96 results on '"Mehmet, Moritz"'
Search Results
2. $2\cdot 10^{-13}$ fractional laser frequency stability with a 7-cm unequal-arm Mach-Zehnder interferometer
- Author
-
Huarcaya, Victor, Álvarez, Miguel Dovale, Penkert, Daniel, Gozzo, Stefano, Cano, Pablo Martínez, Yamamoto, Kohei, Delgado, Juan José Esteban, Mehmet, Moritz, Danzmann, Karsten, and Heinzel, Gerhard
- Subjects
Physics - Optics ,Physics - Instrumentation and Detectors - Abstract
To achieve sub-picometer sensitivities in the millihertz band, laser interferometric inertial sensors rely on some form of reduction of the laser frequency noise, typically by locking the laser to a stable frequency reference, such as the narrow-linewidth resonance of an ultra-stable optical cavity or an atomic or molecular transition. In this paper we report on a compact laser frequency stabilization technique based on an unequal-arm Mach-Zehnder interferometer that is sub-nanometer stable at $10\,\mu$Hz, sub-picometer at $0.5\,$mHz, and reaches a noise floor of $7\,\mathrm{fm}/\!\sqrt{\mathrm{Hz}}$ at 1 Hz. The interferometer is used in conjunction with a DC servo to stabilize the frequency of a laser down to a fractional instability below $4 \times 10^{-13}$ at averaging times from 0.1 to 100 seconds. The technique offers a wide operating range, does not rely on complex lock acquisition procedures, and can be readily integrated as part of the optical bench in future gravity missions., Comment: 9 pages, 7 figures
- Published
- 2023
- Full Text
- View/download PDF
3. Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO 600
- Author
-
Bergamin, Fabio, Lough, James, Schreiber, Emil, Grote, Hartmut, Mehmet, Moritz, Vahlbruch, Henning, Affeldt, Christoph, Andric, Tomislav, Bisht, Aparna, Bringmann, Marc, Kringel, Volker, Lück, Harald, Mukund, Nikhil, Nadji, Severin, Sorazu, Borja, Strain, Kenneth, Weinert, Michael, and Danzmann, Karsten
- Subjects
Physics - Optics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional measurement noise. We present a theoretical description of the noise coupling mechanism. We propose a control scheme to achieve a de-amplification of the backscattered light inside the OPO with a consequent reduction of the noise caused by it. The scheme was implemented at the GEO 600 detector and has proven to be crucial in maintaining a good level of quantum noise reduction of the interferometer for high parametric gain of the OPO. In particular, the mitigation of the backscattered light noise helped in reaching 6dB of quantum noise reduction [Phys. Rev. Lett. 126, 041102 (2021)]. The impact of backscattered-light-induced noise on the squeezing performance is phenomenologically equivalent to increased phase noise of the squeezing angle control. The results discussed in this paper provide a way for a more accurate estimation of the residual phase noise of the squeezed light field., Comment: 14 pages, 6 figures
- Published
- 2023
4. Direct limits for scalar field dark matter from a gravitational-wave detector
- Author
-
Vermeulen, Sander M., Relton, Philip, Grote, Hartmut, Raymond, Vivien, Affeldt, Christoph, Bergamin, Fabio, Bisht, Aparna, Brinkmann, Marc, Danzmann, Karsten, Doravari, Suresh, Kringel, Volker, Lough, James, Lück, Harald, Mehmet, Moritz, Mukund, Nikhil, Nadji, Séverin, Schreiber, Emil, Sorazu, Borja, Strain, Kenneth A., Vahlbruch, Henning, Weinert, Michael, Willke, Benno, and Wittel, Holger
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology - Abstract
The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO$\,$600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.
- Published
- 2021
- Full Text
- View/download PDF
5. Single-element dual-interferometer for precision inertial sensing
- Author
-
Yang, Yichao, Yamamoto, Kohei, Huarcaya, Victor, Vorndamme, Christoph, Penkert, Daniel, Barranco, Germán Fernández, Schwarze, Thomas S, Delgado, Juan Jose Esteban, Mehmet, Moritz, Jia, Jianjun, Heinzel, Gerhard, and Álvarez, Miguel Dovale
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Optics - Abstract
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout., Comment: 18 pages, 9 figures
- Published
- 2020
- Full Text
- View/download PDF
6. First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory
- Author
-
Lough, James, Schreiber, Emil, Bergamin, Fabio, Grote, Hartmut, Mehmet, Moritz, Vahlbruch, Henning, Affeldt, Christoph, Brinkmann, Marc, Bisht, Aparna, Kringel, Volker, Lück, Harald, Mukund, Nikhil, Nadji, Séverin, Sorazu, Borja, Strain, Kenneth, Weinert, Michael, and Danzmann, Karsten
- Subjects
Physics - Instrumentation and Detectors - Abstract
Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO\,600 observatory and demonstrate for the first time a reduction of quantum noise up to $6.03 \pm 0.02$ dB in a kilometer-scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of four. Achieving this milestone, a key goal for the upgrades of the advanced detectors, required a better understanding of the noise sources and losses, and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight towards the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.
- Published
- 2020
- Full Text
- View/download PDF
7. Continuous-wave squeezed states of light via 'up-down' self-phase modulation
- Author
-
Singh, Amrit Pal, Ast, Stefan, Mehmet, Moritz, Vahlbruch, Henning, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Continuous-wave (cw) squeezed states of light have applications in sensing, metrology and secure communication. In recent decades their efficient generation has been based on parametric down-conversion, which requires pumping by externally generated pump light of twice the optical frequency. Currently, there is immense effort in miniaturizing squeezed-light sources for chip-integration. Designs that require just a single input wavelength are favored since they offer an easier realization. Here we report the first observation of cw squeezed states generated by self-phase modulation caused by subsequent up and down conversions. The wavelengths of input light and of balanced homodyne detection are identical, and 1550 nm in our case. At sideband frequencies around 1.075 GHz, a nonclassical noise reduction of (2.4 +/- 0.1) dB is observed. The setup uses a second-order nonlinear crystal, but no externally generated light of twice the frequency. Our experiment is not miniaturized, but might open a route towards simplified chip-integrated realizations.
- Published
- 2019
- Full Text
- View/download PDF
8. Compact multi-fringe interferometry with sub-picometer precision
- Author
-
Isleif, Katharina-Sophie, Heinzel, Gerhard, Mehmet, Moritz, and Gerberding, Oliver
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Optics - Abstract
Deep frequency modulation interferometry combines optical minimalism with multi-fringe readout. Precision however is key for applications such as optical gradiometers for satellite geodesy or as dimensional sensor for ground-based gravity experiments. We present a single-component interferometer smaller than a cubic inch. Two of these are compared to each other to demonstrate tilt and displacement measurements with a precision of less than $20\,\mathrm{nrad}/\sqrt{\mathrm{Hz}}$ and $1\,\mathrm{pm}/\sqrt{\mathrm{Hz}}$ at frequencies below $1\,\mathrm{Hz}$., Comment: 6 pages, 4 figures, accepted in Physical Review Applied
- Published
- 2019
- Full Text
- View/download PDF
9. Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout
- Author
-
Gerberding, Oliver, Isleif, Katharina-Sophie, Mehmet, Moritz, Danzmann, Karsten, and Heinzel, Gerhard
- Subjects
Physics - Instrumentation and Detectors - Abstract
Low frequency high precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer level sensitivities in the 0.1 mHz to 1 Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilising an external cavity diode laser to a quasi-monolithic unequal arm-length Mach-Zehnder interferometer read out at mid-fringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations and relatively low frequency noise levels. The Mach-Zehnder interferometer has been designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool ifocad. We achieve frequency-noise levels below 100 Hz/$\sqrt{\textrm{Hz}}$ at 1 Hz and are able to demonstrate the LISA frequency prestabilization requirement of 300 Hz/$\sqrt{\textrm{Hz}}$ down to frequencies of 100 mHz by beating the stabilized laser with an iodine-locked reference., Comment: 6 pages, 6 figures, published in Phyiscal Review Applied
- Published
- 2016
- Full Text
- View/download PDF
10. Gaussian entanglement distribution with gigahertz bandwidth
- Author
-
Ast, Stefan, Ast, Melanie, Mehmet, Moritz, and Schnabel, Roman
- Subjects
Quantum Physics ,Physics - Optics - Abstract
The distribution of entanglement with Gaussian statistic can be used to generate a mathematically-proven secure key for quantum cryptography. The distributed secret key rate is limited by the {entanglement strength, the entanglement bandwidth and the bandwidth of the photo-electric detectors}. The development of a source for strongly, bi-partite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25\,GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300\,MHz to about 2.8 at 1.2\,GHz extending further to about 3.1 at 1.48\,GHz. In the experiment we used two 2.6\,mm long monolithic periodically poled potassium titanyl phosphate (PPKTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550\,nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed., Comment: 5 pages, 3 figures, published in Optics Letters
- Published
- 2016
- Full Text
- View/download PDF
11. Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization
- Author
-
Huarcaya, Victor, primary, Dovale Álvarez, Miguel, additional, Yamamoto, Kohei, additional, Yang, Yichao, additional, Gozzo, Stefano, additional, Martínez Cano, Pablo, additional, Mehmet, Moritz, additional, Esteban Delgado, Juan José, additional, Jia, Jianjun, additional, and Heinzel, Gerhard, additional
- Published
- 2023
- Full Text
- View/download PDF
12. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity
- Author
-
Ast, Stefan, Mehmet, Moritz, and Schnabel, Roman
- Subjects
Quantum Physics ,Physics - Optics - Abstract
We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution., Comment: 8 pages, 4 figures
- Published
- 2013
- Full Text
- View/download PDF
13. Continuous-wave non-classical light with GHz squeezing bandwidth
- Author
-
Ast, Stefan, Samblowski, Aiko, Mehmet, Moritz, Steinlechner, Sebastian, Eberle, Tobias, and Schnabel, Roman
- Subjects
Quantum Physics ,Physics - Optics - Abstract
Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a non-classical continuous-wave laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric down-conversion via a periodically poled potassium titanyl phosphate crystal (PPKTP). We did not use any resonant enhancement for the funda- mental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the non-linear crystal., Comment: 3 pages, 4 figures
- Published
- 2012
- Full Text
- View/download PDF
14. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB
- Author
-
Mehmet, Moritz, Ast, Stefan, Eberle, Tobias, Steinlechner, Sebastian, Vahlbruch, Henning, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.
