155 results on '"Omar, Abdirahman"'
Search Results
2. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Bakker, Dorothee C. E., additional, Hauck, Judith, additional, Landschützer, Peter, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Decharme, Bertrand, additional, Bopp, Laurent, additional, Brasika, Ida Bagus Mandhara, additional, Cadule, Patricia, additional, Chamberlain, Matthew A., additional, Chandra, Naveen, additional, Chau, Thi-Tuyet-Trang, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Dou, Xinyu, additional, Enyo, Kazutaka, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Feng, Liang, additional, Ford, Daniel J., additional, Gasser, Thomas, additional, Ghattas, Josefine, additional, Gkritzalis, Thanos, additional, Grassi, Giacomo, additional, Gregor, Luke, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Heinke, Jens, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jacobson, Andrew R., additional, Jain, Atul, additional, Jarníková, Tereza, additional, Jersild, Annika, additional, Jiang, Fei, additional, Jin, Zhe, additional, Joos, Fortunat, additional, Kato, Etsushi, additional, Keeling, Ralph F., additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Körtzinger, Arne, additional, Lan, Xin, additional, Lefèvre, Nathalie, additional, Li, Hongmei, additional, Liu, Junjie, additional, Liu, Zhiqiang, additional, Ma, Lei, additional, Marland, Greg, additional, Mayot, Nicolas, additional, McGuire, Patrick C., additional, McKinley, Galen A., additional, Meyer, Gesa, additional, Morgan, Eric J., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paulsen, Melf, additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Powis, Carter M., additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Smallman, T. Luke, additional, Smith, Stephen M., additional, Sospedra-Alfonso, Reinel, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, van Ooijen, Erik, additional, Wanninkhof, Rik, additional, Watanabe, Michio, additional, Wimart-Rousseau, Cathy, additional, Yang, Dongxu, additional, Yang, Xiaojuan, additional, Yuan, Wenping, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Using Bayes Theorem to Quantify and Reduce Uncertainties when Monitoring Varying Marine Environments for Indications of a Leak
- Author
-
Alendal, Guttorm, Blackford, Jeremy, Chen, Baixin, Avlesen, Helge, and Omar, Abdirahman
- Published
- 2017
- Full Text
- View/download PDF
4. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability
- Author
-
Yasunaka, Sayaka, Murata, Akihiko, Watanabe, Eiji, Chierici, Melissa, Fransson, Agneta, van Heuven, Steven, Hoppema, Mario, Ishii, Masao, Johannessen, Truls, Kosugi, Naohiro, Lauvset, Siv K., Mathis, Jeremy T., Nishino, Shigeto, Omar, Abdirahman M., Olsen, Are, Sasano, Daisuke, Takahashi, Taro, and Wanninkhof, Rik
- Published
- 2016
- Full Text
- View/download PDF
5. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Zheng, Bo, Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, and Zheng, Bo
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO(2) products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the year 2022, E-FOS increased by 0.9% relative to 2021, with fossil emissions at 9.9 +/- 0.5 GtC yr(-1) (10.2 +/- 0.5 GtC yr(-1) when the cement carbonation sink is not included), and E-LUC was 1.2 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 +/- 0.8 GtC yr(-1) (40.7 +/- 3.2 GtCO(2) yr(-1)). Also, for 2022, G(ATM) was 4.6 +/- 0.2 GtC yr(-1) (2.18 +/- 0.1 ppm yr(-1); ppm denotes parts per million), S-OCEAN was 2.8 +/- 0.4 GtC yr(-1)
- Published
- 2023
- Full Text
- View/download PDF
6. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate
- Author
-
Bakker, Dorothee C. E., Bange, Hermann W., Gruber, Nicolas, Johannessen, Truls, Upstill-Goddard, Rob C., Borges, Alberto V., Delille, Bruno, Löscher, Carolin R., Naqvi, S. Wajih A., Omar, Abdirahman M., Santana-Casiano, J. Magdalena, Liss, Peter S., editor, and Johnson, Martin T., editor
- Published
- 2014
- Full Text
- View/download PDF
7. Annular pancreas causing duodenal obstruction in a 23 year old women managed surgically for gastrojejunostomy; a case report
- Author
-
Nur, Nuradin Mohamed, primary, artan, Abdinasir, additional, Omar, Abdirahman Ahmed, additional, and ahmed, Mohamed Rage, additional
- Published
- 2022
- Full Text
- View/download PDF
8. The effect of submarine CO₂ vents on seawater : Implications for detection of subsea carbon sequestration leakage
- Author
-
Botnen, Helle Augdal, Omar, Abdirahman M., Thorseth, Ingunn, Johannessen, Truls, and Alendal, Guttorm
- Published
- 2015
9. Acidification of the Nordic Seas
- Author
-
Fransner, Filippa, primary, Fröb, Friederike, additional, Tjiputra, Jerry, additional, Goris, Nadine, additional, Lauvset, Siv K., additional, Skjelvan, Ingunn, additional, Jeansson, Emil, additional, Omar, Abdirahman, additional, Chierici, Melissa, additional, Jones, Elizabeth, additional, Fransson, Agneta, additional, Ólafsdóttir, Sólveig R., additional, Johannessen, Truls, additional, and Olsen, Are, additional
- Published
- 2022
- Full Text
- View/download PDF
10. Trender i havforsuring og antropogent karbon i de nordiske hav, Nordsjøen og Skagerrak
- Author
-
Skjelvan, Ingunn, Jeansson, Emil, Chierici, Melissa, Fransnes, Filippa, Fröb, Friedrike, Tjiputra, Jerry, Goris, Nadine, Lauvset, Siv Kari, Omar, Abdirahman, Jones, Elizabeth, Fransson, Agneta, Olafsdóttir, Solveig R., Johannessen, Truls, Olsen, Are, Norli, Marit, and Apelthun, Lise B.
- Abstract
Denne rapporten baserer seg på artikkelen “Acidification of the Nordic Seas” av Fransner mfl. (2022). I tillegg presenteres havforsuringstrender (=endring over tid) i Nordsjøen og Skagerrak og trender i antropogent karbon (Cant) i de nordiske hav, Nordsjøen og Skagerrak. Måledata fra de nordiske hav i perioden 1981 til 2019 viser at pH i snitt har avtatt med 0,0028 yr-1 som tilsvarer en pH-reduksjon på 0,11 over 39 år. Dette er dobbelt så mye som den modellerte pH-reduksjonen over perioden 1850-1980 i samme område (–0,05 over 130 år). Modellkjøringer viser at fram til slutten av dette århundret forventes det ytterlige endringer i pH i overflatevann på mellom –0.04 og –0.4 avhengig av hvilket utslippsscenario som brukes. Måledata fra ulike regioner i de nordiske hav viser at pH-trenden i overflatevann er av størrelse –0,002 til –0,003 yr-1. Trenden er primært drevet av økende løst uorganisk karbon (CT) som delvis skyldes opptak av atmosfærisk, og dermed også antropogent, CO2. I overflatevann i Norskebassenget og Islandshavet avtar pH raskere enn det som kan forklares av CO2-opptak fra atmosfæren alene, og resten av endringa skyldes at partialtrykket av CO2 (pCO2) i havoverflata over tid øker raskere enn atmosfærisk CO2. Dette kan skyldes både redusert primærproduksjon og økende havtemperatur. pH-endringene i overflatevann i de nordiske hav er statistisk signifikante bortsett fra i Barentshavsåpningen, der en relativt kraftig økning i total alkalinitet (AT) motvirker den negative pH-trenden. Havforsuringssignalet kan i noen regioner måles helt ned til 2000 m. Vann på 1000-2000 m dyp nærmer seg nå grensen for undermetning av aragonitt (kalsiumkarbonat). I Nordsjøen og Skagerrak finnes måledata fra periodene 2001-2015 og 2001-2019. Trendene i pH og metningsgrad av aragonitt (ΩAr) i Nordsjøen er svake og ikke signifikante, mens i Skagerrak på dyp større enn 200 m avtar pH signifikant, og dypere enn 500 m er pH-trenden –0.0044 yr-1. Trenden er primært drevet av endring i varmt og salt atlantisk vann som strømmer inn i området. Antropogent karbon (Cant) øker i de fleste deler av de nordiske hav, bortsett fra i Barentshavsåpningen. I Norskebassenget øker Cant signifikant på alle dyp, mens i Lofotenbassenget er Cant-økningen signifikant mellom 200 og 2000 m dyp. I Nordsjøen er ikke trendene i Cant signifikante, men i Skagerrak øker Cant signifikant på alle dyp. Det er generelt godt samsvar mellom trender i CT og Cant, og dette viser at økende mengde Cant i havet er den dominerende driveren for økende CT. Observerte forekomstene av korallrev i de nordiske hav lever stort sett på dyp som i dag er overmetta med aragonitt. Dette vil endres i framtida avhengig av hvilket utslippsscenario for CO2 som følges. Hvis CO2-utslippene fortsetter som i dag (RCP8.5) vil alt vann dypere enn ca. 20 m i de nordiske hav bli undermetta med aragonitt når vi nærmer oss slutten på dette århundret, og dette vil få dramatiske konsekvenser for korallrev i hele de nordiske hav.
