Male, Risk Factors, Genotype, HLA-DRB1 Chains chemistry, HLA-DRB1 Chains genetics, Models, Molecular, Parkinson Disease genetics, Smoking genetics
- Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA , but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70-74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the "shared epitope" (SE), the residues Q/R-K/R-R-A-A at positions 70-74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V ( P = 10
-4 ; odds ratio, 0.51; 95% confidence interval, 0.36-0.72) and risk attributable to never smoking in combination with the SE without 11-V ( P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08-2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD., Competing Interests: Conflict of interest statement: S.L.H. currently serves on the Science Advisory Boards of Symbiotix, Annexon, Bionure, and Molecular Stethoscope and on the Board of Trustees of Neurona, and has received travel reimbursement and writing assistance from F. Hoffman-La Roche for CD20-related meetings and presentations., (Copyright © 2019 the Author(s). Published by PNAS.)- Published
- 2019
- Full Text
- View/download PDF
29. High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis.
- Author
-
Mack SJ, Udell J, Cohen F, Osoegawa K, Hawbecker SK, Noonan DA, Ladner MB, Goodridge D, Trachtenberg EA, Oksenberg JR, and Erlich HA
- Subjects
- Amino Acid Motifs, Haplotypes, Humans, Linkage Disequilibrium, HLA-DQ beta-Chains genetics, HLA-DRB1 Chains genetics, Multiple Sclerosis genetics, Polymorphism, Single Nucleotide
- Abstract
We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47-28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35-0.78; p = 7.55E-04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49-0.82; p = 3.37-04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.
- Published
- 2019
- Full Text
- View/download PDF
30. Correction: High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis.
- Author
-
Mack SJ, Udell J, Cohen F, Osoegawa K, Hawbecker SK, Noonan DA, Ladner MB, Goodridge D, Trachtenberg EA, Oksenberg JR, and Erlich HA
- Abstract
Since the publication of this article, the authors have found that the numbers of patients and controls were reversed. This study included 412 MS patients and 419 controls. This correction applies to the Abstract, the final paragraph of the Introduction, and the first paragraph of the Materials and Methods. This was entirely a reporting error and does not impact the Results or Conclusions.
- Published
- 2019
- Full Text
- View/download PDF
31. De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects.
- Author
-
Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, Lammer EJ, Girirajan S, Scheetz T, Waggott D, Haddad F, Reddy S, Bernstein D, Burns T, Steimle JD, Yang XH, Moskowitz IP, Hurles M, Lifton RP, Nickerson D, Bamshad M, Eichler EE, Mital S, Sheffield V, Quertermous T, Gelb BD, Portman M, and Ashley EA
- Subjects
- Animals, Female, Heterozygote, Homozygote, Humans, Male, Mice, Mice, Knockout, Mutation, Pedigree, Heart Septal Defects genetics
- Abstract
Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.
- Published
- 2016
- Full Text
- View/download PDF
32. Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries.
- Author
-
Osoegawa K, Schultz K, Yun K, Mohammed N, Shaw GM, and Lammer EJ
- Abstract
Congenital heart defects are the most common malformation, and are the foremost causes of mortality in the first year of life. Among congenital heart defects, conotruncal defects represent about 20% and are severe malformations with significant morbidity. Insulin gene enhancer protein 1 (ISL1) has been considered a candidate gene for conotruncal heart defects based on its embryonic expression pattern and heart defects induced in Isl1 knockout mice. Nevertheless no mutation of ISL1 has been reported from any human subject with a heart defect. From a population base of 974,579 births during 1999-2004, we used multiplex ligation-dependent probe amplification to screen for microdeletions/duplications of ISL1 among 389 infants with tetralogy of Fallot or d-transposition of the great arteries (d-TGA). We also sequenced all exons of ISL1. We identified a novel 20-kb microdeletion encompassing the entire coding region of ISL1, but not including either flanking gene, from an infant with d-TGA. We confirmed that the deletion was caused by nonhomologous end joining mechanism. Sequencing of exons of ISL1 did not reveal any subject with a novel nonsynonymous mutation. This is the first report of an ISL1 mutation of a child with a congenital heart defect.