- Published
- 2011
- Full Text
- View/download PDF
15. High-efficiency frequency doubling of continuous-wave laser light
- Author
-
Ast, Stefan, Nia, Ramon Moghadas, Schönbeck, Axel, Lastzka, Nico, Steinlechner, Jessica, Eberle, Tobias, Mehmet, Moritz, Steinlechner, Sebastian, and Schnabel, Roman
- Subjects
Quantum Physics ,Physics - Optics - Abstract
We report on the observation of high efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of (95 \pm 1)%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the non-perfect mode-matching into the nonlinear cavity and the pump power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light., Comment: 3 pages, 3 figures
- Published
- 2011
- Full Text
- View/download PDF
16. Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection
- Author
-
Eberle, Tobias, Steinlechner, Sebastian, Bauchrowitz, Jöran, Händchen, Vitus, Vahlbruch, Henning, Mehmet, Moritz, Müller-Ebhardt, Helge, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our interferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied., Comment: 4 pages, 4 figures
- Published
- 2010
- Full Text
- View/download PDF
17. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling
- Author
-
Thüring, André, Gräf, Christian, Vahlbruch, Henning, Mehmet, Moritz, Danzmann, Karsten, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on the first experimental realization of a Twin-Signal-Recycling Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4\,dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.
- Published
- 2010
- Full Text
- View/download PDF
18. Observation of squeezed states with strong photon number oscillations
- Author
-
Mehmet, Moritz, Vahlbruch, Henning, Lastzka, Nico, Danzmann, Karsten, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, e.g. gravitational wave detection, as well as in the field of quantum information, e.g. for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of the strongest squeezing to date of 11.5 dB, together with unprecedented high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons, and the existence of strong photon number oscillations., Comment: 7 pages, 6 figures
- Published
- 2009
- Full Text
- View/download PDF
19. Observation of continuous-wave squeezed light at 1550 nm
- Author
-
Mehmet, Moritz, Steinlechner, Sebastian, Eberle, Tobias, Vahlbruch, Henning, Thüring, André, Danzmann, Karsten, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
We report on the generation of continuous-wave squeezed vacuum states of light at the telecommunication wavelength of 1550 nm. The squeezed vacuum states were produced by type I optical parametric amplification (OPA) in a standing-wave cavity built around a periodically poled potassium titanyl phosphate (PPKTP) crystal. A non-classical noise reduction of 5.3 dB below the shot noise was observed by means of balanced homodyne detection., Comment: 4 pages, 3 figures
- Published
- 2009
- Full Text
- View/download PDF
20. Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO600
- Author
-
Bergamin, Fabio, primary, Lough, James, additional, Schreiber, Emil, additional, Grote, Hartmut, additional, Mehmet, Moritz, additional, Vahlbruch, Henning, additional, Affeldt, Christoph, additional, Andric, Tomislav, additional, Bisht, Aparna, additional, Brinkmann, Marc, additional, Kringel, Volker, additional, Lueck, Harald, additional, Mukund, Nikhil, additional, NADJI, Severin Landry, additional, Sorazu, Borja, additional, Strain, Kenneth, additional, Weinert, Michael, additional, and Danzmann, Karsten, additional
- Published
- 2023
- Full Text
- View/download PDF
21. Observation of entanglement between two light beams spanning an octave in optical frequency
- Author
-
Grosse, Nicolai B., Assad, Syed, Mehmet, Moritz, Schnabel, Roman, Symul, Thomas, and Lam, Ping Koy
- Subjects
Quantum Physics - Abstract
We have experimentally demonstrated how two beams of light separated by an octave in frequency can become entangled after their interaction in a second-order nonlinear medium. The entangler consisted of a nonlinear crystal placed within an optical resonator that was strongly driven by coherent light at the fundamental and second-harmonic wavelengths. An inter-conversion between the fields created quantum correlations in the amplitude and phase quadratures, which were measured by two independent homodyne detectors. Analysis of the resulting correlation matrix revealed a wavefunction inseparability of 0.74(1) < 1 thereby satisfying the criterion of entanglement., Comment: 4 pages, 4 figures
- Published
- 2008
- Full Text
- View/download PDF
22. Observation of squeezed light with 10dB quantum noise reduction
- Author
-
Vahlbruch, Henning, Mehmet, Moritz, Lastzka, Nico, Hage, Boris, Chelkowski, Simon, Franzen, Alexander, Gossler, Stefan, Danzmann, Karsten, and Schnabel, Roman
- Subjects
Quantum Physics - Abstract
Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup., Comment: 10 pages, 4 figures
- Published
- 2007
- Full Text
- View/download PDF
23. Optomechanical resonator-enhanced atom interferometry
- Author
-
Richardson, Logan L., Rajagopalan, Ashwin, Albers, Henning, Meiners, Christian, Nath, Dipankar, Schubert, Christian, Tell, Dorothee, Wodey, Étienne, Abend, Sven, Gersemann, Matthias, Ertmer, Wolfgang, Rasel, Ernst M., Schlippert, Dennis, Mehmet, Moritz, Kumanchik, Lee, Colmenero, Luis, Spannagel, Ruven, Braxmaier, Claus, and Guzmán, Felipe
- Published
- 2020
- Full Text
- View/download PDF
24. Direct limits for scalar field dark matter from a gravitational-wave detector
- Author
-
Vermeulen, Sander M., primary, Relton, Philip, additional, Grote, Hartmut, additional, Raymond, Vivien, additional, Affeldt, Christoph, additional, Bergamin, Fabio, additional, Bisht, Aparna, additional, Brinkmann, Marc, additional, Danzmann, Karsten, additional, Doravari, Suresh, additional, Kringel, Volker, additional, Lough, James, additional, Lück, Harald, additional, Mehmet, Moritz, additional, Mukund, Nikhil, additional, Nadji, Séverin, additional, Schreiber, Emil, additional, Sorazu, Borja, additional, Strain, Kenneth A., additional, Vahlbruch, Henning, additional, Weinert, Michael, additional, Willke, Benno, additional, and Wittel, Holger, additional
- Published
- 2021
- Full Text
- View/download PDF
25. Applying differential wave-front sensing and differential power sensing for simultaneous precise and wide-range test-mass rotation measurements
- Author
-
Meshksar, Neda, Mehmet, Moritz, Isleif, Katharina-Sophie, and Heinzel, Gerhard
- Subjects
Letter ,Rotation ,Rotation measurement ,Wavefronts ,Torsion balance ,Sensitive measurement ,Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau ,lcsh:Chemical technology ,Rotational dynamics ,Translational dynamics ,lcsh:TP1-1185 ,Interferometric signals ,deep frequency modulation interferometry ,differential power sensing ,Differential wave-front sensing ,Differential power sensing ,Deep frequency modulation interferometry ,Test-mass readout ,test-mass readout ,differential wave-front sensing ,Optimization algorithms ,Experimental realizations ,High-precision measurement ,Interferometry ,torsion balance ,Mach-Zehnder interferometers ,ddc:620 - Abstract
We propose to combine differential wave-front sensing (DWS) and differential power sensing (DPS) in a Mach-Zehnder type interferometer for measuring the rotational dynamics of a test-mass. Using the DWS method, a high sensitive measurement of 6 nrad Hz−1/2 in sub-Hz frequencies can be provided around the test-mass nominal position (±0.11 mrad), whereas the measurement of a wide rotation range (±5 mrad) is realized by the DPS method. The interferometer can be combined with deep frequency modulation (DFM) interferometry for measurement of the test-mass translational dynamics. The setup and the resulting interferometric signals are verified by simulations. An optimization algorithm is applied to find suitable positions of the lenses and the waist size of the input laser in order to determine the best trade of between the slope of DWS, dynamic range of DPS, and the interferometric contrast. Our simulation further allows to investigate the layout for robustness and design tolerances. We compare our device with a recent experimental realization of a DFM interferometer and find that a practical implementation of the interferometer proposed here has the potential to provide translational and rotational test-mass tracking with state-of-the-art sensitivity. The simple and compact design, and especially the capability of sensing the test-mass rotation in a wide range and simultaneously providing a high-precision measurement close to the test-mass nominal position makes the design especially suitable for example for employment in torsion pendulum setups., Sensors, 21 (1), ISSN:1424-8220
- Published
- 2021
26. First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory
- Author
-
Lough, James, Schreiber, Emil, Bergamin, Fabio, Grote, Hartmut, Mehmet, Moritz, Vahlbruch, Henning, Affeldt, Christoph, Brinkmann, Marc, Bisht, Aparna, Kringel, Volker, Lück, Harald, Mukund, Nikhil, Nadji, Severin, Sorazu, Borja, Strain, Kenneth, Weinert, Michael, Danzmann, Karsten, Lough, James, Schreiber, Emil, Bergamin, Fabio, Grote, Hartmut, Mehmet, Moritz, Vahlbruch, Henning, Affeldt, Christoph, Brinkmann, Marc, Bisht, Aparna, Kringel, Volker, Lück, Harald, Mukund, Nikhil, Nadji, Severin, Sorazu, Borja, Strain, Kenneth, Weinert, Michael, and Danzmann, Karsten
- Abstract
Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO 600 observatory and demonstrate for the first time a reduction of quantum noise up to 6.03±0.02 dB in a kilometer scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of 4. Achieving this milestone, a key goal for the upgrades of the advanced detectors required a better understanding of the noise sources and losses and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight toward the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.
- Published
- 2021
27. The squeezed light source for the advanced virgo detector in the observation run O3
- Author
-
Mehmet, Moritz, Vahlbruch, Henning, Mehmet, Moritz, and Vahlbruch, Henning
- Abstract
From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector.
- Published
- 2020
28. Applying Differential Wave-Front Sensing and Differential Power Sensing for Simultaneous Precise and Wide-Range Test-Mass Rotation Measurements
- Author
-
Meshksar, Neda, primary, Mehmet, Moritz, additional, Isleif, Katharina-Sophie, additional, and Heinzel, Gerhard, additional
- Published
- 2020
- Full Text
- View/download PDF
29. The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3
- Author
-
Mehmet, Moritz, primary and Vahlbruch, Henning, additional
- Published
- 2020
- Full Text
- View/download PDF
30. Single-Element Dual-Interferometer for Precision Inertial Sensing
- Author
-
Yang, Yichao, primary, Yamamoto, Kohei, additional, Huarcaya, Victor, additional, Vorndamme, Christoph, additional, Penkert, Daniel, additional, Fernández Barranco, Germán, additional, Schwarze, Thomas S., additional, Mehmet, Moritz, additional, Esteban Delgado, Juan Jose, additional, Jia, Jianjun, additional, Heinzel, Gerhard, additional, and Dovale Álvarez, Miguel, additional
- Published
- 2020
- Full Text
- View/download PDF
31. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light
- Author
-
Acernese, F., Agathos, M., Aiello, L., Allocca, A., Amato, A., Ansoldi, S., Antier, S., Arène, M., Arnaud, N., Ascenzi, S., Astone, P., Aubin, F., Collaboration, Virgo, Vahlbruch, Henning, Mehmet, Moritz, Lück, Harald, and Danzmann, Karsten
- Subjects
General Relativity and Quantum Cosmology ,noise ,neutron ,vacuum ,article ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik - Abstract
Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.