- Published
- 2022
11. Global Carbon Budget 2016
- Author
-
Quéré, Corinne Le, Andrew, Robbie M, Canadell, Josep G, Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P, Manning, Andrew C, Boden, Thomas A, Tans, Pieter P, Houghton, Richard A, Keeling, Ralph F, Alin, Simone, Andrews, Oliver D, Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P, Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C, Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Goldewijk, Kees Klein, Jain, Atul K, Kato, Etsushi, Koertzinger, Arne, Landschuetzer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R, Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M. S, Munro, David R, Nabel, Julia E. M. S, Nakaoka, Shin-ichiro, O’Brien, Kevin, Olsen, Are, Omar, Abdirahman M, Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Roedenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Joerg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D, Sutton, Adrienne J, Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, Ingrid T, van der Werf, Guido R, Viovy, Nicolas, Walker, Anthony P, Wiltshire, Andrew J, and Zaehle, Soenke
- Subjects
Meteorology And Climatology - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3+/-0.5 GtC/yr, ELUC 1.0+/-0.5 GtC/yr,GATM 4.5+/-0.1 GtC/yr, SOCEAN 2.6+/-0.5 GtC/yr, and SLAND 3.1+/-0.9 GtC/yr. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9+/-0.5 GtC/yr, showing a slowdown in growth of these emissions compared to the average growth of 1.8/yr that took place during 2006-2015.Also, for 2015, ELUC was 1.3+/-0.5 GtC/yr, GATM was 6.3+/-0.2 GtC/yr, SOCEAN was 3.0+/-0.5 GtC/yr, and SLAND was 1.9+/-0.9 GtC/yr. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4+/-0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2% (range of -1.0 to +1.8% ) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565+/-55 GtC (2075+/-205 GtCO2) for 1870-2016, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set.
- Published
- 2016
- Full Text
- View/download PDF
12. The northern European shelf as an increasing net sink for CO2
- Author
-
Becker, Meike, Olsen, Are, Landschützer, Peter, Omar, Abdirahman, Rehder, Gregor, Rödenbeck, Christian, and Skjelvan, Ingunn
- Subjects
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES - Abstract
We developed a simple method to refine existing open-ocean maps and extend them towards different coastal seas. Using a multi-linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded Surface Ocean CO2 Atlas (SOCAT) v5 data revealed mean biases and standard deviations of 0 ± 26 µatm in the North Sea, 0 ± 16 µatm along the Norwegian Coast, 0 ± 19 µatm in the Barents Sea and 2 ± 42 µatm in the Baltic Sea. We used these maps to investigate trends in fCO2, pH and air–sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied regions. The only exception to this is the western part of the North Sea, where sea surface fCO2 increases by 2 µatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than the expected trends. Consistently, the pH trends were smaller than expected for an increase in fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air–sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.
- Published
- 2021
13. Sea surface pCO2 variability and air-sea CO2 exchange in the coastal Sudanese Red Sea
- Author
-
Ali, Elsheikh B., Skjelvan, Ingunn, Omar, Abdirahman M., Olsen, Are, De Lange, Tor E., Johannessen, Truls, Elageed, Salma, Ali, Elsheikh B., Skjelvan, Ingunn, Omar, Abdirahman M., Olsen, Are, De Lange, Tor E., Johannessen, Truls, and Elageed, Salma
- Abstract
The dynamics of sea surface pCO2 () and air-sea CO2 exchange of the Sudanese coastal Red Sea has for the first time been studied over a full annual cycle (October 2014 - October 2015) based on semi-continuous measurements from moored autonomous sensors. showed a seasonal amplitude of approximately 70 atm, overlaid by a high frequency (3-4 days) signal of around 10 atm. The highest values, of about 440 atm occurred during summer and fall, while the lowest values of about 370 atm occurred during winter. The monthly change was primarily driven by temperature, i.e., heating and cooling of the water surface. Additionally, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (AT) contributed significantly to the observed change in as a consequence of along-coast advection and upwelling of CO2-rich deep water, and likely biological production, and uptake of atmospheric CO2. The area is a net annual source for atmospheric CO2 of 0.180 0.009 mol CO2 m−2 y−1. Based on a compilation of historic and our new data, altogether covering the years 1977 to 2015, long term trends of were determined for the seasons winter-spring (1.75 0.72 atm y−1) and summer -fall (180 0.41 atm y−1), both weaker than the atmospheric trend (1.96 0.02 atm y−1). We are suggesting that the study region has transformed from being a source of CO2 to the atmosphere throughout the year to becoming a sink of CO2 during parts of the year. The long term trend was to a large degree driven by increasing DIC, but increasing AT and temperature also played a role.
- Published
- 2021
- Full Text
- View/download PDF
14. Suitability analysis and revised strategies for marine environmental carbon capture and storage (CCS) monitoring
- Author
-
Lichtschlag, Anna, Pearce, Christopher R., Suominen, Mikael, Blackford, Jerry, Borisov, Sergey M., Bull, Jonathan M., de Beer, Dirk, Dean, Marcella, Esposito, Mario, Flohr, Anita, Gros, Jonas, Haeckel, Matthias, Huvenne, Veerle A.I., James, Rachael H., Koopmans, Dirk, Linke, Peter, Mowlem, Matthew, Omar, Abdirahman M., Schaap, Allison, Schmidt, Mark, Sommer, Stefan, Strong, James, Connelly, Douglas P., Lichtschlag, Anna, Pearce, Christopher R., Suominen, Mikael, Blackford, Jerry, Borisov, Sergey M., Bull, Jonathan M., de Beer, Dirk, Dean, Marcella, Esposito, Mario, Flohr, Anita, Gros, Jonas, Haeckel, Matthias, Huvenne, Veerle A.I., James, Rachael H., Koopmans, Dirk, Linke, Peter, Mowlem, Matthew, Omar, Abdirahman M., Schaap, Allison, Schmidt, Mark, Sommer, Stefan, Strong, James, and Connelly, Douglas P.
- Abstract
Environmental monitoring of offshore Carbon Capture and Storage (CCS) complexes requires robust methodologies and cost-effective tools to detect, attribute and quantify CO2 leakage in the unlikely event it occurs from a sub-seafloor reservoir. Various approaches can be utilised for environmental CCS monitoring, but their capabilities are often undemonstrated and more detailed monitoring strategies need to be developed. We tested and compared different approaches in an offshore setting using a CO2 release experiment conducted at 120 m water depth in the Central North Sea. Tests were carried out over a range of CO2 injection rates (6 - 143 kg d−1) comparable to emission rates observed from abandoned wells. Here, we discuss the benefits and challenges of the tested approaches and compare their relative cost, temporal and spatial resolution, technology readiness level and sensitivity to leakage. The individual approaches demonstrate a high level of sensitivity and certainty and cover a wide range of operational requirements. Additionally, we refer to a set of generic requirements for site-specific baseline surveys that will aid in the interpretation of the results. Critically, we show that the capability of most techniques to detect and quantify leakage exceeds the currently existing legal requirements.
