59 results on '"O. Yefanov"'
Search Results
2. 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector
- Author
-
A. Tolstikova, M. Levantino, O. Yefanov, V. Hennicke, P. Fischer, J. Meyer, A. Mozzanica, S. Redford, E. Crosas, N. L. Opara, M. Barthelmess, J. Lieske, D. Oberthuer, E. Wator, I. Mohacsi, M. Wulff, B. Schmitt, H. N. Chapman, and A. Meents
- Subjects
serial crystallography ,synchrotron radiation ,pink beams ,protein crystallography ,protein structure ,structure determination ,Crystallography ,QD901-999 - Abstract
Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s.
- Published
- 2019
- Full Text
- View/download PDF
3. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse
- Author
-
L. Galli, S.-K. Son, M. Klinge, S. Bajt, A. Barty, R. Bean, C. Betzel, K. R. Beyerlein, C. Caleman, R. B. Doak, M. Duszenko, H. Fleckenstein, C. Gati, B. Hunt, R. A. Kirian, M. Liang, M. H. Nanao, K. Nass, D. Oberthür, L. Redecke, R. Shoeman, F. Stellato, C. H. Yoon, T. A. White, O. Yefanov, J. Spence, and H. N. Chapman
- Subjects
Crystallography ,QD901-999 - Abstract
Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.
- Published
- 2015
- Full Text
- View/download PDF
4. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers
- Author
-
R. A. Kirian, S. Awel, N. Eckerskorn, H. Fleckenstein, M. Wiedorn, L. Adriano, S. Bajt, M. Barthelmess, R. Bean, K. R. Beyerlein, L. M. G. Chavas, M. Domaracky, M. Heymann, D. A. Horke, J. Knoska, M. Metz, A. Morgan, D. Oberthuer, N. Roth, T. Sato, P. L. Xavier, O. Yefanov, A. V. Rode, J. Küpper, and H. N. Chapman
- Subjects
Crystallography ,QD901-999 - Abstract
A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.
- Published
- 2015
- Full Text
- View/download PDF
5. XVis: an educational open-source program for demonstration of reciprocal-space construction and diffraction principles
- Author
-
Mykola Slobodyan, V. P. Kladko, Yulia Polischuk, and O. Yefanov
- Subjects
Diffraction ,Reciprocal lattice ,Crystallography ,Open source ,Reflection (mathematics) ,Transmission (telecommunications) ,Computer science ,Computer graphics (images) ,ddc:540 ,Information representation ,Real structure ,General Biochemistry, Genetics and Molecular Biology ,Connection (mathematics) - Abstract
The programXVisis designed for interactive demonstration of different diffraction issues, such as reciprocal-space construction, connection between real and reciprocal spaceviadiffraction phenomena, different methods of reciprocal-space scanning, accessible reciprocal-space regions for coplanar and noncoplanar diffraction for both transmission and reflection geometries,N-beam diffraction phenomena, reciprocal space for two-layered systems and experimental examples. All demonstrations are calculated using real structure parameters. For better information representation, the program displays most demonstrations in real and reciprocal space simultaneously. The program is open source and can be downloaded from http://x-ray.net.ua/xvis.html.
- Published
- 2008
- Full Text
- View/download PDF
6. Investigation of defect structure of InGaNAsSb/GaAs quantum wells
- Author
-
M. Slobodyan, O. Yefanov, Yong-Hang Zhang, Shane Johnson, V.I. Kushnirenko, Tetyana Kryshtab, Ye. Venger, L. V. Borkovska, Yu. G. Sadofyev, V. P. Kladko, and Nadiia Korsunska
- Subjects
Diffraction ,Materials science ,Photoluminescence ,Condensed matter physics ,Oscillation ,Surface stress ,Bioengineering ,Substrate (electronics) ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Symmetry (physics) ,Biomaterials ,Condensed Matter::Materials Science ,Mechanics of Materials ,Elastic modulus ,Quantum well - Abstract
The results of the photoluminescence (PL) and the high-resolution X-ray diffraction (HRXRD) investigations of point and extended defects in strained InGaAs(N)Sb/GaAs quantum well (QW) structures grown at 478–505 °C are presented. HRXRD studies prove a good quality of heterointerfaces in all samples that is attributed to Sb-surfactant effect. The PL investigations show that the increase of the growth temperature of N-containing QWs leads to the increase of potential fluctuations in QW due to the increase of composition disorder. In the PL spectra an intense band caused by excitonic transitions related with N-related clusters in GaAs barriers is found. HRXRD mapping in symmetrical 004 reflections reveals the oscillation of interference picture in [110] direction around the normal to (100) surface known as a “wiggle”. The mapping indicates the formation of elastically coupled domains which are elongated in [¯110] direction and are supposed to be cased by lateral composition modulations in the QW. It is proposed that a “wiggle” explained by the change of slopes of crystallographic planes with the depth is the result of competition of two factors — a symmetry of the surface stress tensor and a symmetry of bulk elastic moduli of a substrate material.