- Published
- 2019
32. Compact Multifringe Interferometry with Subpicometer Precision
- Author
-
Isleif, Katharina-Sophie, Heinzel, Gerhard, Mehmet, Moritz, Gerberding, Oliver, Isleif, Katharina-Sophie, Heinzel, Gerhard, Mehmet, Moritz, and Gerberding, Oliver
- Abstract
Deep-frequency-modulation interferometry combines optical minimalism with multifringe readout. However, precision is key for applications such as optical gradiometers for satellite geodesy or as dimensional sensors for ground-based gravity experiments. We present a single-component interferometer smaller than a cubic inch. Two of these are compared to each other to demonstrate tilt and displacement measurements with a precision of less than 20 nrad/Hz and 1 pm/Hz at frequencies below 1 Hz.
- Published
- 2019
33. Vom All aus : Ein weltraumbasiertes Laserinterferometer vermisst das Erdschwerefeld
- Author
-
Mehmet, Moritz, Gerberding, Oliver, Müller, Vitali, Händchen, Vitus, and Isleif, Katharina-Sophie
- Subjects
GRACE ,Gravimetrie ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Schwerefeld - Abstract
GRACE Follow-On ist eine gravi - metrische Weltraummission, mit der anhand eines Satellitenpaares das Erdschwerefeld vermessen wird. Die monatlichen Karten des Erdschwerefelds, die aus den Daten von GRACE konstruiert werden, haben sich als wichtiges Werkzeug für Klima- und Geowissenschaftler etabliert. Ein Forschungsteam vom Institut für Gravitationsphysik stellt die Entwicklung neuer Sensoren für die Satellitengravimetrie vor.
- Published
- 2018
34. Continuous-wave squeezed states of light via ‘up-down’ self-phase modulation
- Author
-
Singh, Amrit Pal, primary, Ast, Stefan, additional, Mehmet, Moritz, additional, Vahlbruch, Henning, additional, and Schnabel, Roman, additional
- Published
- 2019
- Full Text
- View/download PDF
35. Full band all-sky search for periodic gravitational waves in the O1 LIGO data
- Author
-
Abbott, Benjamin P., Abbott, Rich, Abbott, Thomas D., Acernese, Fausto, Ackley, Kendall, Adams, Carl, Adams, Thomas, Addesso, Paolo, Adhikari, Rana X., Adya, Vaishali B., Affeldt, Christoph, Afrough, Mohammad, Agarwal, Bhanu, Agathos, Michalis, Agatsuma, Kazuhiro, Aggarwal, Nancy, Aguiar, Odylio D., Aiello, Lorenzo, Ain, Anirban, Allen, Bruce, Allen, Gabrielle, Allocca, Annalisa, Altin, Paul A., Amato, Alex, Ananyeva, Alena, Anderson, Stuart B., Anderson, Warren G., Angelova, Svetoslava V., Antier, Sarah, Appert, Stephen, Arai, Koji, Araya, Melody C., Areeda, Joseph S., Arnaud, Nicolas, Ascenzi, Stefano, Ashton, Gregory, Ast, M., Aston, Stuart M., Astone, Pia, Atallah, Dany V., Aufmuth, Peter, Aulbert, Carsten, AultONeal, K., Austin, Corey, Avila-Alvarez, A., Babak, Stanislav, Bacon, Philippe, Bader, Maria K.M., Bae, Sangwook, Baker, Paul T., Baldaccini, Francesca, Ballardin, Giulio, Ballmer, Stefan W., Banagiri, Sharan, Barayoga, Juan C., Barclay, Sheena E., Barish, Barry C., Barker, David, Barkett, Kevin, Barone, Fabrizio, Barr, Bryan, Barsotti, Lisa, Barsuglia, Matteo, Barta, Daniel, Bartlett, Jeffrey, Bartos, Imre, Bassiri, Riccardo, Basti, Andrea, Batch, James C., Bawaj, Mateusz, Bayley, Joseph C., Bazzan, Marco, Bécsy, Bence, Beer, Christian, Bejger, Michal, Belahcene, Imene, Bell, Angus S., Berger, Beverly K., Bergmann, Gerald, Bero, John J., Berry, Christopher P.L., Bersanetti, Diego, Bertolini, Alessandro, Betzwieser, Joseph, Bhagwat, Swetha, Bhandare, Rohan, Bilenko, Igor A., Billingsley, Garilynn, Billman, Chris R., Birch, Jeremy, Birney, Ross, Birnholtz, Ofek, Biscans, Sebastien, Biscoveanu, Sylvia, Bisht, Aparna, Bitossi, Massimiliano, Biwer, Christopher, Bizouard, Marieanne A., Blackburn, J.K., Blackman, Jonathan, Blair, Carl D., Blair, David G., Blair, Ryan M., Bloemen, Steven, Bock, Oliver, Bode, Nina, Boer, Michel, Bogaert, Gilles, Bohe, Alejandro, Bondu, Francois, Bonilla, Edgard, Bonnand, Romain, Boom, Boris A., Bork, Rolf, Boschi, Valerio, Bose, Sukanta, Bossie, Ken, Bouffanais, Yann, Bozzi, Antonella, Bradaschia, Carlo, Brady, Patrick R., Branchesi, Marica, Brau, Jim E., Briant, Tristan, Brillet, Alain, Brinkmann, Marc, Brisson, Violette, Brockill, Patrick, Broida, Jacob E., Brooks, Aidan F., Brown, Duncan A., Brown, Daniel D., Brunett, Sharon, Buchanan, Christopher C., Buikema, Aaron, Bulik, Tomasz, Bulten, Henk J., Buonanno, Alessandra, Buskulic, Damir, Buy, Christelle, Byer, Robert L., Cabero, Miriam, Cadonati, Laura, Cagnoli, Giampietro, Cahillane, Craig, Calderón Bustillo, J., Callister, Thomas A., Calloni, Enrico, Camp, Jordan B., Canepa, Maurizio, Canizares, Priscilla, Cannon, Kipp C., Cao, H., Cao, Junwei, Capano, Collin D., Capocasa, Eleonora, Carbognani, Franco, Caride, Santiago, Carney, Matthew F., Casanueva Diaz, J., Casentini, Claudio, Caudill, Sarah, Cavaglià, Marco, Cavalier, Fabien, Cavalieri, Roberto, Cella, Giancarlo, Cepeda, Christian B., Cerdá-Durán, P., Cerretani, Giovanni, Cesarini, Elisabetta, Chamberlin, Sydney J., Chan, Manleong, Chao, Shiuh, Charlton, Philip, Chase, Eve, Chassande-Mottin, E., Chatterjee, Deep, Cheeseboro, Belinda D., Chen, H.Y., Chen, Xu, Chen, Yanbei, Cheng, H.-P., Chia, Hanyu Y., Chincarini, Andrea, Chiummo, Antonino, Chmiel, Theresa, Cho, Heesuk S., Cho, M., Chow, Jong H., Christensen, Nelson, Chu, Qi, Chua, Alvin J.K., Chua, Sheon, Chung, A.K.W., Chung, Shinkee, Ciani, Giacomo, Ciecielag, P., Ciolfi, Riccardo, Cirelli, Carissa E., Cirone, Alessio, Clara, Filiberto, Clark, James A., Clearwater, Patrick, Cleva, Frederic, Cocchieri, Camillo, Coccia, Eugenio, Cohadon, P.-F., Cohen, David, Colla, Alberto, Collette, Christophe G., Cominsky, Lynn R., Constancio, M., Conti, Livia, Cooper, Sam J., Corban, Paul, Corbitt, Thomas R., Cordero-Carrión, I., Corley, Kenneth R., Cornish, Neil, Corsi, Alessandra, Cortese, Stefano, Costa, Cesar A., Coughlin, Eric T., Coughlin, Michael W., Coughlin, Scott B., Coulon, J.-P., Countryman, Stefan T., Couvares, Peter, Covas, Pep B., Cowan, Erika E., Coward, David M., Cowart, Matthew J., Coyne, Dennis C., Coyne, Robert, Creighton, Jolien D.E., Creighton, Teviet D., Cripe, Jonathan, Crowder, Sgwynne G., Cullen, Torrey J., Cumming, Alan, Cunningham, Liam, Cuoco, Elena, Dal Canton, Tito, Dálya, Gergely, Danilishin, Stefan L., D'Antonio, S., Danzmann, Karsten, Dasgupta, Arnab, Da Silva Costa, C.F., Dattilo, Vincenzo, Dave, Ishant, Davier, Michel, Davis, Derek, Daw, Edward J., Day, Brian, De, Soumi, Debra, D., Degallaix, Jerome, De Laurentis, M., Deléglise, Samuel, Del Pozzo, W., Demos, Nicholas, Denker, Timo, Dent, Thomas, De Pietri, R., Dergachev, Vladimir, De Rosa, R., DeRosa, R.T., De Rossi, C., DeSalvo, R., de Varona, O., Devenson, Jan, Dhurandhar, Sanjeev, Díaz, Mario C., Di Fiore, L., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Pace, S., Di Palma, I., Di Renzo, F., Doctor, Zoheyr, Dolique, Vincent, Donovan, Fred, Dooley, Katherine L., Doravari, Suresh, Dorosh, O., Dorrington, Iain, Douglas, Rebecca, Dovale Álvarez, M., Downes, Thomas P., Drago, Marco, Dreissigacker, Christoph, Driggers, Jenne C., Du, Zhihui, Ducrot, Marine, Dupej, Peter, Dwyer, Sheila E., Edo, Tega B., Edwards, Matthew C., Effler, Anamaria, Eggenstein, H.-B., Ehrens, Phil, Eichholz, Johannes, Eikenberry, Stephen S., Eisenstein, Robert A., Essick, Reed C., Estevez, Dimitri, Etienne, Zachariah B., Etzel, Todd, Evans, Matthew, Evans, Tom M., Factourovich, Maxim, Fafone, Viviana, Fair, Hannah, Fairhurst, Stephen, Fan, Xilong, Farinon, Stefania, Farr, Benjamin, Farr, Will M., Fauchon-Jones, E.J., Favata, Marc, Fays, Maxime, Fee, Campbell, Fehrmann, Henning, Feicht, Jon, Fejer, Martin M., Fernandez-Galiana, A., Ferrante, Isidoro, Ferreira, Elvis C., Ferrini, Federico, Fidecaro, Francesco, Finstad, Daniel, Fiori, Irene, Fiorucci, Donatella, Fishbach, Maya, Fisher, Ryan P., Fitz-Axen, M., Flaminio, Raffaele, Fletcher, Mark, Fong, Heather, Font, J.A., Forsyth, Perry W.F., Forsyth, Steven S., Fournier, J.