- Published
- 2014
- Full Text
- View/download PDF
33. The zebrafish reference genome sequence and its relationship to the human genome.
- Author
-
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, and Stemple DL
- Subjects
- Animals, Chromosomes genetics, Evolution, Molecular, Female, Genes genetics, Genome, Human genetics, Genomics, Humans, Male, Meiosis genetics, Molecular Sequence Annotation, Pseudogenes genetics, Reference Standards, Sex Determination Processes genetics, Zebrafish Proteins genetics, Conserved Sequence genetics, Genome genetics, Zebrafish genetics
- Abstract
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
- Published
- 2013
- Full Text
- View/download PDF
34. Insights into bilaterian evolution from three spiralian genomes.
- Author
-
Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, and Rokhsar DS
- Subjects
- Animals, Conserved Sequence genetics, Genes, Homeobox genetics, Genetic Linkage, Genetic Speciation, Humans, INDEL Mutation genetics, Introns genetics, Leeches anatomy & histology, Mollusca anatomy & histology, Multigene Family genetics, Polychaeta anatomy & histology, Synteny genetics, Body Patterning genetics, Evolution, Molecular, Genome genetics, Leeches genetics, Mollusca genetics, Phylogeny, Polychaeta genetics
- Abstract
Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.
- Published
- 2013
- Full Text
- View/download PDF
35. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event.
- Author
-
Rudd MK, Endicott RM, Friedman C, Walker M, Young JM, Osoegawa K, de Jong PJ, Green ED, and Trask BJ
- Subjects
- Animals, Chromosomes, Artificial, Bacterial genetics, Chromosomes, Human genetics, Chromosomes, Human, Pair 4 genetics, Gorilla gorilla genetics, Humans, In Situ Hybridization, Fluorescence, Macaca mulatta genetics, Molecular Sequence Data, Multigene Family, Pan troglodytes genetics, Polymerase Chain Reaction, Pongo pygmaeus genetics, Receptors, Odorant genetics, Species Specificity, Chromosomes genetics, Primates genetics, Telomere genetics
- Abstract
Subtelomeres are concentrations of interchromosomal segmental duplications capped by telomeric repeats at the ends of chromosomes. The nature of the segments shared by different sets of human subtelomeres reflects their high rate of recent interchromosomal exchange. Here, we characterize the rearrangements incurred by the 15q subtelomere after it arose from a chromosome fission event in the common ancestor of great apes. We used FISH, sequencing of genomic clones, and PCR to map the breakpoint of this fission and track the fate of flanking sequence in human, chimpanzee, gorilla, orangutan, and macaque genomes. The ancestral locus, a cluster of olfactory receptor (OR) genes, lies internally on macaque chromosome 7. Sequence originating from this fission site is split between the terminus of 15q and the pericentromere of 14q in the great apes. Numerous structural rearrangements, including interstitial deletions and transfers of material to or from other subtelomeres, occurred subsequent to the fission, such that each species has a unique 15q structure and unique collection of ORs derived from the fission locus. The most striking rearrangement involved transfer of at least 200 kb from the fission-site region to the end of chromosome 4q, where much still resides in chimpanzee and gorilla, but not in human. This gross structural difference places the subtelomeric defect underlying facioscapulohumeral muscular dystrophy (FSHD) much closer to the telomere in human 4q than in the hybrid 4q-15q subtelomere of chimpanzee.
- Published
- 2009
- Full Text
- View/download PDF
36. Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs.