- Published
- 2021
15. Detection and quantification of CO2 seepage in seawater using the stoichiometric Cseep method: Results from a recent subsea CO2 release experiment in the North Sea
- Author
-
Omar, Abdirahman M., García-Ibáñez, Maribel I., Schaap, Allison, Oleynik, Anna, Esposito, Mario, Jeansson, Emil, Loucaides, Socratis, Thomas, Helmuth, Alendal, Guttorm, Omar, Abdirahman M., García-Ibáñez, Maribel I., Schaap, Allison, Oleynik, Anna, Esposito, Mario, Jeansson, Emil, Loucaides, Socratis, Thomas, Helmuth, and Alendal, Guttorm
- Abstract
Carbon Capture and Storage (CCS) is a potential significant mitigation strategy to combat climate change and ocean acidification. The technology is well understood but its current implementation must be scaled up nearly by a hundredfold to become an effective tool that helps meet mitigation targets. Regulations require monitoring and verification at storage sites, and reliable monitoring strategies for detection and quantification of seepage of the stored carbon need to be developed. The Cseep method was developed for reliable determination of CO2 seepage signal in seawater by estimating and filtering out natural variations in dissolved inorganic carbon (C). In this work, we analysed data from the first-ever subsea CO2 release experiment performed in the north-western North Sea by the EU STEMM−CCS project. We successfully demonstrated the ability of the Cseep method to (i) predict natural C variations around the Goldeneye site over seasonal to interannual time scales; (ii) establish a process-based baseline C concentration with minimal variability; (iii) determine CO2 seepage detection threshold (DT) to reliably differentiate released−CO2 signal from natural variability and quantify released−CO2 dissolved in the sampled seawater. DT values were around 20 % of the natural C variations indicating high sensitivity of the method. Moreover, with the availability of DT value, the identification of released−CO2 required no pre-knowledge of seepage occurrence, but we used additional available information to assess the confidence of the results. Overall, the Cseep method features high sensitivity, automation suitability, and represents a powerful future monitoring tool both for large and confined marine areas.
- Published
- 2021
16. Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
- Author
-
Steinhoff, Tobias, Gkritzalis, Thanos, Lauvset, Siv K., Jones, Stephen D., Schuster, Ute, Olsen, Are, Becker, Meike, Bozzano, Roberto, Brunetti, Fabio, Cantoni, Carolina, Cardin, Vanessa, Diverrès, Denis, Fiedler, Björn, Fransson, Agneta, Giani, Michele, Hartman, Sue, Hoppema, Mario, Jeansson, Emil, Johannessen, Truls, Kitidis, Vassilis, Körtzinger, Arne, Landa, Camilla S., Lefèvre, Nathalie, Luchetta, Anna, Naudts, Lieven, Nightingale, Philip, Omar, Abdirahman M., Pensieri, Sara, Pfeil, Benjamin, Castaño-Primo, Rocío, Rehder, Gregor, Rutgersson, Anna, Sanders, Richard, Schewe, Ingo, Siena, Giuseppe, Skjelvan, Ingunn, Soltwedel, Thomas, Van Heuven, Steven M. A. C., Watson, Andrew J., Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Flanders Marine Institute, VLIZ, Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), College of Life and Environmental Sciences [Exeter], University of Exeter, University of Leeds, Instrumentation, Moyens analytiques, Observatoires en Géophysique et Océanographie (IMAGO), Norwegian Polar Institute, Istituto Nazionale di Geofisica e di Oceanografia Sperimentale (OGS), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), Plymouth Marine Laboratory (PML), Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Royal Belgian Institute of Natural Sciences (RBINS), University of Bergen (UiB), Department of Earth Sciences [Uppsala], Uppsala University, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Centre for Isotope Research [Groningen] (CIO), University of Groningen [Groningen], European Project: 654410,H2020,H2020-INFRAIA-2014-2015,JERICO-NEXT(2015), Plymouth Marine Laboratory, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), GEOMAR - Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), University of Bergen (UIB), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences [ Uppsala], and NASA Ames Research Center (ARC)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,autonomous surface vehicle ,Climate Research ,ATC ,dissolved inorganic ,carbon portal ,ocean observation ,network design ,Oceanografi, hydrologi och vattenresurser ,flux maps ,Klimatforskning ,Oceanography, Hydrology and Water Resources ,CO2 fluxes ,Atmospheric Thematic Centre ,DIC ,CP ,carbon sink ,ComputingMilieux_MISCELLANEOUS ,ASV - Abstract
The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design. publishedVersion
- Published
- 2019
- Full Text
- View/download PDF
17. Wintertime fCO2 variability in the subpolar North Atlantic since 2004
- Author
-
Fröb, Friederike, Olsen, Are, Becker, Meike, Chafik, Leon Martin, Johannessen, Truls, Reverdin, Gilles, Omar, Abdirahman, Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ICOS-Norway (Norwegian Research Council) 245927, SNACS project part of the KLIMAFORSK program of the Norwegian Research Council 229752, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
[SDU]Sciences of the Universe [physics] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
Winter data of surface ocean temperature (SST), salinity (SSS) and CO 2 fugacity (fCO 2 ) collected on the VOS M/V Nuka Arctica in the subpolar North Atlantic between 2004 and 2017 are used to establish trends, drivers, and interannual variability. Over the period, waters cooled and freshened, and the fCO 2 increased at a rate similar to the atmospheric CO 2 growth rate. When accounting for the freshening, the inferred increase in dissolved inorganic carbon (DIC) was found to be approximately twice that expected from atmospheric CO 2 alone. This is attributed to the cooling. In the Irminger Sea, fCO 2 exhibited additional interannual variations driven by atmospheric forcing through winter mixing. As winter fCO 2 in the region is close to the atmospheric, the subpolar North Atlantic has varied between being slightly supersaturated and slightly undersaturated over the investigated period. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
- Full Text
- View/download PDF
18. Global carbon budget 2019
- Author
-
Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie, Hauck, Judith, Peters, Glen Philip, Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, Bakker, Dorothée C.E., Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Anthoni, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschutzer, Peter, Lauvset, Siv Kari, Lefevre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin-Ichiro, Neill, Craig, Omar, Abdirahman, Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., van der Werf, Guido R., Wiltshire, Andrew J., and Zaehle, Sönke
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).
- Published
- 2019
19. Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
- Author
-
Kitidis, Vassilis, primary, Shutler, Jamie D., additional, Ashton, Ian, additional, Warren, Mark, additional, Brown, Ian, additional, Findlay, Helen, additional, Hartman, Sue E., additional, Sanders, Richard, additional, Humphreys, Matthew, additional, Kivimäe, Caroline, additional, Greenwood, Naomi, additional, Hull, Tom, additional, Pearce, David, additional, McGrath, Triona, additional, Stewart, Brian M., additional, Walsham, Pamela, additional, McGovern, Evin, additional, Bozec, Yann, additional, Gac, Jean-Philippe, additional, van Heuven, Steven M. A. C., additional, Hoppema, Mario, additional, Schuster, Ute, additional, Johannessen, Truls, additional, Omar, Abdirahman, additional, Lauvset, Siv K., additional, Skjelvan, Ingunn, additional, Olsen, Are, additional, Steinhoff, Tobias, additional, Körtzinger, Arne, additional, Becker, Meike, additional, Lefevre, Nathalie, additional, Diverrès, Denis, additional, Gkritzalis, Thanos, additional, Cattrijsse, André, additional, Petersen, Wilhelm, additional, Voynova, Yoana G., additional, Chapron, Bertrand, additional, Grouazel, Antoine, additional, Land, Peter E., additional, Sharples, Jonathan, additional, and Nightingale, Philip D., additional
- Published
- 2019
- Full Text
- View/download PDF
20. Global Carbon Budget 2019
- Author
-
Friedlingstein, Pierre, primary, Jones, Matthew W., additional, O'Sullivan, Michael, additional, Andrew, Robbie M., additional, Hauck, Judith, additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Sitch, Stephen, additional, Le Quéré, Corinne, additional, Bakker, Dorothee C. E., additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bastos, Ana, additional, Bastrikov, Vladislav, additional, Becker, Meike, additional, Bopp, Laurent, additional, Buitenhuis, Erik, additional, Chandra, Naveen, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Currie, Kim I., additional, Feely, Richard A., additional, Gehlen, Marion, additional, Gilfillan, Dennis, additional, Gkritzalis, Thanos, additional, Goll, Daniel S., additional, Gruber, Nicolas, additional, Gutekunst, Sören, additional, Harris, Ian, additional, Haverd, Vanessa, additional, Houghton, Richard A., additional, Hurtt, George, additional, Ilyina, Tatiana, additional, Jain, Atul K., additional, Joetzjer, Emilie, additional, Kaplan, Jed O., additional, Kato, Etsushi, additional, Klein Goldewijk, Kees, additional, Korsbakken, Jan Ivar, additional, Landschützer, Peter, additional, Lauvset, Siv K., additional, Lefèvre, Nathalie, additional, Lenton, Andrew, additional, Lienert, Sebastian, additional, Lombardozzi, Danica, additional, Marland, Gregg, additional, McGuire, Patrick C., additional, Melton, Joe R., additional, Metzl, Nicolas, additional, Munro, David R., additional, Nabel, Julia E. M. S., additional, Nakaoka, Shin-Ichiro, additional, Neill, Craig, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Peregon, Anna, additional, Pierrot, Denis, additional, Poulter, Benjamin, additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Séférian, Roland, additional, Schwinger, Jörg, additional, Smith, Naomi, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tubiello, Francesco N., additional, van der Werf, Guido R., additional, Wiltshire, Andrew J., additional, and Zaehle, Sönke, additional