- Published
- 2007
- Full Text
- View/download PDF
7. Convergent-beam attosecond x-ray crystallography.
- Author
-
Chapman HN, Li C, Bajt S, Butola M, Dresselhaus JL, Egorov D, Fleckenstein H, Ivanov N, Kiene A, Klopprogge B, Kremling V, Middendorf P, Oberthuer D, Prasciolu M, Scheer TES, Sprenger J, Wong JC, Yefanov O, Zakharova M, and Zhang W
- Abstract
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase in the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography-especially for crystals of small molecules., Competing Interests: The authors have no conflicts to disclose., (© 2025 Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
8. Fast and efficient hard X-ray projection imaging below 10 nm resolution.
- Author
-
Zhang W, Dresselhaus JL, Fleckenstein H, Prasciolu M, Zakharova M, Ivanov N, Li C, Yefanov O, Li T, Egorov D, De Gennaro Aquino I, Middendorf P, Hagemann J, Shi S, Bajt S, and Chapman HN
- Abstract
High-resolution X-ray imaging of noncrystalline objects is often achieved through the approach of scanning coherent diffractive imaging known as ptychography. The imaging resolution is usually limited by the scattering properties of the sample, where weak diffraction signals at the highest scattering angles compete with parasitic scattering. Here, we demonstrate that X-ray multilayer Laue lenses with a high numerical aperture (NA) can be used to create a strong reference beam that holographically boosts weak scattering from the sample over a large range of scattering angles, enabling high-resolution imaging that is tolerant of such background. An imaging resolution of sub-10 nm was achieved at a photon energy of 17.4 keV with lenses of 0.014 NA from a Siemens star test object and a sample of hierarchical nanoporous gold, recording projection holograms at an effective magnification of more than 30,000 directly on a pixel-array detector. A numerical study compared this approach to low-NA far-field ptychography, indicating significant advantages for using high-NA lenses in the presence of background noise. This imaging modality is particularly fast and efficient at recording high-resolution transmission phase-contrast images over large fields of view in a facile manner.
- Published
- 2024
- Full Text
- View/download PDF
9. Time-resolved crystallography of boric acid binding to the active site serine of the β-lactamase CTX-M-14 and subsequent 1,2-diol esterification.
- Author
-
Prester A, Perbandt M, Galchenkova M, Oberthuer D, Werner N, Henkel A, Maracke J, Yefanov O, Hakanpää J, Pompidor G, Meyer J, Chapman H, Aepfelbacher M, Hinrichs W, Rohde H, and Betzel C
- Abstract
The emergence and spread of antibiotic resistance represent a growing threat to public health. Of particular concern is the appearance of β-lactamases, which are capable to hydrolyze and inactivate the most important class of antibiotics, the β-lactams. Effective β-lactamase inhibitors and mechanistic insights into their action are central in overcoming this type of resistance, and in this context boronate-based β-lactamase inhibitors were just recently approved to treat multidrug-resistant bacteria. Using boric acid as a simplified inhibitor model, time-resolved serial crystallography was employed to obtain mechanistic insights into binding to the active site serine of β-lactamase CTX-M-14, identifying a reaction time frame of 80-100 ms. In a next step, the subsequent 1,2-diol boric ester formation with glycerol in the active site was monitored proceeding in a time frame of 100-150 ms. Furthermore, the displacement of the crucial anion in the active site of the β-lactamase was verified as an essential part of the binding mechanism of substrates and inhibitors. In total, 22 datasets of β-lactamase intermediate complexes with high spatial resolution of 1.40-2.04 Å and high temporal resolution range of 50-10,000 ms were obtained, allowing a detailed analysis of the studied processes. Mechanistic details captured here contribute to the understanding of molecular processes and their time frames in enzymatic reactions. Moreover, we could demonstrate that time-resolved crystallography can serve as an additional tool for identifying and investigating enzymatic reactions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
10. X-ray focusing below 3 nm with aberration-corrected multilayer Laue lenses.
- Author
-
Dresselhaus JL, Zakharova M, Ivanov N, Fleckenstein H, Prasciolu M, Yefanov O, Li C, Zhang W, Middendorf P, Egorov D, De Gennaro Aquino I, Chapman HN, and Bajt S
- Abstract
Multilayer Laue lenses are volume diffractive optical elements for hard X-rays with the potential to focus beams to sizes as small as 1 nm. This ability is limited by the precision of the manufacturing process, whereby systematic errors that arise during fabrication contribute to wavefront aberrations even after calibration of the deposition process based on wavefront metrology. Such aberrations can be compensated by using a phase plate. However, current high numerical aperture lenses for nanometer resolution exhibit errors that exceed those that can be corrected by a single phase plate. To address this, we accumulate a large wavefront correction by propagation through a linear array of 3D-printed phase correcting elements. With such a compound refractive corrector, we report on a point spread function with a full-width at half maximum area of 2.9 × 2.8 nm
2 at a photon energy of 17.5 keV.- Published
- 2024
- Full Text
- View/download PDF
11. Data reduction in protein serial crystallography.
- Author
-
Galchenkova M, Tolstikova A, Klopprogge B, Sprenger J, Oberthuer D, Brehm W, White TA, Barty A, Chapman HN, and Yefanov O
- Subjects
- Crystallography, Tomography, X-Ray Computed, Algorithms, Data Compression methods
- Abstract
Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality., (open access.)
- Published
- 2024
- Full Text
- View/download PDF
12. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX.