- Author
-
Horton AC, Mahadevan NR, Minguillon C, Osoegawa K, Rokhsar DS, Ruvinsky I, de Jong PJ, Logan MP, and Gibson-Brown JJ
- Subjects
- Animals, Gene Expression Regulation, Developmental, Humans, Male, Vertebrates embryology, Vertebrates genetics, Chordata, Nonvertebrate embryology, Chordata, Nonvertebrate genetics, Evolution, Molecular, Extremities embryology, T-Box Domain Proteins genetics
- Abstract
T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2-Tbx4 and Tbx3-Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance--often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression--is undoubtedly a consequence of other, much more ancient functional constraints.
- Published
- 2008
- Full Text
- View/download PDF
37. The amphioxus genome illuminates vertebrate origins and cephalochordate biology.
- Author
-
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, and Holland PW
- Subjects
- Animals, Chordata, Nonvertebrate physiology, Genes, Homeobox, Humans, Mice, Mice, Transgenic, Vertebrates physiology, Chordata, Nonvertebrate genetics, Evolution, Molecular, Genome, Phylogeny, Vertebrates genetics
- Abstract
Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.
- Published
- 2008
- Full Text
- View/download PDF
38. The amphioxus genome and the evolution of the chordate karyotype.
- Author
-
Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, and Rokhsar DS
- Subjects
- Animals, Chordata classification, Conserved Sequence, DNA Transposable Elements genetics, Gene Duplication, Genes genetics, Genetic Linkage, Humans, Introns genetics, Karyotyping, Multigene Family, Phylogeny, Polymorphism, Genetic genetics, Proteins genetics, Synteny, Time Factors, Vertebrates classification, Vertebrates genetics, Chordata genetics, Evolution, Molecular, Genome genetics
- Abstract
Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
- Published
- 2008
- Full Text
- View/download PDF
39. A BAC-based integrated linkage map of the silkworm Bombyx mori.
- Author
-
Yamamoto K, Nohata J, Kadono-Okuda K, Narukawa J, Sasanuma M, Sasanuma S, Minami H, Shimomura M, Suetsugu Y, Banno Y, Osoegawa K, de Jong PJ, Goldsmith MR, and Mita K
- Subjects
- Animals, Chromosomes, Artificial, Bacterial, Genomics methods, Male, Polymorphism, Single Nucleotide, Bombyx genetics, Chromosome Mapping methods, Genome, Insect
- Abstract
Background: In 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps., Results: We mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively., Conclusion: The integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.
- Published
- 2008
- Full Text
- View/download PDF
40. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
- Author
-
Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaöz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, and de Jong PJ
- Subjects
- Chromatin genetics, Chromatin metabolism, Chromatin Immunoprecipitation, Conserved Sequence genetics, DNA Replication, Evolution, Molecular, Exons genetics, Genetic Variation genetics, Heterozygote, Histones metabolism, Humans, Pilot Projects, Protein Binding, RNA, Messenger genetics, RNA, Untranslated genetics, Transcription Factors metabolism, Transcription Initiation Site, Genome, Human genetics, Genomics, Regulatory Sequences, Nucleic Acid genetics, Transcription, Genetic genetics
- Abstract
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
- Published
- 2007
- Full Text
- View/download PDF
41. BAC clones generated from sheared DNA.
- Author
-
Osoegawa K, Vessere GM, Li Shu C, Hoskins RA, Abad JP, de Pablos B, Villasante A, and de Jong PJ
- Subjects
- Animals, Base Sequence, Chromosome Mapping, Cloning, Molecular, Drosophila melanogaster genetics, Genes, Insect, Genetic Vectors, Chromosomes, Artificial, Bacterial genetics, DNA genetics, DNA isolation & purification, Gene Library
- Abstract
BAC libraries generated from restriction-digested genomic DNA display representational bias and lack some sequences. To facilitate completion of genome projects, procedures have been developed to create BACs from DNA physically sheared to create fragments extending up to 200 kb. The DNA fragments were repaired to create blunt ends and ligated to a new BAC vector. This approach has been tested by generating BAC libraries from Drosophila DNA with insert lengths between 50 and 150 kb. The libraries lack chimeric clone problems as determined by mapping paired BAC-end sequences to the assembled fly genome sequence. The utility of "sheared" libraries was demonstrated by closure of a previous clone gap and by isolation of clones from telomeric regions, which were notably absent from previous Drosophila BAC libraries.
