1. L3DG: Latent 3D Gaussian Diffusion
- Author
-
Roessle, Barbara, Müller, Norman, Porzi, Lorenzo, Bulò, Samuel Rota, Kontschieder, Peter, Dai, Angela, and Nießner, Matthias
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Graphics - Abstract
We propose L3DG, the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation. This enables effective generative 3D modeling, scaling to generation of entire room-scale scenes which can be very efficiently rendered. To enable effective synthesis of 3D Gaussians, we propose a latent diffusion formulation, operating in a compressed latent space of 3D Gaussians. This compressed latent space is learned by a vector-quantized variational autoencoder (VQ-VAE), for which we employ a sparse convolutional architecture to efficiently operate on room-scale scenes. This way, the complexity of the costly generation process via diffusion is substantially reduced, allowing higher detail on object-level generation, as well as scalability to large scenes. By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time. We demonstrate that our approach significantly improves visual quality over prior work on unconditional object-level radiance field synthesis and showcase its applicability to room-scale scene generation., Comment: SIGGRAPH Asia 2024, project page: https://barbararoessle.github.io/l3dg , video: https://youtu.be/UHEEiXCYeLU
- Published
- 2024
- Full Text
- View/download PDF