- Author
-
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, and Oberthür D
- Subjects
- Animals, Mosquito Control, Larva metabolism, Pesticides, Bacillus, Bacillaceae chemistry, Bacillaceae metabolism, Culex
- Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi , Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2023
- Full Text
- View/download PDF
13. Heterogeneity in M. tuberculosis β-lactamase inhibition by Sulbactam.
- Author
-
Malla TN, Zielinski K, Aldama L, Bajt S, Feliz D, Hayes B, Hunter M, Kupitz C, Lisova S, Knoska J, Martin-Garcia JM, Mariani V, Pandey S, Poudyal I, Sierra RG, Tolstikova A, Yefanov O, Yoon CH, Ourmazd A, Fromme P, Schwander P, Barty A, Chapman HN, Stojkovic EA, Batyuk A, Boutet S, Phillips GN Jr, Pollack L, and Schmidt M
- Subjects
- Humans, Ligands, Sulbactam pharmacology, beta-Lactamases, Mycobacterium tuberculosis, Tuberculosis
- Abstract
For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals. Here, we report in atomic detail (between 2.2 and 2.7 Å resolution) by room-temperature, time-resolved crystallography with millisecond time-resolution (with timepoints between 3 ms and 700 ms) how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating, cooperativity, induced fit, and conformational selection all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme noncovalently before reacting to a trans-enamine. This was made possible in part by the application of singular value decomposition to the MISC data using a program that remains functional even if unit cell parameters change up to 3 Å during the reaction., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
14. Dose-efficient scanning Compton X-ray microscopy.
- Author
-
Li T, Dresselhaus JL, Ivanov N, Prasciolu M, Fleckenstein H, Yefanov O, Zhang W, Pennicard D, Dippel AC, Gutowski O, Villanueva-Perez P, Chapman HN, and Bajt S
- Abstract
The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
15. JINXED: just in time crystallization for easy structure determination of biological macromolecules.
- Author
-
Henkel A, Galchenkova M, Maracke J, Yefanov O, Klopprogge B, Hakanpää J, Mesters JR, Chapman HN, and Oberthuer D
- Subjects
- Crystallography, X-Ray, Ligands, Crystallization methods, Solvents, Proteins
- Abstract
Macromolecular crystallography is a well established method in the field of structural biology and has led to the majority of known protein structures to date. After focusing on static structures, the method is now under development towards the investigation of protein dynamics through time-resolved methods. These experiments often require multiple handling steps of the sensitive protein crystals, e.g. for ligand-soaking and cryo-protection. These handling steps can cause significant crystal damage, and hence reduce data quality. Furthermore, in time-resolved experiments based on serial crystallography, which use micrometre-sized crystals for short diffusion times of ligands, certain crystal morphologies with small solvent channels can prevent sufficient ligand diffusion. Described here is a method that combines protein crystallization and data collection in a novel one-step process. Corresponding experiments were successfully performed as a proof-of-principle using hen egg-white lysozyme and crystallization times of only a few seconds. This method, called JINXED (Just IN time Crystallization for Easy structure Determination), promises high-quality data due to the avoidance of crystal handling and has the potential to enable time-resolved experiments with crystals containing small solvent channels by adding potential ligands to the crystallization buffer, simulating traditional co-crystallization approaches., (open access.)
- Published
- 2023
- Full Text
- View/download PDF
16. Speckle contrast of interfering fluorescence X-rays.
- Author
-
Trost F, Ayyer K, Oberthuer D, Yefanov O, Bajt S, Caleman C, Weimer A, Feld A, Weller H, Boutet S, Koglin J, Timneanu N, von Zanthier J, Röhlsberger R, and Chapman HN
- Abstract
With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration., (open access.)
- Published
- 2023
- Full Text
- View/download PDF
17. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive.
- Author
-
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, and Oberthuer D
- Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance ( Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required., (© Kara A Zielinski et al. 2022.)
- Published
- 2022
- Full Text
- View/download PDF
18. Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers.
- Author
-
Holmes S, Kirkwood HJ, Bean R, Giewekemeyer K, Martin AV, Hadian-Jazi M, Wiedorn MO, Oberthür D, Marman H, Adriano L, Al-Qudami N, Bajt S, Barák I, Bari S, Bielecki J, Brockhauser S, Coleman MA, Cruz-Mazo F, Danilevski C, Dörner K, Gañán-Calvo AM, Graceffa R, Fanghor H, Heymann M, Frank M, Kaukher A, Kim Y, Kobe B, Knoška J, Laurus T, Letrun R, Maia L, Messerschmidt M, Metz M, Michelat T, Mills G, Molodtsov S, Monteiro DCF, Morgan AJ, Münnich A, Peña Murillo GE, Previtali G, Round A, Sato T, Schubert R, Schulz J, Shelby M, Seuring C, Sellberg JA, Sikorski M, Silenzi A, Stern S, Sztuk-Dambietz J, Szuba J, Trebbin M, Vagovic P, Ve T, Weinhausen B, Wrona K, Xavier PL, Xu C, Yefanov O, Nugent KA, Chapman HN, Mancuso AP, Barty A, Abbey B, and Darmanin C
- Subjects
- Crystallography, X-Ray, Radiography, X-Rays, Electrons, Lasers
- Abstract
The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease.
- Author
-
Srinivasan V, Brognaro H, Prabhu PR, de Souza EE, Günther S, Reinke PYA, Lane TJ, Ginn H, Han H, Ewert W, Sprenger J, Koua FHM, Falke S, Werner N, Andaleeb H, Ullah N, Franca BA, Wang M, Barra ALC, Perbandt M, Schwinzer M, Schmidt C, Brings L, Lorenzen K, Schubert R, Machado RRG, Candido ED, Oliveira DBL, Durigon EL, Niebling S, Garcia AS, Yefanov O, Lieske J, Gelisio L, Domaracky M, Middendorf P, Groessler M, Trost F, Galchenkova M, Mashhour AR, Saouane S, Hakanpää J, Wolf M, Alai MG, Turk D, Pearson AR, Chapman HN, Hinrichs W, Wrenger C, Meents A, and Betzel C
- Subjects
- Allosteric Site, Coronavirus Papain-Like Proteases, Humans, Papain metabolism, Peptide Hydrolases metabolism, SARS-CoV-2, Antiviral Agents pharmacology, COVID-19 Drug Treatment