-D., Frasca, Sergio, Frasconi, Franco, Frei, Zsolt, Freise, Andreas, Frey, Raymond, Frey, Valentin, Fries, Eric M., Fritschel, Peter, Frolov, Valery V., Fulda, Paul, Fyffe, Michael, Gabbard, Hunter, Gadre, Bhooshan U., Gaebel, Sebastian M., Gair, Jonathan R., Gammaitoni, Luca, Ganija, Miftar R., Gaonkar, Sharad G., Garcia-Quiros, C., Garufi, Fabio, Gateley, B., Gaudio, Sergio, Gaur, Gurudatt, Gayathri, V., Gehrels, Neil, Gemme, Gianluca, Genin, Eric, Gennai, Alberto, George, Daniel, George, Jogy, Gergely, Laszlo, Germain, Vincent, Ghonge, Sudarshan, Ghosh, Abhirup, Ghosh, Archisman, Ghosh, Shaon, Giaime, Joe A., Giardina, K.D., Giazotto, Adalberto, Gill, Kiranjyot, Glover, Lamar, Goetz, Evan, Goetz, Ryan, Gomes, Sandra, Goncharov, Boris, González, Gabriela, Gonzalez Castro, J.M., Gopakumar, A., Gorodetsky, Michael L., Gossan, Sarah E., GOSSELIN, Matthieu, Gouaty, Romain, Grado, Aniello, Graef, Christian, Granata, Massimo, Grant, Alastair, Gras, Slawomir, Gray, Corey, Greco, Giuseppe, Green, Anna C., Gretarsson, Elizabeth M., Groot, Paul, Grote, Hartmut, Grunewald, Steffen, Gruning, Pierre, Guidi, Gianluca M., Guo, Xiangyu, Gupta, Anuradha, Gupta, Manojipr K., Gushwa, Kaitlin E., Gustafson, Eric K., Gustafson, R., Halim, O., Hall, Bernard R., Hall, Evan D., Hamilton, Eleanor Z., Hammond, Giles, Haney, Maria, Hanke, Manuela M., Hanks, Jonathan, Hanna, Chad, Hannam, Mark D., Hannuksela, Otto A., Hanson, Joe, Hardwick, Terra, Harms, Jan, Harry, Gregg M., Harry, Ian W., Hart, Martin J., Haster, C.-J., Haughian, Karen, Healy, James, Heidmann, Antoine, Heintze, Matthew C., Heitmann, Henrich, Hello, Patrice, Hemming, Gary, Hendry, Martin, Heng, I.S., Hennig, J., Heptonstall, Alastair W., Heurs, Michele, Hild, Stefan, Hinderer, Tanja, Hoak, Daniel, Hofman, David, Holt, Kathy, Holz, Daniel E., Hopkins, Paul, Horst, Christian, Hough, James, Houston, Ewan A., Howell, Eric J., Hreibi, A., Hu, Yiming M., Huerta, Eliu A., Huet, Dominique, Hughey, Brennan, Husa, Sascha, Huttner, Sabina H., Huynh-Dinh, T., Indik, Nathaniel, Inta, Ra, Intini, Giuseppe, Isa, Hafizah N., Isac, J.-M., Isi, Max, Iyer, Bala R., Izumi, Kiwamu, Jacqmin, Thibaut, Jani, Karan, Jaranowski, Piotr, Jawahar, Sharat, Jiménez-Forteza, F., Johnson, Warren W., Jones, D.I., Jones, Russell, Jonker, Reinier J.G., Ju, L., Junker, Jonas, Kalaghatgi, Chinmay V., Kalogera, Vassiliki, Kamai, Brittany, Kandhasamy, Shivaraj, Kang, Gungwon, Kanner, Jonah B., Kapadia, Shasvath J., Karki, Sudarshan, Karvinen, Kai S., Kasprzack, Marie, Katolik, Michael, Katsavounidis, Erik, Katzman, William, Kaufer, Steffen, Kawabe, Keita, Kéfélian, Fabien, Keitel, David, Kemball, Athol J., Kennedy, Ross, Kent, Christopher, Key, Joey S., Khalili, Farit Y., Khan, I., Khan, Sebastian, Khan, Ziauddin, Khazanov, Efim A., Kijbunchoo, Nutsinee, Kim, Chunglee, Kim, Jeongcho C., Kim, Kyungmin, Kim, Won, Kim, Whansun S., Kim, Y.-M., Kimbrell, Seth J., King, Eleanor J., King, Peter J., Kinley-Hanlon, M., Kirchhoff, Robin, Kissel, Jeffrey S., Kleybolte, Lisa, Klimenko, Sergei, Knowles, Tyler D., Koch, Philip, Koehlenbeck, Sina M., Koley, Soumen, Kondrashov, Veronica, Kontos, Antonios, Korobko, Mikhail, Korth, William Z., Kowalska, Izabela, Kozak, Dan B., Krämer, Christina, Kringel, Volker, Krishnan, Badri, Królak, Andrzej, Kuehn, Gerrit, Kumar, Prayush, Kumar, Rakesh, Kumar, Sumit, Kuo, L., Kutynia, Adam, Kwang, Shawn, Lackey, Benjamin D., Lai, K.H., Landry, Michael, Lang, Ryan N., Lange, Jacob, Lantz, Brian, Lanza, Robert K., Lartaux-Vollard, A., Lasky, Paul D., Laxen, Michael, Lazzarini, Albert, Lazzaro, Claudia, Leaci, Paola, Leavey, Sean, Lee, C.H., Lee, Hyunkyu K., Lee, H.M., Lee, Hyungwon W., Lee, K., Lehmann, Johannes, Lenon, Amber, Leonardi, Matteo, Leroy, Nicolas, Letendre, Nicolas, Levin, Yuri, Li, Tjonnie G.F., Linker, Seth D., Littenberg, Tyson B., Liu, J., Lo, R.K.L., Lockerbie, Nick A., London, Lionel T., Lord, Jaysin E., Lorenzini, Matteo, Loriette, Vincent, Lormand, Marc, Losurdo, Giovanni, Lough, James D., Lovelace, Geoffrey, Lück, Harald, Lumaca, Diana, Lundgren, Andrew P., Lynch, Ryan, Ma, Y., Macas, Ronaldas, Macfoy, Sean, Machenschalk, Bernd, Macinnis, M., Macleod, Duncan M., Magaña Hernandez, I., Magaña-Sandoval, F., Magaña Zertuche, L., Magee, Ryan M., Majorana, Ettore, Maksimovic, Ivan, Man, N., Mandic, Vuk, Mangano, Valentina, Mansell, Georgia L., Manske, Michael, Mantovani, Maddalena, Marchesoni, Fabio, Marion, Frederique, Márka, Szabolcs, Márka, Zsuzsanna, Markakis, Charalampos, Markosyan, Ashot S., Markowitz, Aaron, Maros, E., Marquina, Antonio, Martelli, Filippo, Martellini, Lionel, Martin, Ian W., Martin, Rodica M., Martynov, Denis V., Mason, Ken, Massera, Elena, Masserot, Alain, Massinger, Thomas J., Masso-Reid, M., Mastrogiovanni, Simone, Matas, Andrew, Matichard, Fabrice, Matone, Luca, Mavalvala, Nergis, Mazumder, Nairwita, McCarthy, R., Mcclelland, D.E., Mccormick, S., McCuller, L., McGuire, S.C., Mcintyre, G., Mciver, J., McManus, David J., McNeill, L., McRae, T., McWilliams, S.T., Meacher, Duncan, Meadors, Grant D., Mehmet, Moritz, Meidam, Jeroen, Mejuto-Villa, E., Melatos, Andrew, Mendell, Gregory, Mercer, R.A., Merilh, Edmond L., Merzougui, Mourad, Meshkov, Syd, Messenger, Chris, Messick, Cody, Metzdorff, R., Meyers, Patrick M., Miao, Haixing, Michel, Christophe, Middleton, Hannah, Mikhailov, Eugeniy E., Milano, Leopoldo, Miller, Andrewlawrence L., Miller, Brandon B., Miller, John, Millhouse, Meg, Milovich-Goff, M.C., Minazzoli, Olivier, Minenkov, Yuri, Ming, Jing, Mishra, Chandra, Mitra, Sanjit, Mitrofanov, Valery P., Mitselmakher, Guenakh, Mittleman, Richard, Moffa, Donald, Moggi, Andrea, Mogushi, Kentaro, Mohan, Martin, Mohapatra, S.R.P., Montani, Matteo, Moore, Christopher J., Moraru, Dan, Moreno, Gerardo, Morriss, Sean R., Mours, Benoit, Mow-Lowry, C.M., Mueller, Guido, Muir, Alistair W., Mukherjee, Arunava, Mukherjee, Debnandini, Mukherjee, Soma, Mukund, Nikhil, Mullavey, Adam, Munch, Jesper, Muñiz, Erik A., Muratore, Martina, Murray, Peter G., Napier, Kate, Nardecchia, Ilaria, Naticchioni, Luca, Nayak, Rajesh K., Neilson, Joshua, Nelemans, Gijs, Nelson, Timothy J.N., Nery, Marina, Neunzert, Ansel, Nevin, Lydia, Newport, Jonathan M., Newton, Gavin, Ng, K.Y., Nguyen, Thanh T., Nichols, David, Nielsen, Alex B., Nissanke, Samaya, Nitz, Alex, Noack, Andreas, Nocera, Flavio, Nolting, David, North, Chris, Nuttall, Laura K., Oberling, Jason, O'Dea, G.D., Ogin, Greg H., Oh, John J., Oh, Sanghoon H., Ohme, Frank, Okada, Marcos A., Oliver, Miquel, Oppermann, Patrick, Oram, Richard J., O'Reilly, B., Ormiston, Rich, Ortega, Luis F., O'Shaughnessy, R., Ossokine, Serguei, Ottaway, David J., Overmier, Harry, Owen, Ben J., Pace, Alexander E., Page, Jessica, Page, Michael A., Pai, Archana, Pai, Siddhesh A., Palamos, Jordan R., Palashov, Oleg, Palomba, Cristiano, Pal-Singh, A., Pan, Howard, Pan, Huang-Wei, Pang, Belinda, Pang, P.T.H., Pankow, Chris, Pannarale, Francesco, Pant, Brijesh C., Paoletti, Federico, PAOLI, Andrea, Papa, Maria A., Parida, Abhishek, Parker, William, Pascucci, Daniela, Pasqualetti, Antonio, Passaquieti, Roberto, Passuello, Diego, Patil, M., Patricelli, Barbara, Pearlstone, Brynley L., Pedraza, Mike, Pedurand, Richard, Pekowsky, L., Pele, Arnaud, Penn, Steven, Perez, Carlos J., Perreca, Antonio, Perri, Leah M., Pfeiffer, Harald P., Phelps, Margot, Piccinni, Ornella J., Pichot, Mikhael, Piergiovanni, Francesco, Pierro, Vincenzo, Pillant, Gabriel, Pinard, Laurent, Pinto, Innocenzo M., Pirello, Marc, Pisarski, A., Pitkin, Matthew, Poe, Mark, Poggiani, Rosa, Popolizio, Pasquale, Porter, K., Post, Alexander, Powell, Jade, Prasad, Jayanti, Pratt, James W.W., Pratten, Geraint, Predoi, Valeriu, Prestegard, Tanner, Prijatelj, Mirko, Principe, Maria, Privitera, Stephen, Prodi, Giovanni A., Prokhorov, Leonid G., Puncken, Oliver, Punturo, Michele, Puppo, Paola, Pürrer, Michael, Qi, Hong, Quetschke, Volker, Quintero, Eric