- Published
- 2019
- Full Text
- View/download PDF
21. A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements
- Author
-
Wanninkhof, Rik, primary, Pickers, Penelope A., additional, Omar, Abdirahman M., additional, Sutton, Adrienne, additional, Murata, Akihiko, additional, Olsen, Are, additional, Stephens, Britton B., additional, Tilbrook, Bronte, additional, Munro, David, additional, Pierrot, Denis, additional, Rehder, Gregor, additional, Santana-Casiano, J. Magdalena, additional, Müller, Jens D., additional, Trinanes, Joaquin, additional, Tedesco, Kathy, additional, O’Brien, Kevin, additional, Currie, Kim, additional, Barbero, Leticia, additional, Telszewski, Maciej, additional, Hoppema, Mario, additional, Ishii, Masao, additional, González-Dávila, Melchor, additional, Bates, Nicholas R., additional, Metzl, Nicolas, additional, Suntharalingam, Parvadha, additional, Feely, Richard A., additional, Nakaoka, Shin-ichiro, additional, Lauvset, Siv K., additional, Takahashi, Taro, additional, Steinhoff, Tobias, additional, and Schuster, Ute, additional
- Published
- 2019
- Full Text
- View/download PDF
22. A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements
- Author
-
Wanninkhof, Rik, Pickers, Penelope A., Omar, Abdirahman M., Sutton, Adrienne, Murata, Akihiko, Olsen, Are, Stephens, Britton B., Tilbrook, Bronte, Munro, David, Pierrot, Denis, Rehder, Gregor, Santana-Casiano, J. Magdalena, Müller, Jens D., Trinanes, Joaquin, Tedesco, Kathy, O’Brien, Kevin, Currie, Kim, Barbero, Leticia, Telszewski, Maciej, Hoppema, Mario, Ishii, Masao, González-Dávila, Melchor, Bates, Nicholas R., Metzl, Nicolas, Suntharalingam, Parvadha, Feely, Richard A., Nakaoka, Shin-ichiro, Lauvset, Siv K., Takahashi, Taro, Steinhoff, Tobias, Schuster, Ute, Wanninkhof, Rik, Pickers, Penelope A., Omar, Abdirahman M., Sutton, Adrienne, Murata, Akihiko, Olsen, Are, Stephens, Britton B., Tilbrook, Bronte, Munro, David, Pierrot, Denis, Rehder, Gregor, Santana-Casiano, J. Magdalena, Müller, Jens D., Trinanes, Joaquin, Tedesco, Kathy, O’Brien, Kevin, Currie, Kim, Barbero, Leticia, Telszewski, Maciej, Hoppema, Mario, Ishii, Masao, González-Dávila, Melchor, Bates, Nicholas R., Metzl, Nicolas, Suntharalingam, Parvadha, Feely, Richard A., Nakaoka, Shin-ichiro, Lauvset, Siv K., Takahashi, Taro, Steinhoff, Tobias, and Schuster, Ute
- Published
- 2019
- Full Text
- View/download PDF
23. Winter weather controls net influx of atmospheric CO2 on the northwest European shelf
- Author
-
Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimae, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, Mcgrath, Triona, Stewart, Brian M., Walsham, Pamela, Mcgovern, Evin, Bozec, Yann, Gac, Jean-philippe, Van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Koertzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverres, Denis, Gkritzalis, Thanos, Cattrijsse, Andre, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, Nightingale, Philip D., Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimae, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, Mcgrath, Triona, Stewart, Brian M., Walsham, Pamela, Mcgovern, Evin, Bozec, Yann, Gac, Jean-philippe, Van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Koertzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverres, Denis, Gkritzalis, Thanos, Cattrijsse, Andre, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, and Nightingale, Philip D.
- Abstract
Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO(2)) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 +/- 4.7 Tg C yr(-1) over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO(2) gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 +/- 3.1 Tg C yr(-1), while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 +/- 6.0 Tg C yr(-1)).
- Published
- 2019
- Full Text
- View/download PDF
24. Global carbon budget 2019
- Author
-
Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Hauck, Judith, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, DBakker, Orothee C.E., Canadell1, Josep G., Ciais1, Philippe, Jackson, Robert B., Anthoni1, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Neill, Craig, Omar, Abdirahman M., Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., Van Der Werf, Guido R., Wiltshire, Andrew J., Zaehle, Sönke, Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Hauck, Judith, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, DBakker, Orothee C.E., Canadell1, Josep G., Ciais1, Philippe, Jackson, Robert B., Anthoni1, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Neill, Craig, Omar, Abdirahman M., Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., Van Der Werf, Guido R., Wiltshire, Andrew J., and Zaehle, Sönke
- Published
- 2019
25. Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
- Author
-
Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimäe, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, McGrath, Triona, Stewart, Brian M., Walsham, Pamela, McGovern, Evin, Bozec, Yann, Gac, Jean-Philippe, van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Körtzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverrès, Denis, Gkritzalis, Thanos, Cattrijsse, André, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, Nightingale, Philip D., Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimäe, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, McGrath, Triona, Stewart, Brian M., Walsham, Pamela, McGovern, Evin, Bozec, Yann, Gac, Jean-Philippe, van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Körtzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverrès, Denis, Gkritzalis, Thanos, Cattrijsse, André, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, and Nightingale, Philip D.
- Abstract
Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
- Published
- 2019
26. Arctic Ocean CO2 uptake: An improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations
- Author
-
Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., Heuven, Steven, Mathis, Jeremy T., and Isotope Research
- Subjects
CARBON-DIOXIDE ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,NEURAL-NETWORK ,WIND-SPEED ,PHYTOPLANKTON BLOOMS ,COCCOLITHOPHORE BLOOMS ,UPTAKE CAPACITY ,INTERANNUAL VARIABILITY ,GLOBAL OCEAN ,NORTH-ATLANTIC ,GAS-EXCHANGE - Abstract
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60∘ N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr−1. Seasonal to interannual variation in the CO2 influx was also calculated.
- Published
- 2018
27. Nordic Seas Acidification.
- Author
-
Fransner, Filippa, Fröb, Friederike, Tjiputra, Jerry, Chierici, Melissa, Fransson, Agneta, Jeansson, Emil, Johannessen, Truls, Jones, Elizabeth, Lauvset, Siv K., Ólafsdóttir, Sólveig R., Omar, Abdirahman, Skjelvan, Ingunn, and Olsen, Are
- Subjects
DEEP-sea corals ,ACIDIFICATION ,OCEAN acidification ,SEAS ,WATER ,OCEANOGRAPHIC submersibles - Abstract
Being windows to the deep ocean, the Nordic Seas play an important role in transferring anthropogenic carbon, and thus ocean acidification, to the abyss. Due to its location in high latitudes, it is further more sensitive to acidification compared with many other oceanic regions. Here we make a detailed investigation of the acidification of the Nordic Seas, and its drivers, since pre-Industrial to 2100 by using in situ measurements, gridded climatological data, and simulations from one Earth System Model (ESM). In the last 40 years, pH has decreased by 0.11 units in the Nordic Seas surface waters, a change that is twice as large as that between 1850-1980. We find that present trends are larger than expected from the increase in atmospheric CO
2 alone, which is related to a faster increase in the seawater pCO2 compared with that of the atmosphere, i.e. a weakening of the pCO2 undersaturation of the Nordic Seas. The pH drop, mainly driven by an uptake of anthropogenic CO2 , is significant all over the Nordic Seas, except for in the Barents Sea Opening, where it is counteracted by a significant increase in alkalinity. We also find that the acidification signal penetrates relatively deep, in some regions down to 2000 m. This has resulted in a significant decrease in the aragonite saturation state, which approaches undersaturation at 1000-2000 m in the modern ocean. Future scenarios suggest an additional drop of 0.1-0.4 units, depending on the emission scenario, in surface pH until 2100. In the worst case scenario, RCP8.5, the entire water column will be undersaturated with respect to aragonite by the end of the century, threatening Nordic Seas cold-water corals and their ecosystems. The model simulations suggest that aragonite undersaturation can be avoided at depths where the majority of the cold-water corals live in the RCP2.6 and RCP4.5 scenarios. As these results are based on one model only, we request additional observational and model studies to better quantify the transfer of anthropogenic CO2 to deep waters and its effect on future pH in the Nordic Seas. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
28. Arctic Ocean CO<sub>2</sub> uptake: an improved multiyear estimate of the air–sea CO<sub>2</sub> flux incorporating chlorophyll <i>a</i> concentrations
- Author
-
Yasunaka, Sayaka, primary, Siswanto, Eko, additional, Olsen, Are, additional, Hoppema, Mario, additional, Watanabe, Eiji, additional, Fransson, Agneta, additional, Chierici, Melissa, additional, Murata, Akihiko, additional, Lauvset, Siv K., additional, Wanninkhof, Rik, additional, Takahashi, Taro, additional, Kosugi, Naohiro, additional, Omar, Abdirahman M., additional, van Heuven, Steven, additional, and Mathis, Jeremy T., additional
- Published
- 2018
- Full Text
- View/download PDF
29. Seasonal variations of hydrographic parameters off the Sudanese coast of the Red Sea, 2009–2015
- Author
-
Ali, Elsheikh B., Churchill, James H., Barthel, Knut, Skjelvan, Ingunn, Omar, Abdirahman M., de Lange, Tor E., Eltaib, Elfatih B. A., Ali, Elsheikh B., Churchill, James H., Barthel, Knut, Skjelvan, Ingunn, Omar, Abdirahman M., de Lange, Tor E., and Eltaib, Elfatih B. A.