- Abstract
SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
20. Robust ptychographic X-ray speckle tracking with multilayer Laue lenses.
- Author
-
Ivanov N, Lukas Dresselhaus J, Carnis J, Domaracky M, Fleckenstein H, Li C, Li T, Prasciolu M, Yefanov O, Zhang W, Bajt S, and Chapman HN
- Abstract
In recent years, X-ray speckle tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications, and have been actively developed for use at synchrotron light sources. Speckle techniques can recover an image free of aberrations and can be used to measure wavefronts with a high angular sensitivity. Since they are compatible with low-coherence sources they can be also used with laboratory X-ray sources. A new implementation of the ptychographic X-ray speckle tracking method, suitable for the metrology of highly divergent wavefields, such as those created by multilayer Laue lenses, is presented here. This new program incorporates machine learning techniques such as Huber and non-parametric regression and enables robust and quick wavefield measurements and data evaluation even for low brilliance X-ray beams, and the imaging of low-contrast samples. To realize this, a software suite was written in Python 3, with a C back-end capable of concurrent calculations for high performance. It is accessible as a Python module and is available as source code under Version 3 or later of the GNU General Public License.
- Published
- 2022
- Full Text
- View/download PDF
21. Using diffraction losses of X-rays in a single crystal for determination of its lattice parameters as well as for monochromator calibration.
- Author
-
Klimova N, Snigireva I, Snigirev A, and Yefanov O
- Abstract
A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10
-5 . The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect'). This method can be easily applied to any transmissive X-ray optical element made of single crystals (for example, X-ray lenses). The only requirements are the possibility to change the energy of the generated X-ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2θ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy., (open access.)- Published
- 2022
- Full Text
- View/download PDF
22. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging.
- Author
-
Zhuang Y, Awel S, Barty A, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Hunter MS, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu J, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Shen Z, Sikorski M, Schulz F, Spence JCH, Vagovic P, Wollweber T, Worbs L, Xavier PL, Yefanov O, Maia FRNC, Horke DA, Küpper J, Loh ND, Mancuso AP, Chapman HN, and Ayyer K
- Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress ( EMC ) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered., (© Yulong Zhuang et al. 2022.)
- Published
- 2022
- Full Text
- View/download PDF
23. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser.
- Author
-
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, and Milne CJ
- Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs., (© Karol Nass et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
24. Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography.
- Author
-
Pandey S, Calvey G, Katz AM, Malla TN, Koua FHM, Martin-Garcia JM, Poudyal I, Yang JH, Vakili M, Yefanov O, Zielinski KA, Bajt S, Awel S, Doerner K, Frank M, Gelisio L, Jernigan R, Kirkwood H, Kloos M, Koliyadu J, Mariani V, Miller MD, Mills G, Nelson G, Olmos JL Jr, Sadri A, Sato T, Tolstikova A, Xu W, Ourmazd A, Spence JCH, Schwander P, Barty A, Chapman HN, Fromme P, Mancuso AP, Phillips GN Jr, Bean R, Pollack L, and Schmidt M
- Abstract
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research., (© Suraj Pandey et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
25. Synchronous RNA conformational changes trigger ordered phase transitions in crystals.
- Author
-
Ramakrishnan S, Stagno JR, Conrad CE, Ding J, Yu P, Bhandari YR, Lee YT, Pauly G, Yefanov O, Wiedorn MO, Knoska J, Oberthür D, White TA, Barty A, Mariani V, Li C, Brehm W, Heinz WF, Magidson V, Lockett S, Hunter MS, Boutet S, Zatsepin NA, Zuo X, Grant TD, Pandey S, Schmidt M, Spence JCH, Chapman HN, and Wang YX
- Subjects
- Adenine chemistry, Aptamers, Nucleotide chemistry, Crystallography, X-Ray, Microscopy, Atomic Force methods, Microscopy, Polarization methods, Models, Molecular, Time-Lapse Imaging methods, Nucleic Acid Conformation, Phase Transition, RNA chemistry, Riboswitch
- Abstract
Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.
- Published
- 2021
- Full Text
- View/download PDF
26. Ultrafast structural changes within a photosynthetic reaction centre.
- Author
-
Dods R, Båth P, Morozov D, Gagnér VA, Arnlund D, Luk HL, Kübel J, Maj M, Vallejos A, Wickstrand C, Bosman R, Beyerlein KR, Nelson G, Liang M, Milathianaki D, Robinson J, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Royant A, Safari C, Sharma A, Williams GJ, Yefanov O, Westenhoff S, Davidsson J, DePonte DP, Boutet S, Barty A, Katona G, Groenhof G, Brändén G, and Neutze R
- Subjects
- Bacteriochlorophylls metabolism, Binding Sites drug effects, Chlorophyll metabolism, Chlorophyll radiation effects, Crystallography, Cytoplasm metabolism, Electron Transport drug effects, Electrons, Hyphomicrobiaceae enzymology, Hyphomicrobiaceae metabolism, Lasers, Models, Molecular, Oxidation-Reduction radiation effects, Pheophytins metabolism, Photosynthetic Reaction Center Complex Proteins radiation effects, Protons, Ubiquinone analogs & derivatives, Ubiquinone metabolism, Vitamin K 2 metabolism, Photosynthetic Reaction Center Complex Proteins chemistry, Photosynthetic Reaction Center Complex Proteins metabolism