A., Quitzow-James, R., Raab, Fred J., Rabeling, David S., Radkins, Hugh, Raffai, Peter, Raja, Sendhil, Rajan, C., Rajbhandari, Binod, Rakhmanov, Malik, Ramirez, Karla E., Ramos-Buades, A., Rapagnani, Piero, Raymond, Vivien, Razzano, Massimiliano, Read, Jocelyn, Regimbau, Tania, Rei, Luca, Reid, Stuart, Reitze, David H., Ren, Wei, Reyes, Steven D., Ricci, Fulvio, Ricker, Paul M., Rieger, Sascha, Riles, Keith, Rizzo, Monica, Robertson, Norna A., Robie, Raymond, Robinet, Florent, Rocchi, Alessio, ROLLAND, Loic, Rollins, Jameson G., Roma, Vincent J., Romano, Rocco, Romel, Chandra L., Romie, Janeen H., Rosińska, Dorota, Ross, Michael P., Rowan, Sheila, Rüdiger, Albrecht, Ruggi, Paolo, Rutins, Guntis, Ryan, Kyle, Sachdev, Surabhi, Sadecki, Travis, Sadeghian, Laleh, Sakellariadou, Mairi, Salconi, Livio, Saleem, Muhammed, Salemi, Francesco, Samajdar, Anuradha, Sammut, Letizia, Sampson, Laura M., Sanchez, Eduardo J., Sanchez, Luis E., Sanchis-Gual, N., Sandberg, Vernon, Sanders, Jaclyn R., Sassolas, Benoit, Saulson, Peter R., Sauter, Orion, Savage, Richard L., Sawadsky, Andreas, Schale, Paul, Scheel, Mark, Scheuer, Jacob, Schmidt, Justus, Schmidt, Patricia, Schnabel, Roman, Schofield, Robert M.S., Schönbeck, Axel, Schreiber, Emil, Schuette, Dirk, Schulte, Bernd W., Schutz, Bernard F., Schwalbe, Sophia G., Scott, Jamie, Scott, Susan M., Seidel, E., Sellers, Danny, Sengupta, Anand S., Sentenac, Daniel, Sequino, Valeria, Sergeev, Alexander, Shaddock, Daniel A., Shaffer, Thomas J., Shah, Ankur A., Shahriar, M.S., Shaner, Morgan B., Shao, Lijing, Shapiro, Brett, Shawhan, Peter, Sheperd, Alec, Shoemaker, David H., Shoemaker, Deirdre M., Siellez, Karelle, Siemens, Xavier, Sieniawska, Magdalena, Sigg, Daniel, Silva, Allan D., Singer, Leo P., Singh, Avneet, Singhal, Akshat, Sintes, Alicia M., Slagmolen, Bram J.J., Smith, Bryan, Smith, Joshua R., Smith, Rory J.E., Somala, Surendranadh, Son, Edwin J., Sonnenberg, Jacob A., Sorazu, Borja, Sorrentino, Fiodor, Souradeep, Tarun, Spencer, Andrew P., Srivastava, Amit K., Staats, Kai, Staley, Alexan, Steinke, Michael, Steinlechner, Jessica, Steinlechner, Sebastian, Steinmeyer, Daniel, Stevenson, Simon P., Stone, Robert, Stops, David J., Strain, Ken A., Stratta, Giulia, Strigin, Sergey E., Strunk, A., Sturani, Riccardo, Stuver, Amber L., Summerscales, Tiffany Z., Sun, Ling, Sunil, S., Suresh, Jishnu, Sutton, Patrick J., Swinkels, Bas L., Szczepańczyk, Marek J., Tacca, Matteo, Tait, Simon C., Talbot, Colm, Talukder, Dipongkar, Tanner, David B., Tao, Duo, Tápai, Marton, Taracchini, Andrea, Tasson, Jay D., Taylor, Jordan A., Taylor, Robert, Tewari, Shivam V., Theeg, Thomas, Thies, Fabian, Thomas, E.G., Thomas, Michael, Thomas, Patrick, Thorne, Keith A., Thrane, Eric, Tiwari, Shubhanshu, Tiwari, Vaibhav, Tokmakov, Kirill V., Toland, Karl, Tonelli, Mauro, Tornasi, Zeno, Torres-Forné, A., Torrie, Calum I., Töyrä, Daniel, Travasso, Flavio, Traylor, Gary, Trinastic, Jonathan, Tringali, Maria C., Trozzo, Lucia, Tsang, K.W., Tse, Maggie, Tso, Rhondale, Tsukada, Leo, Tsuna, Daichi, Tuyenbayev, Darkhan, Ueno, Koh, Ugolini, Dennis, Unnikrishnan, Cs S., Urban, Alexander L., Usman, Samantha A., Vahlbruch, Henning, Vajente, Gabriele, Valdes, Guillermo, Van Bakel, N., van Beuzekom, Martin, Van Den Brand, J.F.J., Van Den Broeck, C., Vander-Hyde, D.C., van der Schaaf, L., van Heijningen, J.V., van Veggel, A.A., Vardaro, Marco, Varma, Vijay, Vass, Steve, Vasúth, Matyas, Vecchio, Alberto, Vedovato, Gabriele, Veitch, John, Veitch, Peter J., Venkateswara, Krishna, Venugopalan, Gautam, Verkindt, Didier, Vetrano, Flavio, Viceré, Andrea, Viets, Aaron D., Vinciguerra, Serena, Vine, David J., Vinet, J.-Y., Vitale, Salvatore, Vo, Thomas, Vocca, Helios, Vorvick, Cheryl, Vyatchanin, Sergey P., Wade, Andrew R., Wade, Leslie E., Wade, Madeline, Walet, Rob, Walker, Marissa, Wallace, Larry, Walsh, Sinead, Wang, Gang, Wang, Haoyu, Wang, Jonathan Z., Wang, Wenhui H., Wang, Yifan F., Ward, Robert L., Warner, Jim, Was, Michal, Watchi, Jennifer, Weaver, Betsy, Wei, L.-W., Weinert, Michael, Weinstein, Alan J., Weiss, Rainer, Wen, Linqing, Wessel, Erik K., Weßels, Peter, Westerweck, Julian, Westphal, Tobias, Wette, Karl, Whelan, John T., Whiting, Bernard F., Whittle, Chris, Wilken, D., Williams, Daniel, Williams, Roy D., Williamson, Andrew R., Willis, Joshua L., Willke, Benno, Wimmer, Maximilian H., Winkler, Walter, Wipf, Christopher C., Wittel, Holger, Woan, Graham, Woehler, Janis, Wofford, Jared, Wong, W.K., Worden, John, Wright, Jennifer L., Wu, David S., Wysocki, Daniel M., Xiao, Sophia, Yamamoto, Hiro, Yancey, Cregg C., Yang, Le, Yap, M.J., Yazback, Maher, Yu, Hang, Yu, Haocun, Yvert, Michel, Zadrożny, Adam, Zanolin, Michele, Zelenova, Tatiana, Zendri, J.-P., Zevin, Michael, Zhang, Liyuan, Zhang, Mi, Zhang, Teng, Zhang, Y.-H., Zhao, Chunnong, Zhou, Minchuan, Zhou, Zifan, Zhu, Sylvia J., Zhu, Xingjiang J., Zucker, Michael E., Zweizig, J., Abbott, Benjamin P., Abbott, Rich, Abbott, Thomas D., Acernese, Fausto, Ackley, Kendall, Adams, Carl, Adams, Thomas, Addesso, Paolo, Adhikari, Rana X., Adya, Vaishali B., Affeldt, Christoph, Afrough, Mohammad, Agarwal, Bhanu, Agathos, Michalis, Agatsuma, Kazuhiro, Aggarwal, Nancy, Aguiar, Odylio D., Aiello, Lorenzo, Ain, Anirban, Allen, Bruce, Allen, Gabrielle, Allocca, Annalisa, Altin, Paul A., Amato, Alex, Ananyeva, Alena, Anderson, Stuart B., Anderson, Warren G., Angelova, Svetoslava V., Antier, Sarah, Appert, Stephen, Arai, Koji, Araya, Melody C., Areeda, Joseph S., Arnaud, Nicolas, Ascenzi, Stefano, Ashton, Gregory, Ast, M., Aston, Stuart M., Astone, Pia, Atallah, Dany V., Aufmuth, Peter, Aulbert, Carsten, AultONeal, K., Austin, Corey, Avila-Alvarez, A., Babak, Stanislav, Bacon, Philippe, Bader, Maria K.M., Bae, Sangwook, Baker, Paul T., Baldaccini, Francesca, Ballardin, Giulio, Ballmer, Stefan W., Banagiri, Sharan, Barayoga, Juan C., Barclay, Sheena E., Barish, Barry C., Barker, David, Barkett, Kevin, Barone, Fabrizio, Barr, Bryan, Barsotti, Lisa, Barsuglia, Matteo, Barta, Daniel, Bartlett, Jeffrey, Bartos, Imre, Bassiri, Riccardo, Basti, Andrea, Batch, James C., Bawaj, Mateusz, Bayley, Joseph C., Bazzan, Marco, Bécsy, Bence, Beer, Christian, Bejger, Michal, Belahcene, Imene, Bell, Angus S., Berger, Beverly K., Bergmann, Gerald, Bero, John J., Berry, Christopher P.L., Bersanetti, Diego, Bertolini, Alessandro, Betzwieser, Joseph, Bhagwat, Swetha, Bhandare, Rohan, Bilenko, Igor A., Billingsley, Garilynn, Billman, Chris R., Birch, Jeremy, Birney, Ross, Birnholtz, Ofek, Biscans, Sebastien, Biscoveanu, Sylvia, Bisht, Aparna, Bitossi, Massimiliano, Biwer, Christopher, Bizouard, Marieanne A., Blackburn, J.K., Blackman, Jonathan, Blair, Carl D., Blair, David G., Blair, Ryan M., Bloemen, Steven, Bock, Oliver, Bode, Nina, Boer, Michel, Bogaert, Gilles, Bohe, Alejandro, Bondu, Francois, Bonilla, Edgard, Bonnand, Romain, Boom, Boris A., Bork, Rolf, Boschi, Valerio, Bose, Sukanta, Bossie, Ken, Bouffanais, Yann, Bozzi, Antonella, Bradaschia, Carlo, Brady, Patrick R., Branchesi, Marica, Brau, Jim E., Briant, Tristan, Brillet, Alain, Brinkmann, Marc, Brisson, Violette, Brockill, Patrick, Broida, Jacob E., Brooks, Aidan F., Brown, Duncan A., Brown, Daniel D., Brunett, Sharon, Buchanan, Christopher C., Buikema, Aaron, Bulik, Tomasz, Bulten, Henk J., Buonanno, Alessandra, Buskulic, Damir, Buy, Christelle, Byer, Robert L., Cabero, Miriam, Cadonati, Laura, Cagnoli, Giampietro, Cahillane, Craig, Calderón Bustillo, J., Callister, Thomas A., Calloni, Enrico, Camp, Jordan B., Canepa, Maurizio, Canizares, Priscilla, Cannon, Kipp C., Cao, H., Cao, Junwei, Capano, Collin D., Capocasa, Eleonora, Carbognani, Franco, Caride, Santiago, Carney, Matthew F., Casanueva Diaz, J., Casentini, Claudio, Caudill, Sarah, Cavaglià, Marco, Cavalier, Fabien, Cavalieri, Roberto, Cella, Giancarlo, Cepeda, Christian B., Cerdá-Durán, P., Cerretani, Giovanni, Cesarini, Elisabetta, Chamberlin, Sydney J., Chan, Manleong, Chao, Shiuh, Charlton, Philip, Chase, Eve, Chassande-Mottin, E., Chatterjee, Deep, Cheeseboro, Belinda D., Chen, H.Y., Chen, Xu, Chen, Yanbei, Cheng, H.