- Abstract
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004., The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months., The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
- Published
- 2018
30. Inorganic carbon and water masses in the Irminger Sea since 1991
- Author
-
Ministerio de Economía y Competitividad (España), Fröb, Friederike, Olsen, Are, Pérez, Fiz F., García-Ibáñez, Maribel I., Jeansson, Emil, Omar, Abdirahman, Lauvset, Siv K., Ministerio de Economía y Competitividad (España), Fröb, Friederike, Olsen, Are, Pérez, Fiz F., García-Ibáñez, Maribel I., Jeansson, Emil, Omar, Abdirahman, and Lauvset, Siv K.
- Abstract
The subpolar region in the North Atlantic is a ma- jor sink for anthropogenic carbon. While the storage rates show large interannual variability related to atmospheric forcing, less is known about variability in the natural dis- solved inorganic carbon (DIC) and the combined impact of variations in the two components on the total DIC in- ventories. Here, data from 15 cruises in the Irminger Sea covering the 24-year period between 1991 and 2015 were used to determine changes in total DIC and its natural and anthropogenic components. Based on the results of an ex- tended optimum multiparameter analysis (eOMP), the in- ventory changes are discussed in relation to the distribu- tion and evolution of the main water masses. The inventory of DIC increased by 1.43 ± 0.17 mol m − 2 yr − 1 over the pe- riod, mainly driven by the increase in anthropogenic carbon (1.84 ± 0.16 mol m − 2 yr − 1 ) but partially offset by a loss of natural DIC ( − 0.57 ± 0.22 mol m − 2 yr − 1 ). Changes in the carbon storage rate can be driven by concentration changes in the water column, for example due to the ageing of wa- ter masses, or by changes in the distribution of water masses with different concentrations either by local formation or ad- vection. A decomposition of the trends into their main drivers showed that variations in natural DIC inventories are mainly driven by changes in the layer thickness of the main water masses, while anthropogenic carbon is most affected by con- centration changes. The storage rates of anthropogenic car- bon are sensitive to data selection, while changes in DIC in- ventory show a robust signal on short timescales associated with the strength of convection
- Published
- 2018
31. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
- Author
-
Bakker, Dorothee C. E., Pfeil, Benjamin, Landa, Camilla S., Metzl, Nicolas, O'Brien, Kevin M., Olsen, Are, Smith, Karl M., Cosca, Catherine E., Harasawa, Sumiko, Jones, Stephen D., Nakaoka, Shin-Ichiro, Nojiri, Yukihiro, Schuster, Ute, Steinhoff, Tobias, Sweeney, Colm, Takahashi, Taro, Tilbrook, Bronte, Wada, Chisato, Wanninkhof, Rik H., Alin, Simone R., Balestrini, Carlos F., Barbero, Leticia, Bates, Nicholas R., Bianchi, Alejandro A., Bonou, Frédéric, Boutin, Jacqueline, Bozec, Yann, Burger, Eugene F., Cai, Wei-Jun, Castle, Robert D., Chen, Liqi, Chierici, Melissa, Currie, Kim, Evans, Wiley, Featherstone, Charles, Feely, Richard A., Fransson, Agneta, Goyet, Catherine, Greenwood, Naomi, Gregor, Luke, Hankin, Steven, Hardman-Mountford, Nick J., Harlay, Jérôme, Hauck, Judith, Hoppema, Mario, Humphreys, Matthew P., Hunt, Christopher W., Huss, Betty, Ibánhez, J. Severino P., Johannessen, Truls, Keeling, Ralph F., Kitidis, Vassilis, Körtzinger, Arne, Kozyr, Alex, Krasakopoulou, Evangelia, Kuwata, Akira, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lo Monaco, Claire, Manke, Ansley B., Mathis, Jeremy T., Merlivat, Liliane, Millero, Frank J., Monteiro, Pedro M. S., Munro, David R., Murata, Akihiko, Newberger, Timothy, Omar, Abdirahman M., Ono, Tsuneo, Paterson, Kristina, Pearce, David, Pierrot, Denis, Robbins, Lisa L., Saito, Shu, Salisbury, Joseph E., Schlitzer, Reiner, Schneider, Bernd, Schweitzer, Roland, Sieger, Rainer, Skjelvan, Ingunn, Sullivan, Kevin F., Sutherland, Stewart C., Sutton, Adrienne J., Tadokoro, Kazuaki, Telszewski, Maciej, Tuma, Matthias, van Heuven, Steven M. A. C., Vandemark, Doug, Ward, Brian, Watson, Andrew J., Xu, Suqing, Centre for Ocean and Atmospheric, school of Environmental Sciences, University of East Anglia [Norwich] (UEA), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Équipe CO2 (E-CO2), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NOAA Pacific Marine Environmental Laboratory [Seattle] (PMEL), National Oceanic and Atmospheric Administration (NOAA), Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington [Seattle], National Institute for Environmental Studies (NIES), University of Exeter, Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), NOAA Earth System Research Laboratory (ESRL), Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), Departamento de Oceanografia, Servicio de Hidrografía Naval, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science (CIMAS), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami [Coral Gables]-University of Miami [Coral Gables], Ocean and Earth Science [Southampton], University of Southampton-National Oceanography Centre (NOC), Departmento de Engenharia de Produção, Centro de Estudos e Ensaios em Risco e Modelagem Ambiental, Universidade Federal de Pernambuco [Recife] (UFPE), Interactions et Processus au sein de la couche de Surface Océanique (IPSO), Adaptation et diversité en milieu marin (AD2M), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Marine Science and Policy, University of Delaware [Newark], The Third Institute of Oceanography SOA, Department of Marine Sciences, University of Gothenburg (GU), National Institute of Water and Atmospheric Research [Wellington] (NIWA), Norwegian Polar Institute, Institut de Modélisation et d'Analyses en géo-environnement et santé - Espace Développement (IMAGES-Espace DEV), UMR 228 Espace-Dev, Espace pour le développement, Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA), Centre for Environment, Fisheries and Aquaculture Science [Lowestoft] (CEFAS), Ocean Systems and Climate Group, CSIR, CSIRO Oceans and Atmosphere, CISRO Oceans and Atmosphere, University of Hawai‘i [Mānoa] (UHM), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Ocean Process Analysis Laboratory, University of New Hampshire (UNH), IRD Lago Sul, Brazil, University of California [San Diego] (UC San Diego), University of California (UC), Plymouth Marine Laboratory (PML), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, University of the Aegean, Tohoku National Fisheries Research Institute, National Fisheries Research Institute, Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Geophysical Institute [Bergen] (GFI / BiU), Austral, Boréal et Carbone (ABC), Department of Ocean Sciences, University of Miami [Coral Gables], Department of Atmospheric and Oceanic Sciences [Boulder] (ATOC), University of Colorado [Boulder], Institute of Arctic Alpine Research [University of Colorado Boulder] (INSTAAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), National Research Institute for Fisheries Science,Japan Fisheries Research and Education Agency, Université Paris Diderot - Paris 7 (UPD7), United States Geological Survey [Reston] (USGS), Japan Meteorological Agency (JMA), Ocean Process Analysis Laboratory (OPAL), Leibniz Institute for Baltic Sea Research Warnemünde, Weathertop consulting LLC, International Ocean Carbon Coordination Project, WCRP Joint planning staff, World Meteorological Organization (WCRP), Royal Netherlands Institute for Sea Research (NIOZ), AirSea Laboratory, School of Physics and Ryan Institute, National University of Ireland [Galway] (NUI Galway), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), University of Leeds, College of Life and Environmental Sciences [Exeter], Met Eireann, CSIRO Wealth from Oceans National Research Flagship and Antarctic Climate and Ecosystems CRC, Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Bermuda Institute of Ocean Sciences (BIOS), Centre de résonance magnétique des systèmes biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), CHImie Marine (CHIM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff [Roscoff] (SBR), Department of Chemistry, Computer Science Department (UBC-Computer Science), University of British Columbia (UBC), Laboratoire de Biophysique et Dynamique des Systèmes Intégrés (BDSI), Université de Perpignan Via Domitia (UPVD), Oceans and Atmosphere Flagship (CSIRO), CSIRO Oceans and Atmosphere Flagship, Department of Oceanography (DOCEAN), Federal University of Pernambuco [Recife], University of California, Plymouth Marine Laboratory, Christian-Albrechts-Universität zu Kiel (CAU), Department of Civil and Environmental Engineering [Berkeley] (CEE), University of California [Berkeley], University of California-University of California, University of Wisconsin Whitewater, National Institute of Advanced Industrial Science and Technology (AIST), Department of Computer Science [Royal Holloway], Royal Holloway [University of London] (RHUL), Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Max Planck Institute for Chemical Ecology, School of Physics [NUI Galway], School of Environmental Sciences [Norwich], College of Life and Environmental Sciences, University of Exeter, Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), Institute of Arctic and Alpine Research (INSTAAR), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), and University of California (UC)-University of California (UC)
- Subjects
lcsh:GE1-350 ,lcsh:Geology ,[SDU]Sciences of the Universe [physics] ,lcsh:QE1-996.5 ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography - Abstract
The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
- Published
- 2016
- Full Text
- View/download PDF
32. Inorganic carbon and water masses in the Irminger Sea since 1991
- Author
-
Fröb, Friederike, primary, Olsen, Are, additional, Pérez, Fiz F., additional, García-Ibáñez, Maribel I., additional, Jeansson, Emil, additional, Omar, Abdirahman, additional, and Lauvset, Siv K., additional
- Published
- 2018
- Full Text
- View/download PDF
33. Arctic Ocean CO2 uptake: an improved multi-year estimate of the air–sea CO2 flux incorporating chlorophyll-a concentrations
- Author
-
Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., van Heuven, Steven, Mathis, Jeremy T., Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., van Heuven, Steven, and Mathis, Jeremy T.