- Abstract
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography
1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.- Published
- 2021
- Full Text
- View/download PDF
27. Serial protein crystallography in an electron microscope.
- Author
-
Bücker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema LA, Gevorkov Y, Brehm W, Yefanov O, Oberthür D, Kassier GH, and Dwayne Miller RJ
- Subjects
- Microscopy, Electron, Scanning Transmission, Models, Molecular, Muramidase chemistry, Muramidase ultrastructure, Nanoparticles chemistry, Nanoparticles ultrastructure, Occlusion Body Matrix Proteins chemistry, Occlusion Body Matrix Proteins ultrastructure, Particle Size, Protein Conformation, Proteins ultrastructure, Crystallography methods, Proteins chemistry
- Abstract
Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.
- Published
- 2020
- Full Text
- View/download PDF
28. Ultracompact 3D microfluidics for time-resolved structural biology.
- Author
-
Knoška J, Adriano L, Awel S, Beyerlein KR, Yefanov O, Oberthuer D, Peña Murillo GE, Roth N, Sarrou I, Villanueva-Perez P, Wiedorn MO, Wilde F, Bajt S, Chapman HN, and Heymann M
- Subjects
- Heme chemistry, Hemoglobins chemistry, Humans, Lasers, Microfluidics methods, Synthetic Biology methods, X-Ray Microtomography, Microfluidics instrumentation, Printing, Three-Dimensional instrumentation, Synthetic Biology instrumentation
- Abstract
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s
-1 , which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.- Published
- 2020
- Full Text
- View/download PDF
29. Evaluation of serial crystallographic structure determination within megahertz pulse trains.
- Author
-
Yefanov O, Oberthür D, Bean R, Wiedorn MO, Knoska J, Pena G, Awel S, Gumprecht L, Domaracky M, Sarrou I, Lourdu Xavier P, Metz M, Bajt S, Mariani V, Gevorkov Y, White TA, Tolstikova A, Villanueva-Perez P, Seuring C, Aplin S, Estillore AD, Küpper J, Klyuev A, Kuhn M, Laurus T, Graafsma H, Monteiro DCF, Trebbin M, Maia FRNC, Cruz-Mazo F, Gañán-Calvo AM, Heymann M, Darmanin C, Abbey B, Schmidt M, Fromme P, Giewekemeyer K, Sikorski M, Graceffa R, Vagovic P, Kluyver T, Bergemann M, Fangohr H, Sztuk-Dambietz J, Hauf S, Raab N, Bondar V, Mancuso AP, Chapman H, and Barty A
- Abstract
The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL., (© 2019 Author(s).)
- Published
- 2019
- Full Text
- View/download PDF
30. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies.
- Author
-
Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, and Meents A
- Abstract
Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
- Published
- 2019
- Full Text
- View/download PDF
31. Megahertz serial crystallography.
- Author
-
Wiedorn MO, Oberthür D, Bean R, Schubert R, Werner N, Abbey B, Aepfelbacher M, Adriano L, Allahgholi A, Al-Qudami N, Andreasson J, Aplin S, Awel S, Ayyer K, Bajt S, Barák I, Bari S, Bielecki J, Botha S, Boukhelef D, Brehm W, Brockhauser S, Cheviakov I, Coleman MA, Cruz-Mazo F, Danilevski C, Darmanin C, Doak RB, Domaracky M, Dörner K, Du Y, Fangohr H, Fleckenstein H, Frank M, Fromme P, Gañán-Calvo AM, Gevorkov Y, Giewekemeyer K, Ginn HM, Graafsma H, Graceffa R, Greiffenberg D, Gumprecht L, Göttlicher P, Hajdu J, Hauf S, Heymann M, Holmes S, Horke DA, Hunter MS, Imlau S, Kaukher A, Kim Y, Klyuev A, Knoška J, Kobe B, Kuhn M, Kupitz C, Küpper J, Lahey-Rudolph JM, Laurus T, Le Cong K, Letrun R, Xavier PL, Maia L, Maia FRNC, Mariani V, Messerschmidt M, Metz M, Mezza D, Michelat T, Mills G, Monteiro DCF, Morgan A, Mühlig K, Munke A, Münnich A, Nette J, Nugent KA, Nuguid T, Orville AM, Pandey S, Pena G, Villanueva-Perez P, Poehlsen J, Previtali G, Redecke L, Riekehr WM, Rohde H, Round A, Safenreiter T, Sarrou I, Sato T, Schmidt M, Schmitt B, Schönherr R, Schulz J, Sellberg JA, Seibert MM, Seuring C, Shelby ML, Shoeman RL, Sikorski M, Silenzi A, Stan CA, Shi X, Stern S, Sztuk-Dambietz J, Szuba J, Tolstikova A, Trebbin M, Trunk U, Vagovic P, Ve T, Weinhausen B, White TA, Wrona K, Xu C, Yefanov O, Zatsepin N, Zhang J, Perbandt M, Mancuso AP, Betzel C, Chapman H, and Barty A