- Published
- 2007
- Full Text
- View/download PDF
42. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis.
- Author
-
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, and Johnson PJ
- Subjects
- Animals, Biological Transport genetics, DNA Transposable Elements, DNA, Protozoan genetics, Gene Transfer, Horizontal, Genes, Protozoan, Humans, Hydrogen metabolism, Metabolic Networks and Pathways genetics, Molecular Sequence Data, Multigene Family, Organelles metabolism, Oxidative Stress genetics, Peptide Hydrolases genetics, Peptide Hydrolases metabolism, Protozoan Proteins genetics, Protozoan Proteins physiology, RNA Processing, Post-Transcriptional, Repetitive Sequences, Nucleic Acid, Sexually Transmitted Diseases parasitology, Trichomonas Infections parasitology, Trichomonas Infections transmission, Trichomonas vaginalis cytology, Trichomonas vaginalis metabolism, Trichomonas vaginalis pathogenicity, Genome, Protozoan, Sequence Analysis, DNA, Trichomonas vaginalis genetics
- Abstract
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
- Published
- 2007
- Full Text
- View/download PDF
43. A physical map of the bovine genome.
- Author
-
Snelling WM, Chiu R, Schein JE, Hobbs M, Abbey CA, Adelson DL, Aerts J, Bennett GL, Bosdet IE, Boussaha M, Brauning R, Caetano AR, Costa MM, Crawford AM, Dalrymple BP, Eggen A, Everts-van der Wind A, Floriot S, Gautier M, Gill CA, Green RD, Holt R, Jann O, Jones SJ, Kappes SM, Keele JW, de Jong PJ, Larkin DM, Lewin HA, McEwan JC, McKay S, Marra MA, Mathewson CA, Matukumalli LK, Moore SS, Murdoch B, Nicholas FW, Osoegawa K, Roy A, Salih H, Schibler L, Schnabel RD, Silveri L, Skow LC, Smith TP, Sonstegard TS, Taylor JF, Tellam R, Van Tassell CP, Williams JL, Womack JE, Wye NH, Yang G, and Zhao S
- Subjects
- Animals, Base Sequence, Cattle, Chromosomes, Artificial, Bacterial chemistry, Chromosomes, Artificial, Bacterial genetics, Deoxyribonuclease HindIII chemistry, Genetic Markers genetics, Genome, Human, Genotype, Humans, Molecular Sequence Data, Pedigree, Sequence Alignment, Chromosomes, Mammalian genetics, Gene Order, Genome, Radiation Hybrid Mapping
- Abstract
Background: Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project., Results: A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly., Conclusion: Further refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.
- Published
- 2007
- Full Text
- View/download PDF
44. A high-resolution map of synteny disruptions in gibbon and human genomes.
- Author
-
Carbone L, Vessere GM, ten Hallers BF, Zhu B, Osoegawa K, Mootnick A, Kofler A, Wienberg J, Rogers J, Humphray S, Scott C, Harris RA, Milosavljevic A, and de Jong PJ
- Subjects
- Animals, Chromosome Mapping, Chromosomes, Artificial, Bacterial, Humans, In Situ Hybridization, Fluorescence, Karyotyping, Oligonucleotide Array Sequence Analysis, Species Specificity, Genome, Genome, Human, Hylobates genetics
- Abstract
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state., Competing Interests: Competing interests. The authors have declared that no competing interests exist.
- Published
- 2006
- Full Text
- View/download PDF
45. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage.