- Published
- 2017
34. Global Carbon Budget 2016
- Author
-
Le Quéré, Corinne, Andrew, Robbie M., Canadell, Josep G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M. S., Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, Ingrid T., van der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Zaehle, Sönke, Le Quéré, Corinne, Andrew, Robbie M., Canadell, Josep G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M. S., Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, Ingrid T., van der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., and Zaehle, Sönke
- Published
- 2016
- Full Text
- View/download PDF
35. Global Carbon Budget 2016
- Author
-
Quéré, Corinne, Le, Andrew, Robbie M., Canadell, Josep G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M.S., Munro, David R., Nabel, Julia E.M.S., Nakaoka, S., O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, Laan-Luijkx, Ingrid T., van der, Werf, Guido R., van der, Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Zaehle, Sönke, Quéré, Corinne, Le, Andrew, Robbie M., Canadell, Josep G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M.S., Munro, David R., Nabel, Julia E.M.S., Nakaoka, S., O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, Laan-Luijkx, Ingrid T., van der, Werf, Guido R., van der, Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., and Zaehle, Sönke
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), EFF was 9.3 ±
- Published
- 2016
36. Global Carbon Budget 2016
- Author
-
Le Quéré, C., Andrew, R.M., Canadell, J.G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M.S., Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin-Ichiro, O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, I.T., Van Der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Zaehle, Sönke, Le Quéré, C., Andrew, R.M., Canadell, J.G., Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P., Manning, Andrew C., Boden, Thomas A., Tans, Pieter P., Houghton, Richard A., Keeling, Ralph F., Alin, Simone, Andrews, Oliver D., Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C., Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Klein Goldewijk, Kees, Jain, Atul K., Kato, Etsushi, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R., Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M.S., Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin-Ichiro, O'Brien, Kevin, Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rödenbeck, Christian, Salisbury, Joe, Schuster, Ute, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, I.T., Van Der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., and Zaehle, Sönke
- Published
- 2016
37. Global Carbon Budget 2016
- Author
-
Le Quéré, Corinne, primary, Andrew, Robbie M., additional, Canadell, Josep G., additional, Sitch, Stephen, additional, Korsbakken, Jan Ivar, additional, Peters, Glen P., additional, Manning, Andrew C., additional, Boden, Thomas A., additional, Tans, Pieter P., additional, Houghton, Richard A., additional, Keeling, Ralph F., additional, Alin, Simone, additional, Andrews, Oliver D., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bopp, Laurent, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Ciais, Philippe, additional, Currie, Kim, additional, Delire, Christine, additional, Doney, Scott C., additional, Friedlingstein, Pierre, additional, Gkritzalis, Thanos, additional, Harris, Ian, additional, Hauck, Judith, additional, Haverd, Vanessa, additional, Hoppema, Mario, additional, Klein Goldewijk, Kees, additional, Jain, Atul K., additional, Kato, Etsushi, additional, Körtzinger, Arne, additional, Landschützer, Peter, additional, Lefèvre, Nathalie, additional, Lenton, Andrew, additional, Lienert, Sebastian, additional, Lombardozzi, Danica, additional, Melton, Joe R., additional, Metzl, Nicolas, additional, Millero, Frank, additional, Monteiro, Pedro M. S., additional, Munro, David R., additional, Nabel, Julia E. M. S., additional, Nakaoka, Shin-ichiro, additional, O'Brien, Kevin, additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Pierrot, Denis, additional, Poulter, Benjamin, additional, Rödenbeck, Christian, additional, Salisbury, Joe, additional, Schuster, Ute, additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Skjelvan, Ingunn, additional, Stocker, Benjamin D., additional, Sutton, Adrienne J., additional, Takahashi, Taro, additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, van der Laan-Luijkx, Ingrid T., additional, van der Werf, Guido R., additional, Viovy, Nicolas, additional, Walker, Anthony P., additional, Wiltshire, Andrew J., additional, and Zaehle, Sönke, additional
- Published
- 2016
- Full Text
- View/download PDF
38. A multi-decade record of high-quality <i>f</i>CO<sub>2</sub> data in version 3 of the Surface Ocean CO<sub>2</sub> Atlas (SOCAT)
- Author
-
Bakker, Dorothee C. E., primary, Pfeil, Benjamin, additional, Landa, Camilla S., additional, Metzl, Nicolas, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Smith, Karl, additional, Cosca, Cathy, additional, Harasawa, Sumiko, additional, Jones, Stephen D., additional, Nakaoka, Shin-ichiro, additional, Nojiri, Yukihiro, additional, Schuster, Ute, additional, Steinhoff, Tobias, additional, Sweeney, Colm, additional, Takahashi, Taro, additional, Tilbrook, Bronte, additional, Wada, Chisato, additional, Wanninkhof, Rik, additional, Alin, Simone R., additional, Balestrini, Carlos F., additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Bianchi, Alejandro A., additional, Bonou, Frédéric, additional, Boutin, Jacqueline, additional, Bozec, Yann, additional, Burger, Eugene F., additional, Cai, Wei-Jun, additional, Castle, Robert D., additional, Chen, Liqi, additional, Chierici, Melissa, additional, Currie, Kim, additional, Evans, Wiley, additional, Featherstone, Charles, additional, Feely, Richard A., additional, Fransson, Agneta, additional, Goyet, Catherine, additional, Greenwood, Naomi, additional, Gregor, Luke, additional, Hankin, Steven, additional, Hardman-Mountford, Nick J., additional, Harlay, Jérôme, additional, Hauck, Judith, additional, Hoppema, Mario, additional, Humphreys, Matthew P., additional, Hunt, Christopher W., additional, Huss, Betty, additional, Ibánhez, J. Severino P., additional, Johannessen, Truls, additional, Keeling, Ralph, additional, Kitidis, Vassilis, additional, Körtzinger, Arne, additional, Kozyr, Alex, additional, Krasakopoulou, Evangelia, additional, Kuwata, Akira, additional, Landschützer, Peter, additional, Lauvset, Siv K., additional, Lefèvre, Nathalie, additional, Lo Monaco, Claire, additional, Manke, Ansley, additional, Mathis, Jeremy T., additional, Merlivat, Liliane, additional, Millero, Frank J., additional, Monteiro, Pedro M. S., additional, Munro, David R., additional, Murata, Akihiko, additional, Newberger, Timothy, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paterson, Kristina, additional, Pearce, David, additional, Pierrot, Denis, additional, Robbins, Lisa L., additional, Saito, Shu, additional, Salisbury, Joe, additional, Schlitzer, Reiner, additional, Schneider, Bernd, additional, Schweitzer, Roland, additional, Sieger, Rainer, additional, Skjelvan, Ingunn, additional, Sullivan, Kevin F., additional, Sutherland, Stewart C., additional, Sutton, Adrienne J., additional, Tadokoro, Kazuaki, additional, Telszewski, Maciej, additional, Tuma, Matthias, additional, van Heuven, Steven M. A. C., additional, Vandemark, Doug, additional, Ward, Brian, additional, Watson, Andrew J., additional, and Xu, Suqing, additional
- Published
- 2016
- Full Text
- View/download PDF
39. Aragonite saturation states and pH in western Norwegian fjords: seasonal cycles and controlling factors, 2005–2009
- Author
-
Omar, Abdirahman M., primary, Skjelvan, Ingunn, additional, Erga, Svein Rune, additional, and Olsen, Are, additional
- Published
- 2016
- Full Text
- View/download PDF
40. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations.