- Abstract
The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
- Published
- 2018
- Full Text
- View/download PDF
32. Rapid sample delivery for megahertz serial crystallography at X-ray FELs.
- Author
-
Wiedorn MO, Awel S, Morgan AJ, Ayyer K, Gevorkov Y, Fleckenstein H, Roth N, Adriano L, Bean R, Beyerlein KR, Chen J, Coe J, Cruz-Mazo F, Ekeberg T, Graceffa R, Heymann M, Horke DA, Knoška J, Mariani V, Nazari R, Oberthür D, Samanta AK, Sierra RG, Stan CA, Yefanov O, Rompotis D, Correa J, Erk B, Treusch R, Schulz J, Hogue BG, Gañán-Calvo AM, Fromme P, Küpper J, Rode AV, Bajt S, Kirian RA, and Chapman HN
- Abstract
Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s
-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.- Published
- 2018
- Full Text
- View/download PDF
33. Enzyme intermediates captured "on the fly" by mix-and-inject serial crystallography.
- Author
-
Olmos JL Jr, Pandey S, Martin-Garcia JM, Calvey G, Katz A, Knoska J, Kupitz C, Hunter MS, Liang M, Oberthuer D, Yefanov O, Wiedorn M, Heyman M, Holl M, Pande K, Barty A, Miller MD, Stern S, Roy-Chowdhury S, Coe J, Nagaratnam N, Zook J, Verburgt J, Norwood T, Poudyal I, Xu D, Koglin J, Seaberg MH, Zhao Y, Bajt S, Grant T, Mariani V, Nelson G, Subramanian G, Bae E, Fromme R, Fung R, Schwander P, Frank M, White TA, Weierstall U, Zatsepin N, Spence J, Fromme P, Chapman HN, Pollack L, Tremblay L, Ourmazd A, Phillips GN Jr, and Schmidt M
- Subjects
- Bacterial Proteins genetics, Biocatalysis, Cephalosporin Resistance genetics, Kinetics, Lasers, Models, Molecular, Time Factors, beta-Lactamases genetics, Anti-Bacterial Agents chemistry, Bacterial Proteins chemistry, Ceftriaxone chemistry, Crystallography, X-Ray methods, Mycobacterium tuberculosis enzymology, beta-Lactamases chemistry
- Abstract
Background: Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases., Results: Here, we demonstrate a general method for capturing enzyme catalysis "in action" by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis β-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s., Conclusions: MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.
- Published
- 2018
- Full Text
- View/download PDF
34. X-ray focusing with efficient high-NA multilayer Laue lenses.
- Author
-
Bajt S, Prasciolu M, Fleckenstein H, Domaracký M, Chapman HN, Morgan AJ, Yefanov O, Messerschmidt M, Du Y, Murray KT, Mariani V, Kuhn M, Aplin S, Pande K, Villanueva-Perez P, Stachnik K, Chen JP, Andrejczuk A, Meents A, Burkhardt A, Pennicard D, Huang X, Yan H, Nazaretski E, Chu YS, and Hamm CE
- Abstract
Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary with layer thickness. We introduced a new pair of materials-tungsten carbide and silicon carbide-to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm
2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. An error analysis indicates the possibility of achieving 1 nm focusing., Competing Interests: The authors declare no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
35. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers.
- Author
-
Wiedorn MO, Awel S, Morgan AJ, Barthelmess M, Bean R, Beyerlein KR, Chavas LMG, Eckerskorn N, Fleckenstein H, Heymann M, Horke DA, Knoška J, Mariani V, Oberthür D, Roth N, Yefanov O, Barty A, Bajt S, Küpper J, Rode AV, Kirian RA, and Chapman HN
- Abstract
The success of diffraction experiments from weakly scattering samples strongly depends on achieving an optimal signal-to-noise ratio. This is particularly important in single-particle imaging experiments where diffraction signals are typically very weak and the experiments are often accompanied by significant background scattering. A simple way to tremendously reduce background scattering by placing an aperture downstream of the sample has been developed and its application in a single-particle X-ray imaging experiment at FLASH is demonstrated. Using the concept of a post-sample aperture it was possible to reduce the background scattering levels by two orders of magnitude.
- Published
- 2017
- Full Text
- View/download PDF
36. Analysis of XFEL serial diffraction data from individual crystalline fibrils.
- Author
-
Wojtas DH, Ayyer K, Liang M, Mossou E, Romoli F, Seuring C, Beyerlein KR, Bean RJ, Morgan AJ, Oberthuer D, Fleckenstein H, Heymann M, Gati C, Yefanov O, Barthelmess M, Ornithopoulou E, Galli L, Xavier PL, Ling WL, Frank M, Yoon CH, White TA, Bajt S, Mitraki A, Boutet S, Aquila A, Barty A, Forsyth VT, Chapman HN, and Millane RP
- Abstract
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. The advantages of this technique should allow structural studies of fibrous systems in biology that are inaccessible using existing techniques.
- Published
- 2017
- Full Text
- View/download PDF
37. Mix-and-diffuse serial synchrotron crystallography.
- Author
-
Beyerlein KR, Dierksmeyer D, Mariani V, Kuhn M, Sarrou I, Ottaviano A, Awel S, Knoska J, Fuglerud S, Jönsson O, Stern S, Wiedorn MO, Yefanov O, Adriano L, Bean R, Burkhardt A, Fischer P, Heymann M, Horke DA, Jungnickel KEJ, Kovaleva E, Lorbeer O, Metz M, Meyer J, Morgan A, Pande K, Panneerselvam S, Seuring C, Tolstikova A, Lieske J, Aplin S, Roessle M, White TA, Chapman HN, Meents A, and Oberthuer D
- Abstract
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.