-P., Chia, Hanyu Y., Chincarini, Andrea, Chiummo, Antonino, Chmiel, Theresa, Cho, Heesuk S., Cho, M., Chow, Jong H., Christensen, Nelson, Chu, Qi, Chua, Alvin J.K., Chua, Sheon, Chung, A.K.W., Chung, Shinkee, Ciani, Giacomo, Ciecielag, P., Ciolfi, Riccardo, Cirelli, Carissa E., Cirone, Alessio, Clara, Filiberto, Clark, James A., Clearwater, Patrick, Cleva, Frederic, Cocchieri, Camillo, Coccia, Eugenio, Cohadon, P.-F., Cohen, David, Colla, Alberto, Collette, Christophe G., Cominsky, Lynn R., Constancio, M., Conti, Livia, Cooper, Sam J., Corban, Paul, Corbitt, Thomas R., Cordero-Carrión, I., Corley, Kenneth R., Cornish, Neil, Corsi, Alessandra, Cortese, Stefano, Costa, Cesar A., Coughlin, Eric T., Coughlin, Michael W., Coughlin, Scott B., Coulon, J.-P., Countryman, Stefan T., Couvares, Peter, Covas, Pep B., Cowan, Erika E., Coward, David M., Cowart, Matthew J., Coyne, Dennis C., Coyne, Robert, Creighton, Jolien D.E., Creighton, Teviet D., Cripe, Jonathan, Crowder, Sgwynne G., Cullen, Torrey J., Cumming, Alan, Cunningham, Liam, Cuoco, Elena, Dal Canton, Tito, Dálya, Gergely, Danilishin, Stefan L., D'Antonio, S., Danzmann, Karsten, Dasgupta, Arnab, Da Silva Costa, C.F., Dattilo, Vincenzo, Dave, Ishant, Davier, Michel, Davis, Derek, Daw, Edward J., Day, Brian, De, Soumi, Debra, D., Degallaix, Jerome, De Laurentis, M., Deléglise, Samuel, Del Pozzo, W., Demos, Nicholas, Denker, Timo, Dent, Thomas, De Pietri, R., Dergachev, Vladimir, De Rosa, R., DeRosa, R.T., De Rossi, C., DeSalvo, R., de Varona, O., Devenson, Jan, Dhurandhar, Sanjeev, Díaz, Mario C., Di Fiore, L., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Pace, S., Di Palma, I., Di Renzo, F., Doctor, Zoheyr, Dolique, Vincent, Donovan, Fred, Dooley, Katherine L., Doravari, Suresh, Dorosh, O., Dorrington, Iain, Douglas, Rebecca, Dovale Álvarez, M., Downes, Thomas P., Drago, Marco, Dreissigacker, Christoph, Driggers, Jenne C., Du, Zhihui, Ducrot, Marine, Dupej, Peter, Dwyer, Sheila E., Edo, Tega B., Edwards, Matthew C., Effler, Anamaria, Eggenstein, H.-B., Ehrens, Phil, Eichholz, Johannes, Eikenberry, Stephen S., Eisenstein, Robert A., Essick, Reed C., Estevez, Dimitri, Etienne, Zachariah B., Etzel, Todd, Evans, Matthew, Evans, Tom M., Factourovich, Maxim, Fafone, Viviana, Fair, Hannah, Fairhurst, Stephen, Fan, Xilong, Farinon, Stefania, Farr, Benjamin, Farr, Will M., Fauchon-Jones, E.J., Favata, Marc, Fays, Maxime, Fee, Campbell, Fehrmann, Henning, Feicht, Jon, Fejer, Martin M., Fernandez-Galiana, A., Ferrante, Isidoro, Ferreira, Elvis C., Ferrini, Federico, Fidecaro, Francesco, Finstad, Daniel, Fiori, Irene, Fiorucci, Donatella, Fishbach, Maya, Fisher, Ryan P., Fitz-Axen, M., Flaminio, Raffaele, Fletcher, Mark, Fong, Heather, Font, J.A., Forsyth, Perry W.F., Forsyth, Steven S., Fournier, J.-D., Frasca, Sergio, Frasconi, Franco, Frei, Zsolt, Freise, Andreas, Frey, Raymond, Frey, Valentin, Fries, Eric M., Fritschel, Peter, Frolov, Valery V., Fulda, Paul, Fyffe, Michael, Gabbard, Hunter, Gadre, Bhooshan U., Gaebel, Sebastian M., Gair, Jonathan R., Gammaitoni, Luca, Ganija, Miftar R., Gaonkar, Sharad G., Garcia-Quiros, C., Garufi, Fabio, Gateley, B., Gaudio, Sergio, Gaur, Gurudatt, Gayathri, V., Gehrels, Neil, Gemme, Gianluca, Genin, Eric, Gennai, Alberto, George, Daniel, George, Jogy, Gergely, Laszlo, Germain, Vincent, Ghonge, Sudarshan, Ghosh, Abhirup, Ghosh, Archisman, Ghosh, Shaon, Giaime, Joe A., Giardina, K.D., Giazotto, Adalberto, Gill, Kiranjyot, Glover, Lamar, Goetz, Evan, Goetz, Ryan, Gomes, Sandra, Goncharov, Boris, González, Gabriela, Gonzalez Castro, J.M., Gopakumar, A., Gorodetsky, Michael L., Gossan, Sarah E., GOSSELIN, Matthieu, Gouaty, Romain, Grado, Aniello, Graef, Christian, Granata, Massimo, Grant, Alastair, Gras, Slawomir, Gray, Corey, Greco, Giuseppe, Green, Anna C., Gretarsson, Elizabeth M., Groot, Paul, Grote, Hartmut, Grunewald, Steffen, Gruning, Pierre, Guidi, Gianluca M., Guo, Xiangyu, Gupta, Anuradha, Gupta, Manojipr K., Gushwa, Kaitlin E., Gustafson, Eric K., Gustafson, R., Halim, O., Hall, Bernard R., Hall, Evan D., Hamilton, Eleanor Z., Hammond, Giles, Haney, Maria, Hanke, Manuela M., Hanks, Jonathan, Hanna, Chad, Hannam, Mark D., Hannuksela, Otto A., Hanson, Joe, Hardwick, Terra, Harms, Jan, Harry, Gregg M., Harry, Ian W., Hart, Martin J., Haster, C.-J., Haughian, Karen, Healy, James, Heidmann, Antoine, Heintze, Matthew C., Heitmann, Henrich, Hello, Patrice, Hemming, Gary, Hendry, Martin, Heng, I.S., Hennig, J., Heptonstall, Alastair W., Heurs, Michele, Hild, Stefan, Hinderer, Tanja, Hoak, Daniel, Hofman, David, Holt, Kathy, Holz, Daniel E., Hopkins, Paul, Horst, Christian, Hough, James, Houston, Ewan A., Howell, Eric J., Hreibi, A., Hu, Yiming M., Huerta, Eliu A., Huet, Dominique, Hughey, Brennan, Husa, Sascha, Huttner, Sabina H., Huynh-Dinh, T., Indik, Nathaniel, Inta, Ra, Intini, Giuseppe, Isa, Hafizah N., Isac, J.-M., Isi, Max, Iyer, Bala R., Izumi, Kiwamu, Jacqmin, Thibaut, Jani, Karan, Jaranowski, Piotr, Jawahar, Sharat, Jiménez-Forteza, F., Johnson, Warren W., Jones, D.I., Jones, Russell, Jonker, Reinier J.G., Ju, L., Junker, Jonas, Kalaghatgi, Chinmay V., Kalogera, Vassiliki, Kamai, Brittany, Kandhasamy, Shivaraj, Kang, Gungwon, Kanner, Jonah B., Kapadia, Shasvath J., Karki, Sudarshan, Karvinen, Kai S., Kasprzack, Marie, Katolik, Michael, Katsavounidis, Erik, Katzman, William, Kaufer, Steffen, Kawabe, Keita, Kéfélian, Fabien, Keitel, David, Kemball, Athol J., Kennedy, Ross, Kent, Christopher, Key, Joey S., Khalili, Farit Y., Khan, I., Khan, Sebastian, Khan, Ziauddin, Khazanov, Efim A., Kijbunchoo, Nutsinee, Kim, Chunglee, Kim, Jeongcho C., Kim, Kyungmin, Kim, Won, Kim, Whansun S., Kim, Y.-M., Kimbrell, Seth J., King, Eleanor J., King, Peter J., Kinley-Hanlon, M., Kirchhoff, Robin, Kissel, Jeffrey S., Kleybolte, Lisa, Klimenko, Sergei, Knowles, Tyler D., Koch, Philip, Koehlenbeck, Sina M., Koley, Soumen, Kondrashov, Veronica, Kontos, Antonios, Korobko, Mikhail, Korth, William Z., Kowalska, Izabela, Kozak, Dan B., Krämer, Christina, Kringel, Volker, Krishnan, Badri, Królak, Andrzej, Kuehn, Gerrit, Kumar, Prayush, Kumar, Rakesh, Kumar, Sumit, Kuo, L., Kutynia, Adam, Kwang, Shawn, Lackey, Benjamin D., Lai, K.H., Landry, Michael, Lang, Ryan N., Lange, Jacob, Lantz, Brian, Lanza, Robert K., Lartaux-Vollard, A., Lasky, Paul D., Laxen, Michael, Lazzarini, Albert, Lazzaro, Claudia, Leaci, Paola, Leavey, Sean, Lee, C.H., Lee, Hyunkyu K., Lee, H.M., Lee, Hyungwon W., Lee, K., Lehmann, Johannes, Lenon, Amber, Leonardi, Matteo, Leroy, Nicolas, Letendre, Nicolas, Levin, Yuri, Li, Tjonnie G.F., Linker, Seth D., Littenberg, Tyson B., Liu, J., Lo, R.K.L., Lockerbie, Nick A., London, Lionel T., Lord, Jaysin E., Lorenzini, Matteo, Loriette, Vincent, Lormand, Marc, Losurdo, Giovanni, Lough, James D., Lovelace, Geoffrey, Lück, Harald, Lumaca, Diana, Lundgren, Andrew P., Lynch, Ryan, Ma, Y., Macas, Ronaldas, Macfoy, Sean, Machenschalk, Bernd, Macinnis, M., Macleod, Duncan M., Magaña Hernandez, I., Magaña-Sandoval, F., Magaña Zertuche, L., Magee, Ryan M., Majorana, Ettore, Maksimovic, Ivan, Man, N., Mandic, Vuk, Mangano, Valentina, Mansell, Georgia L., Manske, Michael, Mantovani, Maddalena, Marchesoni, Fabio, Marion, Frederique, Márka, Szabolcs, Márka, Zsuzsanna, Markakis, Charalampos, Markosyan, Ashot S., Markowitz, Aaron, Maros, E., Marquina, Antonio, Martelli, Filippo, Martellini, Lionel, Martin, Ian W., Martin, Rodica M., Martynov, Denis V., Mason, Ken, Massera, Elena, Masserot, Alain, Massinger, Thomas J., Masso-Reid, M., Mastrogiovanni, Simone, Matas, Andrew, Matichard, Fabrice, Matone, Luca, Mavalvala, Nergis, Mazumder, Nairwita, McCarthy, R., Mcclelland, D.E., Mccormick, S., McCuller, L., McGuire, S.C., Mcintyre, G., Mciver, J., McManus, David