- Author
-
Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., van Heuven, Steven, and Mathis, Jeremy T.
- Subjects
CARBON dioxide in seawater ,CHLOROPHYLL content of seawater ,SELF-organizing maps ,ALGORITHMS ,MARINE ecology - Abstract
We estimated monthly air-sea CO
2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w ) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w , particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180±130 Tg Cyr-1 . Seasonal to interannual variation in the CO2 influx was also calculated. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
41. Technical synthesis report on droplet/bubble dynamics, plume dynamics and modelling parameters, use of hydro-acoustics to quantify droplet/bubble fluxes, and carbonate system variable assessment
- Author
-
Alendal, Guttorm, Omar, Abdirahman, Denny, Alden R., Baumberger, Tamara, Beaubien, Stan E., Vielstädte, Lisa, Dewar, Marius, Chen, Baixin, Pedersen, Rolf B., De Vittor, Cinzia, and Johannessen, Truls
- Subjects
010504 meteorology & atmospheric sciences ,13. Climate action ,010502 geochemistry & geophysics ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
ECO2 Deliverable No D3.1
- Published
- 2013
- Full Text
- View/download PDF
42. Tilførselsprogrammet 2011. Overvåking av forsuring av norske farvann
- Author
-
Chierici, M., Sørensen, Kai, Johannessen, Truls, Børsheim, Knut Yngve, Olsen, Are, Yakushev, Evgeniy, Omar, Abdirahman, Blakseth, Tomas Adler, and Green, N. - Project manager
- Subjects
monitoring ,Matematikk og naturvitenskap: 400 [VDP] ,havforsuring ,overvåking ,norskehavet ,ocean acidification ,norske farvann ,norwegian sea ,marine miljøgifter ,norwegian seas - Abstract
Denne rapporten gjelder undersøkelser av havforsuring som er utført av IMR, NIVA og BCCR i oppdrag fra Klif i 2011. Den er basert på målinger mellom Bergen-Kirknes og Tromsø-Longyearbyen utført av NIVA. Prøvetaking av vertikalen fra Torungen-Hirtshals, Svinøy-NW, Gimsøy-NW og Fugløya-Bjørnøya er utført av IMR. Resultatene fra Norskehavet viser en klar sesongvariasjon i øvre 100 m av vannsøylen, som for det meste er styrt av styrken på primærproduksjonen. I tillegg påvirkes karboninnholdet av kystvannet som brer seg vestover i løpet av sommeren. Metningsgraden for aragonitt (Ar) er mellom 1.95 til 1.6 på 300 m dyp. I Norskehavet befinner =1.6 seg på 500 m dyp, og i Nordsjøen på ca 200 m. I Norskehavet er det undermetning fra like under 1500 meters dyp av aragonitt og overmetning av kalsitt i hele vannsøylen. I Barentshavet lå Ar mellom 1.07-2.62 med min. verdier i kystområdet mellom Kirkenes og Tromsø i januar (1.07-2.03), mens Ar var 1.49-2.52 i desember, og karakterisert av en stor variasjon fra 1.67 til 2.62 som skyldes en økt biologisk produksjon. Historiske data er sammenlignet på Havforskningens hydrografiske seksjoner i 2011 og CARINA databasen. Primært ble data fra 1997-2011 i nord-vestlig retning fra Gimsøy og Svinøy benyttet for å studere trender i Norskehavet, men analysen omfatter også data fra Barentshavet. Trender viser en økning av karbonkonsentrasjonene målt i 2011 relativt til historiske data. Dette gjenspeiler hovedsakelig havets opptak av menneskeskapt CO2. Konklusjonen er at de fleste områder studert i denne rapporten er mettet i forhold til kalsitt, og undermetning av aragonitt viser seg på 1500 meters dyp i Norskehavet. Klif
- Published
- 2012
43. Tilførselsprogrammet 2010. Overvåking av forsuring av norske farvann med spesiell fokus på Nordsjøen
- Author
-
Johannessen, Truls, Sørensen, Kai, Børsheim, Knut Yngve, Olsen, Are, Yakushev, Evgeniy, Omar, Abdirahman, Blakseth, Tomas Adler, and Green, N. - Project manager
- Subjects
monitoring ,Matematikk og naturvitenskap: 400 [VDP] ,north sea ,havforsuring ,overvåking ,ocean acidification ,norske farvann ,marine miljøgifter ,norwegian seas ,nordsjøen - Abstract
Denne rapporten gjelder undersøkelser av havforsuring som er utført av NIVA, IMR og BCCR i oppdrag fra Klif. Den er basert på målinger fra tokt mellom Oslo - Kiel og Tromsø - Longyearbyen utført av NIVA i 2010, prøvetaking Torungen – Hirtshals utført av Havforskningsinstituttet og analysert ved BCCR i 2010, og analyser av historiske data gjennomført av BCCR. De sistnevnte data er primært fra 2001-2007 samlet fra to transekt som krysser Nordsjøen i øst-vestlig og nord-sørlig retning, men omfatter også toktdata fra sør i Nordsjøen i 1987. Resultatene viser en klar sesongvis variasjon som for det meste er styrt av styrken på primærproduksjonen gjennom året. Det er også funnet år-til-år endringer som er tilnærmet like store som sesongvariasjonene. Dette gjør det vanskelig å dokumentere endringene i pH som er ventet fra antropogen havforsuring. Vår nåværende evne til å observere dette signalet og generelt forstå dynamikken i observerte endringer er diskutert i rapporten. I den forbindelse blir det påpekt behov for multivariable, langsiktige måleprogram på faste stasjoner. De fleste områder studert i denne rapporten er mettet i forhold til kalsiumkarbonat Klif
- Published
- 2011
44. Arctic Ocean CO2 uptake: an improved multi-year estimate of the air-sea CO2 flux incorporating chlorophyll-a concentrations.
- Author
-
Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., van Heuven, Steven, and Mathis, Jeremy T.
- Subjects
CHLOROPHYLL ,SELF-organizing maps ,OCEAN temperature ,SALINITY ,MARINE ecology - Abstract
We estimated monthly air-sea CO
2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping partial pressure of CO2 in the surface water (pCO2w ) using a self-organizing map (SOM) technique incorporating chlorophyll-a concentration (Chl-a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. The overall relationship between pCO2w and Chl-a is negative in most regions when Chl-a ≥ 1 mg m-3 , whereas there is no significant relationship when Chl-a > 1 mg m-3 . In the Kara Sea and the East Siberian Sea and the Bering Strait, however, the relationship is typically positive in summer. The addition of Chl-a as a parameter in the SOM process enabled us to improve the estimate of pCO2w via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. Mainly as a result of the inclusion of Chl-a, the uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 TgC y-1 was determined to be significant. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
45. Inorganic Carbon and Water Masses in the Irminger Sea since 1991.
- Author
-
Fröb, Friederike, Olsen, Are, Pérez, Fiz F., García-Ibáñez, María I., Jeansson, Emil, Omar, Abdirahman, and Lauvset, Siv K.