- Published
- 2017
- Full Text
- View/download PDF
38. From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.
- Author
-
Dods R, Båth P, Arnlund D, Beyerlein KR, Nelson G, Liang M, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Bosman R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Milathianaki D, Robinson J, Safari C, Sharma A, Williams G, Wickstrand C, Yefanov O, Davidsson J, DePonte DP, Barty A, Brändén G, and Neutze R
- Subjects
- Bacterial Proteins chemistry, Crystallography, X-Ray, Hyphomicrobiaceae chemistry, Models, Molecular, Photosynthesis, Protein Conformation, Hyphomicrobiaceae metabolism, Membrane Proteins chemistry
- Abstract
Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RC
vir ). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography., (Copyright © 2017 Elsevier Ltd. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
39. Corrigendum: Double-flow focused liquid injector for efficient serial femtosecond crystallography.
- Author
-
Oberthuer D, Knoška J, Wiedorn MO, Beyerlein KR, Bushnell DA, Kovaleva EG, Heymann M, Gumprecht L, Kirian RA, Barty A, Mariani V, Tolstikova A, Adriano L, Awel S, Barthelmess M, Dörner K, Xavier PL, Yefanov O, James DR, Nelson G, Wang D, Calvey G, Chen Y, Schmidt A, Szczepek M, Frielingsdorf S, Lenz O, Snell E, Robinson PJ, Šarler B, Belšak G, Maček M, Wilde F, Aquila A, Boutet S, Liang M, Hunter MS, Scheerer P, Lipscomb JD, Weierstall U, Kornberg RD, Spence JCH, Pollack L, Chapman HN, and Bajt S
- Abstract
This corrects the article DOI: 10.1038/srep44628.
- Published
- 2017
- Full Text
- View/download PDF
40. Double-flow focused liquid injector for efficient serial femtosecond crystallography.
- Author
-
Oberthuer D, Knoška J, Wiedorn MO, Beyerlein KR, Bushnell DA, Kovaleva EG, Heymann M, Gumprecht L, Kirian RA, Barty A, Mariani V, Tolstikova A, Adriano L, Awel S, Barthelmess M, Dörner K, Xavier PL, Yefanov O, James DR, Nelson G, Wang D, Calvey G, Chen Y, Schmidt A, Szczepek M, Frielingsdorf S, Lenz O, Snell E, Robinson PJ, Šarler B, Belšak G, Maček M, Wilde F, Aquila A, Boutet S, Liang M, Hunter MS, Scheerer P, Lipscomb JD, Weierstall U, Kornberg RD, Spence JC, Pollack L, Chapman HN, and Bajt S
- Subjects
- Computer Simulation, RNA Polymerase II chemistry, Saccharomyces cerevisiae enzymology, Temperature, Time Factors, X-Ray Diffraction, Crystallography instrumentation, Rheology instrumentation
- Abstract
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double-flow focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices [corrected].
- Published
- 2017
- Full Text
- View/download PDF
41. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser.
- Author
-
Gati C, Oberthuer D, Yefanov O, Bunker RD, Stellato F, Chiu E, Yeh SM, Aquila A, Basu S, Bean R, Beyerlein KR, Botha S, Boutet S, DePonte DP, Doak RB, Fromme R, Galli L, Grotjohann I, James DR, Kupitz C, Lomb L, Messerschmidt M, Nass K, Rendek K, Shoeman RL, Wang D, Weierstall U, White TA, Williams GJ, Zatsepin NA, Fromme P, Spence JC, Goldie KN, Jehle JA, Metcalf P, Barty A, and Chapman HN
- Subjects
- Crystallography instrumentation, Granulovirus chemistry, Models, Molecular, Progranulins, Protein Structure, Secondary, Synchrotrons, Crystallography methods, Electrons, Granulovirus ultrastructure, Intercellular Signaling Peptides and Proteins chemistry, Lasers
- Abstract
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm
3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.- Published
- 2017
- Full Text
- View/download PDF
42. Structural enzymology using X-ray free electron lasers.
- Author
-
Kupitz C, Olmos JL Jr, Holl M, Tremblay L, Pande K, Pandey S, Oberthür D, Hunter M, Liang M, Aquila A, Tenboer J, Calvey G, Katz A, Chen Y, Wiedorn MO, Knoska J, Meents A, Majriani V, Norwood T, Poudyal I, Grant T, Miller MD, Xu W, Tolstikova A, Morgan A, Metz M, Martin-Garcia JM, Zook JD, Roy-Chowdhury S, Coe J, Nagaratnam N, Meza D, Fromme R, Basu S, Frank M, White T, Barty A, Bajt S, Yefanov O, Chapman HN, Zatsepin N, Nelson G, Weierstall U, Spence J, Schwander P, Pollack L, Fromme P, Ourmazd A, Phillips GN Jr, and Schmidt M
- Abstract
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo -ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
- Published
- 2016
- Full Text
- View/download PDF
43. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.