- Author
-
Zody MC, Garber M, Adams DJ, Sharpe T, Harrow J, Lupski JR, Nicholson C, Searle SM, Wilming L, Young SK, Abouelleil A, Allen NR, Bi W, Bloom T, Borowsky ML, Bugalter BE, Butler J, Chang JL, Chen CK, Cook A, Corum B, Cuomo CA, de Jong PJ, DeCaprio D, Dewar K, FitzGerald M, Gilbert J, Gibson R, Gnerre S, Goldstein S, Grafham DV, Grocock R, Hafez N, Hagopian DS, Hart E, Norman CH, Humphray S, Jaffe DB, Jones M, Kamal M, Khodiyar VK, LaButti K, Laird G, Lehoczky J, Liu X, Lokyitsang T, Loveland J, Lui A, Macdonald P, Major JE, Matthews L, Mauceli E, McCarroll SA, Mihalev AH, Mudge J, Nguyen C, Nicol R, O'Leary SB, Osoegawa K, Schwartz DC, Shaw-Smith C, Stankiewicz P, Steward C, Swarbreck D, Venkataraman V, Whittaker CA, Yang X, Zimmer AR, Bradley A, Hubbard T, Birren BW, Rogers J, Lander ES, and Nusbaum C
- Subjects
- Animals, Base Composition, Gene Duplication, Humans, Long Interspersed Nucleotide Elements genetics, Mice, Sequence Analysis, DNA, Short Interspersed Nucleotide Elements genetics, Synteny genetics, Chromosomes, Human, Pair 17 genetics, Evolution, Molecular
- Abstract
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
- Published
- 2006
- Full Text
- View/download PDF
46. Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii.
- Author
-
Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, and Arendt D
- Subjects
- Animals, Bees chemistry, Bees genetics, Caenorhabditis elegans chemistry, Caenorhabditis elegans genetics, Ciona intestinalis chemistry, Ciona intestinalis genetics, Computational Biology, Evolution, Molecular, Exons, Genome, Humans, Molecular Sequence Data, Phylogeny, Polychaeta chemistry, Proteins chemistry, Proteins genetics, Sequence Alignment, Species Specificity, Genes, Introns, Polychaeta genetics, Vertebrates genetics
- Abstract
Previous genome comparisons have suggested that one important trend in vertebrate evolution has been a sharp rise in intron abundance. By using genomic data and expressed sequence tags from the marine annelid Platynereis dumerilii, we provide direct evidence that about two-thirds of human introns predate the bilaterian radiation but were lost from insect and nematode genomes to a large extent. A comparison of coding exon sequences confirms the ancestral nature of Platynereis and human genes. Thus, the urbilaterian ancestor had complex, intron-rich genes that have been retained in Platynereis and human.
- Published
- 2005
- Full Text
- View/download PDF
47. A physical map of the genome of Atlantic salmon, Salmo salar.
- Author
-
Ng SH, Artieri CG, Bosdet IE, Chiu R, Danzmann RG, Davidson WS, Ferguson MM, Fjell CD, Hoyheim B, Jones SJ, de Jong PJ, Koop BF, Krzywinski MI, Lubieniecki K, Marra MA, Mitchell LA, Mathewson C, Osoegawa K, Parisotto SE, Phillips RB, Rise ML, von Schalburg KR, Schein JE, Shin H, Siddiqui A, Thorsen J, Wye N, Yang G, and Zhu B
- Subjects
- Animals, Contig Mapping methods, DNA Fingerprinting, Histones genetics, Male, Physical Chromosome Mapping standards, Restriction Mapping, Site-Specific DNA-Methyltransferase (Adenine-Specific) genetics, Genome, Physical Chromosome Mapping methods, Salmo salar genetics
- Abstract
A physical map of the Atlantic salmon (Salmo salar) genome was generated based on HindIII fingerprints of a publicly available BAC (bacterial artificial chromosome) library constructed from DNA isolated from a Norwegian male. Approximately 11.5 haploid genome equivalents (185,938 clones) were successfully fingerprinted. Contigs were first assembled via FPC using high-stringency (1e-16), and then end-to-end joins yielded 4354 contigs and 37,285 singletons. The accuracy of the contig assembly was verified by hybridization and PCR analysis using genetic markers. A subset of the BACs in the library contained few or no HindIII recognition sites in their insert DNA. BglI digestion fragment patterns of these BACs allowed us to identify three classes: (1) BACs containing histone genes, (2) BACs containing rDNA-repeating units, and (3) those that do not have BglI recognition sites. End-sequence analysis of selected BACs representing these three classes confirmed the identification of the first two classes and suggested that the third class contained highly repetitive DNA corresponding to tRNAs and related sequences.