J., McNeill, L., McRae, T., McWilliams, S.T., Meacher, Duncan, Meadors, Grant D., Mehmet, Moritz, Meidam, Jeroen, Mejuto-Villa, E., Melatos, Andrew, Mendell, Gregory, Mercer, R.A., Merilh, Edmond L., Merzougui, Mourad, Meshkov, Syd, Messenger, Chris, Messick, Cody, Metzdorff, R., Meyers, Patrick M., Miao, Haixing, Michel, Christophe, Middleton, Hannah, Mikhailov, Eugeniy E., Milano, Leopoldo, Miller, Andrewlawrence L., Miller, Brandon B., Miller, John, Millhouse, Meg, Milovich-Goff, M.C., Minazzoli, Olivier, Minenkov, Yuri, Ming, Jing, Mishra, Chandra, Mitra, Sanjit, Mitrofanov, Valery P., Mitselmakher, Guenakh, Mittleman, Richard, Moffa, Donald, Moggi, Andrea, Mogushi, Kentaro, Mohan, Martin, Mohapatra, S.R.P., Montani, Matteo, Moore, Christopher J., Moraru, Dan, Moreno, Gerardo, Morriss, Sean R., Mours, Benoit, Mow-Lowry, C.M., Mueller, Guido, Muir, Alistair W., Mukherjee, Arunava, Mukherjee, Debnandini, Mukherjee, Soma, Mukund, Nikhil, Mullavey, Adam, Munch, Jesper, Muñiz, Erik A., Muratore, Martina, Murray, Peter G., Napier, Kate, Nardecchia, Ilaria, Naticchioni, Luca, Nayak, Rajesh K., Neilson, Joshua, Nelemans, Gijs, Nelson, Timothy J.N., Nery, Marina, Neunzert, Ansel, Nevin, Lydia, Newport, Jonathan M., Newton, Gavin, Ng, K.Y., Nguyen, Thanh T., Nichols, David, Nielsen, Alex B., Nissanke, Samaya, Nitz, Alex, Noack, Andreas, Nocera, Flavio, Nolting, David, North, Chris, Nuttall, Laura K., Oberling, Jason, O'Dea, G.D., Ogin, Greg H., Oh, John J., Oh, Sanghoon H., Ohme, Frank, Okada, Marcos A., Oliver, Miquel, Oppermann, Patrick, Oram, Richard J., O'Reilly, B., Ormiston, Rich, Ortega, Luis F., O'Shaughnessy, R., Ossokine, Serguei, Ottaway, David J., Overmier, Harry, Owen, Ben J., Pace, Alexander E., Page, Jessica, Page, Michael A., Pai, Archana, Pai, Siddhesh A., Palamos, Jordan R., Palashov, Oleg, Palomba, Cristiano, Pal-Singh, A., Pan, Howard, Pan, Huang-Wei, Pang, Belinda, Pang, P.T.H., Pankow, Chris, Pannarale, Francesco, Pant, Brijesh C., Paoletti, Federico, PAOLI, Andrea, Papa, Maria A., Parida, Abhishek, Parker, William, Pascucci, Daniela, Pasqualetti, Antonio, Passaquieti, Roberto, Passuello, Diego, Patil, M., Patricelli, Barbara, Pearlstone, Brynley L., Pedraza, Mike, Pedurand, Richard, Pekowsky, L., Pele, Arnaud, Penn, Steven, Perez, Carlos J., Perreca, Antonio, Perri, Leah M., Pfeiffer, Harald P., Phelps, Margot, Piccinni, Ornella J., Pichot, Mikhael, Piergiovanni, Francesco, Pierro, Vincenzo, Pillant, Gabriel, Pinard, Laurent, Pinto, Innocenzo M., Pirello, Marc, Pisarski, A., Pitkin, Matthew, Poe, Mark, Poggiani, Rosa, Popolizio, Pasquale, Porter, K., Post, Alexander, Powell, Jade, Prasad, Jayanti, Pratt, James W.W., Pratten, Geraint, Predoi, Valeriu, Prestegard, Tanner, Prijatelj, Mirko, Principe, Maria, Privitera, Stephen, Prodi, Giovanni A., Prokhorov, Leonid G., Puncken, Oliver, Punturo, Michele, Puppo, Paola, Pürrer, Michael, Qi, Hong, Quetschke, Volker, Quintero, Eric A., Quitzow-James, R., Raab, Fred J., Rabeling, David S., Radkins, Hugh, Raffai, Peter, Raja, Sendhil, Rajan, C., Rajbhandari, Binod, Rakhmanov, Malik, Ramirez, Karla E., Ramos-Buades, A., Rapagnani, Piero, Raymond, Vivien, Razzano, Massimiliano, Read, Jocelyn, Regimbau, Tania, Rei, Luca, Reid, Stuart, Reitze, David H., Ren, Wei, Reyes, Steven D., Ricci, Fulvio, Ricker, Paul M., Rieger, Sascha, Riles, Keith, Rizzo, Monica, Robertson, Norna A., Robie, Raymond, Robinet, Florent, Rocchi, Alessio, ROLLAND, Loic, Rollins, Jameson G., Roma, Vincent J., Romano, Rocco, Romel, Chandra L., Romie, Janeen H., Rosińska, Dorota, Ross, Michael P., Rowan, Sheila, Rüdiger, Albrecht, Ruggi, Paolo, Rutins, Guntis, Ryan, Kyle, Sachdev, Surabhi, Sadecki, Travis, Sadeghian, Laleh, Sakellariadou, Mairi, Salconi, Livio, Saleem, Muhammed, Salemi, Francesco, Samajdar, Anuradha, Sammut, Letizia, Sampson, Laura M., Sanchez, Eduardo J., Sanchez, Luis E., Sanchis-Gual, N., Sandberg, Vernon, Sanders, Jaclyn R., Sassolas, Benoit, Saulson, Peter R., Sauter, Orion, Savage, Richard L., Sawadsky, Andreas, Schale, Paul, Scheel, Mark, Scheuer, Jacob, Schmidt, Justus, Schmidt, Patricia, Schnabel, Roman, Schofield, Robert M.S., Schönbeck, Axel, Schreiber, Emil, Schuette, Dirk, Schulte, Bernd W., Schutz, Bernard F., Schwalbe, Sophia G., Scott, Jamie, Scott, Susan M., Seidel, E., Sellers, Danny, Sengupta, Anand S., Sentenac, Daniel, Sequino, Valeria, Sergeev, Alexander, Shaddock, Daniel A., Shaffer, Thomas J., Shah, Ankur A., Shahriar, M.S., Shaner, Morgan B., Shao, Lijing, Shapiro, Brett, Shawhan, Peter, Sheperd, Alec, Shoemaker, David H., Shoemaker, Deirdre M., Siellez, Karelle, Siemens, Xavier, Sieniawska, Magdalena, Sigg, Daniel, Silva, Allan D., Singer, Leo P., Singh, Avneet, Singhal, Akshat, Sintes, Alicia M., Slagmolen, Bram J.J., Smith, Bryan, Smith, Joshua R., Smith, Rory J.E., Somala, Surendranadh, Son, Edwin J., Sonnenberg, Jacob A., Sorazu, Borja, Sorrentino, Fiodor, Souradeep, Tarun, Spencer, Andrew P., Srivastava, Amit K., Staats, Kai, Staley, Alexan, Steinke, Michael, Steinlechner, Jessica, Steinlechner, Sebastian, Steinmeyer, Daniel, Stevenson, Simon P., Stone, Robert, Stops, David J., Strain, Ken A., Stratta, Giulia, Strigin, Sergey E., Strunk, A., Sturani, Riccardo, Stuver, Amber L., Summerscales, Tiffany Z., Sun, Ling, Sunil, S., Suresh, Jishnu, Sutton, Patrick J., Swinkels, Bas L., Szczepańczyk, Marek J., Tacca, Matteo, Tait, Simon C., Talbot, Colm, Talukder, Dipongkar, Tanner, David B., Tao, Duo, Tápai, Marton, Taracchini, Andrea, Tasson, Jay D., Taylor, Jordan A., Taylor, Robert, Tewari, Shivam V., Theeg, Thomas, Thies, Fabian, Thomas, E.G., Thomas, Michael, Thomas, Patrick, Thorne, Keith A., Thrane, Eric, Tiwari, Shubhanshu, Tiwari, Vaibhav, Tokmakov, Kirill V., Toland, Karl, Tonelli, Mauro, Tornasi, Zeno, Torres-Forné, A., Torrie, Calum I., Töyrä, Daniel, Travasso, Flavio, Traylor, Gary, Trinastic, Jonathan, Tringali, Maria C., Trozzo, Lucia, Tsang, K.W., Tse, Maggie, Tso, Rhondale, Tsukada, Leo, Tsuna, Daichi, Tuyenbayev, Darkhan, Ueno, Koh, Ugolini, Dennis, Unnikrishnan, Cs S., Urban, Alexander L., Usman, Samantha A., Vahlbruch, Henning, Vajente, Gabriele, Valdes, Guillermo, Van Bakel, N., van Beuzekom, Martin, Van Den Brand, J.F.J., Van Den Broeck, C., Vander-Hyde, D.C., van der Schaaf, L., van Heijningen, J.V., van Veggel, A.A., Vardaro, Marco, Varma, Vijay, Vass, Steve, Vasúth, Matyas, Vecchio, Alberto, Vedovato, Gabriele, Veitch, John, Veitch, Peter J., Venkateswara, Krishna, Venugopalan, Gautam, Verkindt, Didier, Vetrano, Flavio, Viceré, Andrea, Viets, Aaron D., Vinciguerra, Serena, Vine, David J., Vinet, J.-Y., Vitale, Salvatore, Vo, Thomas, Vocca, Helios, Vorvick, Cheryl, Vyatchanin, Sergey P., Wade, Andrew R., Wade, Leslie E., Wade, Madeline, Walet, Rob, Walker, Marissa, Wallace, Larry, Walsh, Sinead, Wang, Gang, Wang, Haoyu, Wang, Jonathan Z., Wang, Wenhui H., Wang, Yifan F., Ward, Robert L., Warner, Jim, Was, Michal, Watchi, Jennifer, Weaver, Betsy, Wei, L.-W., Weinert, Michael, Weinstein, Alan J., Weiss, Rainer, Wen, Linqing, Wessel, Erik K., Weßels, Peter, Westerweck, Julian, Westphal, Tobias, Wette, Karl, Whelan, John T., Whiting, Bernard F., Whittle, Chris, Wilken, D., Williams, Daniel, Williams, Roy D., Williamson, Andrew R., Willis, Joshua L., Willke, Benno, Wimmer, Maximilian H., Winkler, Walter, Wipf, Christopher C., Wittel, Holger, Woan, Graham, Woehler, Janis, Wofford, Jared, Wong, W.K., Worden, John, Wright, Jennifer L., Wu, David S., Wysocki, Daniel M., Xiao, Sophia, Yamamoto, Hiro, Yancey, Cregg C., Yang, Le, Yap, M.J., Yazback, Maher, Yu, Hang, Yu, Haocun, Yvert, Michel, Zadrożny, Adam, Zanolin, Michele, Zelenova, Tatiana, Zendri, J.-P., Zevin, Michael, Zhang, Liyuan, Zhang, Mi, Zhang, Teng, Zhang, Y.-H., Zhao, Chunnong, Zhou, Minchuan, Zhou, Zifan, Zhu, Sylvia J., Zhu, Xingjiang J., Zucker, Michael E., and Zweizig, J.