- Author
-
Zhou XE, Gao X, Barty A, Kang Y, He Y, Liu W, Ishchenko A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Suino-Powell KM, Boutet S, Williams GJ, Wang M, Li D, Caffrey M, Chapman HN, Spence JC, Fromme P, Weierstall U, Stevens RC, Cherezov V, Melcher K, and Xu HE
- Subjects
- Animals, Crystallization, Crystallography, X-Ray, Humans, Mice, Models, Chemical, Structure-Activity Relationship, Arrestin chemistry, Rhodopsin chemistry
- Abstract
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
- Published
- 2016
- Full Text
- View/download PDF
44. Ternary structure reveals mechanism of a membrane diacylglycerol kinase.
- Author
-
Li D, Stansfeld PJ, Sansom MSP, Keogh A, Vogeley L, Howe N, Lyons JA, Aragao D, Fromme P, Fromme R, Basu S, Grotjohann I, Kupitz C, Rendek K, Weierstall U, Zatsepin NA, Cherezov V, Liu W, Bandaru S, English NJ, Gati C, Barty A, Yefanov O, Chapman HN, Diederichs K, Messerschmidt M, Boutet S, Williams GJ, Marvin Seibert M, and Caffrey M
- Subjects
- Adenosine Triphosphate chemistry, Adenosine Triphosphate metabolism, Binding Sites, Catalytic Domain, Cell Membrane chemistry, Crystallography, X-Ray, Diacylglycerol Kinase genetics, Diacylglycerol Kinase metabolism, Escherichia coli chemistry, Escherichia coli genetics, Models, Molecular, Protein Conformation, Cell Membrane enzymology, Diacylglycerol Kinase chemistry, Escherichia coli enzymology
- Abstract
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
- Published
- 2015
- Full Text
- View/download PDF
45. Accurate determination of segmented X-ray detector geometry.
- Author
-
Yefanov O, Mariani V, Gati C, White TA, Chapman HN, and Barty A
- Subjects
- Calibration, Equipment Design, Equipment Failure Analysis, Reproducibility of Results, Sensitivity and Specificity, Algorithms, Crystallography, X-Ray instrumentation, Crystallography, X-Ray methods, Radiographic Image Interpretation, Computer-Assisted instrumentation, Radiographic Image Interpretation, Computer-Assisted methods
- Abstract
Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments.
- Published
- 2015
- Full Text
- View/download PDF
46. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
- Author
-
Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, and Xu HE
- Subjects
- Animals, Binding Sites, Crystallography, X-Ray, Disulfides chemistry, Disulfides metabolism, Humans, Lasers, Mice, Models, Molecular, Multiprotein Complexes biosynthesis, Multiprotein Complexes chemistry, Multiprotein Complexes metabolism, Protein Binding, Reproducibility of Results, Signal Transduction, X-Rays, Arrestin chemistry, Arrestin metabolism, Rhodopsin chemistry, Rhodopsin metabolism
- Abstract
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
- Published
- 2015
- Full Text
- View/download PDF
47. High numerical aperture multilayer Laue lenses.
- Author
-
Morgan AJ, Prasciolu M, Andrejczuk A, Krzywinski J, Meents A, Pennicard D, Graafsma H, Barty A, Bean RJ, Barthelmess M, Oberthuer D, Yefanov O, Aquila A, Chapman HN, and Bajt S
- Abstract
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along the lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.
- Published
- 2015
- Full Text
- View/download PDF
48. Perspectives for imaging single protein molecules with the present design of the European XFEL.
- Author
-
Ayyer K, Geloni G, Kocharyan V, Saldin E, Serkez S, Yefanov O, and Zagorodnov I
- Abstract
The Single Particles, Clusters and Biomolecules & Serial Femtosecond Crystallography (SPB/SFX) instrument at the European XFEL is located behind the SASE1 undulator and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. Here, we propose a cost-effective proof-of-principle experiment, aiming to demonstrate the actual feasibility of a single molecule diffraction experiment at the European XFEL. To this end, we assume self-seeding capabilities at SASE1 and we suggest to make use of the baseline European XFEL accelerator complex-with the addition of a slotted-foil setup-and of the SPB/SFX instrument. As a first step towards the realization of an actual experiment, we developed a complete package of computational tools for start-to-end simulations predicting its performance. Single biomolecule imaging capabilities at the European XFEL can be reached by exploiting special modes of operation of the accelerator complex and of the SASE1 undulator. The output peak power can be increased up to more than 1.5 TW, which allows to relax the requirements on the focusing efficiency of the optics and to reach the required fluence without changing the present design of the SPB/SFX instrument. Explicit simulations are presented using the 15-nm size RNA Polymerase II molecule as a case study. Noisy diffraction patterns were generated and they were processed to generate the 3D intensity distribution. We discuss requirements to the signal-to-background ratio needed to obtain a correct pattern orientation. When these are fulfilled, our results indicate that one can achieve diffraction without destruction with about 0.1 photons per Shannon pixel per shot at 4 Å resolution with 10(13) photons in a 4 fs pulse at 4 keV photon energy and in a 0.3 μm focus, corresponding to a fluence of 10(14) photons/μm(2). We assume negligible structured background. At this signal level, one needs only about 30 000 diffraction patterns to recover full 3D information. At the highest repetition rate manageable by detectors at European XFEL, one will be able to accumulate these data within a fraction of an hour, even assuming a relatively low hit probability of about a percent.
- Published
- 2015
- Full Text
- View/download PDF
49. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.
- Author
-
Yefanov O, Gati C, Bourenkov G, Kirian RA, White TA, Spence JC, Chapman HN, and Barty A
- Subjects
- Crystallography, X-Ray methods, Electrons, Imaging, Three-Dimensional methods, Lasers, Molecular Conformation, X-Ray Diffraction methods
- Abstract
Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.
- Published
- 2014
- Full Text
- View/download PDF
50. Room-temperature macromolecular serial crystallography using synchrotron radiation.
- Author
-
Stellato F, Oberthür D, Liang M, Bean R, Gati C, Yefanov O, Barty A, Burkhardt A, Fischer P, Galli L, Kirian RA, Meyer J, Panneerselvam S, Yoon CH, Chervinskii F, Speller E, White TA, Betzel C, Meents A, and Chapman HN
- Abstract
A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.