- Published
- 2005
- Full Text
- View/download PDF
48. A genome-wide comparison of recent chimpanzee and human segmental duplications.
- Author
-
Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Pääbo S, Rocchi M, and Eichler EE
- Subjects
- Animals, Chromosomes, Mammalian genetics, Computational Biology, Gene Conversion, Humans, Species Specificity, Time Factors, Evolution, Molecular, Gene Duplication, Genome, Human, Genomics, Pan troglodytes genetics
- Abstract
We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).
- Published
- 2005
- Full Text
- View/download PDF
49. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
- Author
-
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, and Andersson B
- Subjects
- Animals, Chagas Disease drug therapy, Chagas Disease parasitology, DNA Repair, DNA Replication, DNA, Mitochondrial genetics, DNA, Protozoan genetics, Genes, Protozoan, Humans, Meiosis, Membrane Proteins chemistry, Membrane Proteins genetics, Membrane Proteins physiology, Multigene Family, Protozoan Proteins chemistry, Protozoan Proteins physiology, Recombination, Genetic, Repetitive Sequences, Nucleic Acid, Retroelements, Signal Transduction, Telomere genetics, Trypanocidal Agents pharmacology, Trypanocidal Agents therapeutic use, Trypanosoma cruzi chemistry, Trypanosoma cruzi physiology, Genome, Protozoan, Protozoan Proteins genetics, Sequence Analysis, DNA, Trypanosoma cruzi genetics
- Abstract
Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
- Published
- 2005
- Full Text
- View/download PDF
50. A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects.
- Author
-
Thorsen J, Zhu B, Frengen E, Osoegawa K, de Jong PJ, Koop BF, Davidson WS, and Høyheim B
- Subjects
- Animals, Biotechnology methods, Chromosome Mapping, Cloning, Molecular, Contig Mapping, DNA metabolism, DNA Primers chemistry, Escherichia coli metabolism, Expressed Sequence Tags, Gene Library, Genetic Markers, Genome, Genomic Library, Genomics methods, Microsatellite Repeats, Nucleic Acid Hybridization, Polymerase Chain Reaction, Recombinant Proteins chemistry, Chromosomes, Artificial, Bacterial, Genetic Techniques, Salmo salar genetics
- Abstract
Background: As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify the genomic mechanisms for specific traits is becoming more important in breeding and management of the animal. Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste. To identify genomic regions responsible for specific traits, genomic large insert libraries have previously proven to be of crucial importance. These large insert libraries can be screened using gene or genetic markers in order to identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries in genome projects, and hence provide valuable data on the genome structure., Results: Here we report the construction and characterization of a highly redundant bacterial artificial chromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmo salar). The library consists of a total number of 305,557 clones, in which approximately 299,000 are recombinants. The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters each consisting of 18,432 clones spotted in duplicates have been produced for hybridization screening, and are publicly available 1. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligo sequences derived from microsatellite markers were used in hybridization screening of the complete BAC library. Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive for the EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe. Clones identified using genomic probes were PCR verified using microsatellite specific primers., Conclusion: Identification of genes and genomic regions of interest is greatly aided by the availability of the CHORI-214 Atlantic salmon BAC library. We have demonstrated the library's ability to identify specific genes and genetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprinting contigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAC library is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.