- Abstract
We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4×10-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3×10-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5×10-25. © 2018 American Physical Society.
- Published
- 2018
36. Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout
- Author
-
Gerberding, Oliver, Isleif, Katharina-Sophie, Mehmet, Moritz, Danzmann, Karsten, Heinzel, Gerhard, Gerberding, Oliver, Isleif, Katharina-Sophie, Mehmet, Moritz, Danzmann, Karsten, and Heinzel, Gerhard
- Abstract
Low-frequency high-precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer-level sensitivities in the 0.1-mHz to 1-Hz regime, where laser-frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilizing an external cavity diode laser to a quasimonolithic unequal arm-length Mach-Zehnder interferometer readout at midfringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations, and relatively low-frequency-noise levels. The Mach-Zehnder interferometer is designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool ifocad. We achieve frequency-noise levels below 100 Hz/Hz at 1 Hz and are able to demonstrate the LISA frequency prestabilization requirement of 300 Hz/Hz down to frequencies of 100 mHz by beating the stabilized laser with an iodine-locked reference.
- Published
- 2017
37. Comparing interferometry techniques for multi-degree of freedom test mass readout
- Author
-
Isleif, Katharina-Sophie, Gerberding, Oliver, Mehmet, Moritz, Schwarze, Thomas S., Heinzel, Gerhard, Danzmann, Karsten, Isleif, Katharina-Sophie, Gerberding, Oliver, Mehmet, Moritz, Schwarze, Thomas S., Heinzel, Gerhard, and Danzmann, Karsten
- Abstract
Laser interferometric readout systems with 1pm √Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts.
- Published
- 2016
38. Comparing interferometry techniques for multi-degree of freedom test mass readout
- Author
-
Isleif, Katharina-Sophie, primary, Gerberding, Oliver, additional, Mehmet, Moritz, additional, Schwarze, Thomas S, additional, Heinzel, Gerhard, additional, and Danzmann, Karsten, additional
- Published
- 2016
- Full Text
- View/download PDF
39. Experimental demonstration of deep frequency modulation interferometry
- Author
-
Isleif, Katharina-Sophie, primary, Gerberding, Oliver, additional, Schwarze, Thomas S., additional, Mehmet, Moritz, additional, Heinzel, Gerhard, additional, and Cervantes, Felipe Guzmán, additional
- Published
- 2016
- Full Text
- View/download PDF
40. Squeezed light at 1064 nm and 1550 nm with a nonclassical noise suppression beyond 10 dB
- Author
-
Mehmet, Moritz
- Subjects
gravitational wave detector ,Gequetschtes Licht ,quantum information ,Gravitationswellendetektor ,Quanteninformation ,Squeezed light ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik - Abstract
[no abstract]
- Published
- 2012
41. Search for gravitational waves from intermediate mass binary black holes
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,General Relativity and Quantum Cosmology ,Astrophysics::High Energy Astrophysical Phenomena ,Intermediate Mass Black Hole Binaries ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Gravitational waves - Abstract
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100–450 M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level. © 2012 The American Physical Society
- Published
- 2012
- Full Text
- View/download PDF
42. All-sky search for periodic gravitational waves in the full S5 LIGO data
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Gravitational waves - Abstract
We report on an all-sky search for periodic gravitational waves in the frequency band 50–800 Hz and with the frequency time derivative in the range of 0 through −6×10−9 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10× increase in computational efficiency, we have searched in two years of data collected during LIGO’s fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h0 is 1×10−24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8×10−24 for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion. © 2012 The American Physical Society
- Published
- 2012
- Full Text
- View/download PDF
43. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Gravitational waves - Abstract
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600–1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900 Hz)3, of Ω3
- Published
- 2012
- Full Text
- View/download PDF
44. Erratum: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,Correction ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Gravitational waves - Abstract
[No abstract available]
- Published
- 2012
- Full Text
- View/download PDF
45. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,General Relativity and Quantum Cosmology ,Astrophysics::High Energy Astrophysical Phenomena ,ddc:530 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Gravitational waves - Abstract
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10−4, 3.1×10−5, and 6.4×10−6 Mpc−3 yr−1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge. © 2012 The American Physical Society
- Published
- 2012
46. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., LIGO Scientific Collaboration, and Virgo Collaboration
- Subjects
Gravitationswelle ,General Relativity and Quantum Cosmology ,Astrophysics::High Energy Astrophysical Phenomena ,ddc:530 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Gravitational waves - Abstract
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10−3 yr−1 L10−1, 2.2×10−3 yr−1 L10−1, and 4.4×10−4 yr−1 L10−1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations. © 2010 The American Physical Society
- Published
- 2010
47. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
- Author
-
Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., et al., LIGO Scientific Collaboration, Virgo Collaboration, Abadie, J., Affeldt, Christoph, Allen, Bruce, Aufmuth, Peter, Aulbert, C., Ballardin, G., Bauchrowitz, J., Bertolini, A., Bock, O., Bogan, C., Born, Michael, Breyer, J., Brinkmann, M., Britzger, M., Dahl, K., Danzmann, Karsten, Di Palma, Irene, Eberle, Tobias, Fehrmann, H., Frede, M., Friedrich, Daniel, Goetz, E., Goßler, S., Graef, C., Grote, Hartmut, Hewitson, M., Kaufer, Henning, Kawazoe, F., Khalaidovski, Alexander, Kim, H., Kranz, O., Kringel, V., Kühn, G., Kwee, P., Lastzka, N., Leong, J.R., Lück, Harald, Machenschalk, Bernd, Mazzolo, G., Mehmet, Moritz, Meier, Tobias, Mossavi, K., Müller-Ebhard, H., Pickenpack, M., Pletsch, H.J., Pöld, J., Prijatelj, M., Prix, R, Puncken, O., Röver, C., Rüdiger, A., Salemi, F., Schilling, R., Schnabel, Roman, Schreiber, E., Schulz, B., Shaltev, M., Steinlechner, J., Steinlechner, S., Tarabrin, S.P., Taylor, J.R., Thüring, A., Vahlbruch, H., Veltkamp, C., Wanner, A., Weinert, M., Wessels, P., Westphal, Tobias, Wette, K., Willke, Benno, Winkelmann, L., Winkler, W., Wittel, H., Yamamoto, K., et al., LIGO Scientific Collaboration, and Virgo Collaboration
- Abstract
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration ≲1 s over the frequency band 64–5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range ∼5×10−22 Hz−1/2 to ∼1×10−20 Hz−1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. © 2012 The American Physical Society
- Published
- 2012
48. Building blocks for future detectors: Silicon test masses and 1550 nm laser light
- Author
-
Schnabel, Roman, Britzger, M., Brückner, F., Burmeister, O., Danzmann, Karsten, Dück, J., Eberle, Tobias, Friedrich, Daniel, Lück, Harald, Mehmet, Moritz, Nawrodt, Ronny, Steinlechner, S., Willke, Benno, Schnabel, Roman, Britzger, M., Brückner, F., Burmeister, O., Danzmann, Karsten, Dück, J., Eberle, Tobias, Friedrich, Daniel, Lück, Harald, Mehmet, Moritz, Nawrodt, Ronny, Steinlechner, S., and Willke, Benno
- Abstract
Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection.
- Published
- 2010
49. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity
- Author
-
Ast, Stefan, primary, Mehmet, Moritz, additional, and Schnabel, Roman, additional
- Published
- 2013
- Full Text
- View/download PDF
50. Squeezed light at 1550 nm with a quantum noise reduction of 123 dB
- Author
-
Mehmet, Moritz, primary, Ast, Stefan, additional, Eberle, Tobias, additional, Steinlechner, Sebastian, additional, Vahlbruch, Henning, additional, and Schnabel, Roman, additional
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.