- Subjects
CARBON cycle ,WATER masses ,ANTHROPOGENIC effects on nature ,ADVECTION - Abstract
The subpolar gyre region in the North Atlantic is a major sink for anthropogenic carbon. While the storage rates show large interannual variability related to atmospheric forcing, less is known about variability in the natural Dissolved Inorganic Carbon (DIC) and the combined impact of variations in the two components on the total DIC inventories. Here, data from 15 cruises in the Irminger Sea covering 1991-2015 were used to determine changes in total DIC and its natural and anthropogenic components in relation to the distribution and evolution of the main water masses. The inventory of DIC increased by 1.43 ± 0.17 mol m
-2 yr-1 over the period, mainly driven by the increase in anthropogenic carbon (1.84 ± 0.16 mol m-2 yr-1 ), but partially offset by a loss of natural DIC (-0.57 ± 0.22 mol m-2 yr-1 ). Changes in the carbon storage rate can be driven by concentration changes in the water column, for example due to ageing of water masses, or by changes in the distribution of water masses with different concentrations, either by local formation or advection. A decomposition of the trends into their main drivers showed that variations of natural DIC inventories are mainly driven by changes in the layer thickness of the main water masses, while anthropogenic carbon is most affected by concentration changes. The storage rates of anthropogenic carbon are sensitive to data selection, while changes in DIC inventory show a robust signal on short timescales, associated with the strength of convection. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
46. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate
- Author
-
Liss, P., Johnson, M. T., Bakker, D. C. E., Bange, Hermann W., Gruber, Nicolas, Johannessen, Truls, Upstill-Goddard, Rob C., Borges, Alberto V., Delille, Bruno, Löscher, Carolin, Naqvi, S. Wajih A., Omar, Abdirahman M., Santana-Casiano, J. Magdalena, Liss, P., Johnson, M. T., Bakker, D. C. E., Bange, Hermann W., Gruber, Nicolas, Johannessen, Truls, Upstill-Goddard, Rob C., Borges, Alberto V., Delille, Bruno, Löscher, Carolin, Naqvi, S. Wajih A., Omar, Abdirahman M., and Santana-Casiano, J. Magdalena
- Abstract
Understanding and quantifying ocean–atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.
- Published
- 2014
47. The role of the Barents Sea in the Arctic climate system
- Author
-
Smedsrud, Lars H., Esau, Igor, Ingvaldsen, Randi B., Eldevik, Tor, Haugan, Peter M., Li, Camille, Lien, Vidar S., Olsen, Are, Omar, Abdirahman M., Otterå, Odd H., Risebrobakken, Bjørg, Sandø, Anne B., Semenov, Vladimir A., Sorokina, Svetlana A., Smedsrud, Lars H., Esau, Igor, Ingvaldsen, Randi B., Eldevik, Tor, Haugan, Peter M., Li, Camille, Lien, Vidar S., Olsen, Are, Omar, Abdirahman M., Otterå, Odd H., Risebrobakken, Bjørg, Sandø, Anne B., Semenov, Vladimir A., and Sorokina, Svetlana A.
- Abstract
Present global warming is amplified in the Arctic and accompanied by unprecedented sea ice decline. Located along the main pathway of Atlantic Water entering the Arctic, the Barents Sea is the site of coupled feedback processes that are important for creating variability in the entire Arctic air-ice-ocean system. As warm Atlantic Water flows through the Barents Sea, it loses heat to the Arctic atmosphere. Warm periods, like today, are associated with high northward heat transport, reduced Arctic sea ice cover, and high surface air temperatures. The cooling of the Atlantic inflow creates dense water sinking to great depths in the Arctic Basins, and ~60% of the Arctic Ocean carbon uptake is removed from the carbon-saturated surface this way. Recently, anomalously large ocean heat transport has reduced sea ice formation in the Barents Sea during winter. The missing Barents Sea winter ice makes up a large part of observed winter Arctic sea ice loss, and in 2050, the Barents Sea is projected to be largely ice free throughout the year, with 4°C summer warming in the formerly ice-covered areas. The heating of the Barents atmosphere plays an important role both in “Arctic amplification” and the Arctic heat budget. The heating also perturbs the large-scale circulation through expansion of the Siberian High northward, with a possible link to recent continental wintertime cooling. Large air-ice-ocean variability is evident in proxy records of past climate conditions, suggesting that the Barents Sea has had an important role in Northern Hemisphere climate for, at least, the last 2500 years.
- Published
- 2013
- Full Text
- View/download PDF
48. Accurate monitoring of the North Atlantic air-sea CO2 flux from a network of voluntary observing ships
- Author
-
Watson, Andrew J., Schuster, Ute, Telszewski, Maciej, Johannessen, Truls, Olsen, Are, Omar, Abdirahman, Pfeil, Benjamin, Koertzinger, A., Steinhoff, Tobias, Wallace, D. W. R., Olafsson, Jon, Corbière, A., Metzl, Nicolas, Lefèvre, Nathalie, Ríos, Aida F., Pérez, Fiz F., Padín, X. A., Bates, Nicholas R., Wanninkhof, Rik, Gonzales-Davila, M., Santana-Casiano, J. M., Watson, Andrew J., Schuster, Ute, Telszewski, Maciej, Johannessen, Truls, Olsen, Are, Omar, Abdirahman, Pfeil, Benjamin, Koertzinger, A., Steinhoff, Tobias, Wallace, D. W. R., Olafsson, Jon, Corbière, A., Metzl, Nicolas, Lefèvre, Nathalie, Ríos, Aida F., Pérez, Fiz F., Padín, X. A., Bates, Nicholas R., Wanninkhof, Rik, Gonzales-Davila, M., and Santana-Casiano, J. M.
- Abstract
Since the start of 2005 under the EU’s Carbo-Ocean project, we have participated in co-ordinated observations of sea surface pCO2 and related variables from a network of commercial vessels in the North Atlantic. Typically five vessels are operating at any one time. The observations can be used to reconstruct the sea-surface pCO2 field, and thence estimate air-sea fluxes, with unprecedented resolution and accuracy. Using the observations for the calendar year 2005, we use a variety of geostatistical methods to derive the precision with which regional fluxes can be obtained. The observations are generalized to the entire N Atlantic from 10N to 65N by exploiting relations between surface pCO2, SST and mixed layer depth. Using semi-variograms or an empirical technique of selective data deletion applied to the residuals, we obtain a 1-sigma uncertainty of 6% on the annual flux into the region as a whole. This is very much more precise than has been possible for any comparable region of the world (land or ocean) up to now
- Published
- 2008
49. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT).
- Author
-
Bakker, Dorothee C. E., Sweeney, Colm, Omar, Abdirahman M., Sutton, Adrienne J., Takahashi, Taro, Pearce, David, Tilbrook, Bronte, Huss, Betty, Featherstone, Charles, Castle, Robert D., Wanninkhof, Rik, Robbins, Lisa L., Barbero, Leticia, Sutherland, Stewart C., Bianchi, Alejandro A., Balestrini, Carlos F., Bates, Nicholas R., Humphreys, Matthew P., Landa, Camilla S., and Pfeil, Benjamin
- Subjects
CARBON dioxide in seawater ,FUGACITY ,SCIENCE databases - Abstract
The Surface Ocean CO
2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. Highprofile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Bakker et al., 2014). [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
50. The effect of submarine CO2 vents on seawater: Implications for detection of subsea carbon sequestration leakage.
- Author
-
Botnen, Helle Augdal, Omar, Abdirahman M., Thorseth, Ingunn, Johannessen, Truls, and Alendal, Guttorm
- Subjects
- *
CARBON dioxide in seawater , *CARBON dioxide , *ATMOSPHERIC carbon dioxide - Abstract
The effect of submarine carbon dioxide (CO2) vents on seawater carbonate chemistry have been determined using hydrographical and marine carbonate data obtained from two submarine hydrothermal vent fields, as well as a reference station, all near the Jan Mayen Island in the Norwegian-Greenland Sea. We have shown that one can successfully determine the excess carbon that enters the seawater from the vents by applying a modified version of a back-calculation technique, which is traditionally used to study the invasion of excess atmospheric CO2 in the surface ocean. As a result of this excess carbon, total dissolved inorganic carbon ( CT) in the seawater surrounding the vents was on average 12 μmol kg−1 (1-30 μmol kg−1) higher compared to samples obtained from a reference station outside the venting areas. The observed excess CT was most significant between 100 m and 200 m but was noticeable in all depths with the exception of the upper 10-20 m. The absence of a venting CO2 signal in the surface water and the realism of the results are discussed. We believe the present method is promising for monitoring (detection and quantification) of CO2 leakage into the water column due to its high sensitivity and readiness for automation. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.