372 results on '"McLennan, S"'
Search Results
2. Two Years at Meridiani Planum: Results from the Opportunity Rover
- Author
-
Squyres, S. W., Knoll, A. H., Arvidson, R. E., Clark, B. C., Grotzinger, J. P., Jolliff, B. L., McLennan, S. M., Tosca, N., Bell, J. F., Calvin, W. M., Farrand, W. H., Glotch, T. D., Golombek, M. P., Herkenhoff, K. E., Johnson, J. R., Klingelhöfer, G., McSween, H. Y., and Yen, A. S.
- Published
- 2006
3. Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site
- Author
-
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., Bell, J. F., Cabrol, N. A., Calvin, W., Christensen, P. R., Clark, B. C., Economou, T., Ehlmann, B. L., Farrand, W. H., Fike, D., Gellert, R., Glotch, T. D., Golombek, M. P., Greeley, R., Grotzinger, J. P., Herkenhoff, K. E., Jerolmack, D. J., Johnson, J. R., Jolliff, B., Klingelhöfer, G., Knoll, A. H., Learner, Z. A., Li, R., Malin, M. C., McLennan, S. M., McSween, H. Y., Ming, D. W., Morris, R. V., Rice, J. W., Richter, L., Rieder, R., Rodionov, D., Schröder, C., Seelos, F. P., Soderblom, J. M., Squyres, S. W., Sullivan, R., Watters, W. A., Weitz, C. M., Wyatt, M. B., Yen, A., and Zipfel, J.
- Published
- 2004
4. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars
- Author
-
Squyres, S. W., Arvidson, R. E., Bell, J. F., Brückner, J., Cabrol, N. A., Calvin, W., Carr, M. H., Christensen, P. R., Clark, B. C., Crumpler, L., d'Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J. A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K. E., Hviid, S., Johnson, J., Klingelhöfer, G., Knoll, A. H., Landis, G., Lemmon, M., Li, R., Madsen, M. B., Malin, M. C., McLennan, S. M., McSween, H. Y., Ming, D. W., Moersch, J., Morris, R. V., Parker, T., Rice, J. W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L. A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., and Yen, A.
- Published
- 2004
5. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars
- Author
-
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., Bell, J. F., Calvin, W., Christensen, P. R., Clark, B. C., Crisp, J. A., Farrand, W. H., Herkenhoff, K. E., Johnson, J. R., Klingelhöfer, G., Knoll, A. H., McLennan, S. M., McSween, H. Y., Morris, R. V., Rice, J. W., Rieder, R., and Soderblom, L. A.
- Published
- 2004
6. Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum
- Author
-
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., Bass, D. S., Bell, J. F., Bertelsen, P., Ehlmann, B. L., Farrand, W., Gaddis, L., Greeley, R., Grotzinger, J., Hayes, A. G., Hviid, S. F., Johnson, J. R., Jolliff, B., Kinch, K. M., Knoll, A. H., Madsen, M. B., Maki, J. N., McLennan, S. M., McSween, H. Y., Ming, D. W., Rice, J. W., Richter, L., Sims, M., Smith, P. H., Soderblom, L. A., Spanovich, N., Sullivan, R., Thompson, S., Wdowiak, T., Weitz, C., and Whelley, P.
- Published
- 2004
7. Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum
- Author
-
Bell, J. F., Squyres, S. W., Arvidson, R. E., Arneson, H. M., Bass, D., Calvin, W., Farrand, W. H., Goetz, W., Golombek, M., Greeley, R., Grotzinger, J., Guinness, E., Hayes, A. G., Hubbard, M. Y. H., Herkenhoff, K. E., Johnson, M. J., Johnson, J. R., Joseph, J., Kinch, K. M., Lemmon, M. T., Li, R., Madsen, M. B., Maki, J. N., Malin, M., McCartney, E., McLennan, S., McSween, H. Y., Ming, D. W., Morris, R. V., Parker, T. J., Proton, J., Rice, J. W., Seelos, F., Soderblom, J. M., Soderblom, L. A., Sohl-Dickstein, J. N., Sullivan, R. J., Weitz, C. M., and Wolff, M. J.
- Published
- 2004
8. Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater
- Author
-
McSween, H. Y., Arvidson, R. E., Bell, J. F., Blaney, D., Cabrol, N. A., Christensen, P. R., Clark, B. C., Crisp, J. A., Crumpler, L. S., Farmer, J. D., Gellert, R., Ghosh, A., Gorevan, S., Graff, T., Grant, J., Haskin, L. A., Herkenhoff, K. E., Johnson, J. R., Jolliff, B. L., Klingelhoefer, G., Knudson, A. T., McLennan, S., Milam, K. A., Moersch, J. E., Morris, R. V., Rieder, R., Ruff, S. W., de Souza, P. A., Squyres, S. W., Wänke, H., Wang, A., Wyatt, M. B., Yen, A., and Zipfel, J.
- Published
- 2004
9. Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars
- Author
-
Greeley, R., Squyres, S. W., Arvidson, R. E., Bartlett, P., Bell, J. F., Blaney, D., Cabrol, N. A., Farmer, J., Farrand, B., Golombek, M. P., Gorevan, S. P., Grant, J. A., Haldemann, A. F. C., Herkenhoff, K. E., Johnson, J., Landis, G., Madsen, M. B., McLennan, S. M., Moersch, J., Rice, J. W., Richter, L., Ruff, S., Sullivan, R. J., Thompson, S. D., Wang, A., Weitz, C. M., and Whelley, P.
- Published
- 2004
10. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars
- Author
-
Squyres, S. W., Arvidson, R. E., Bell, J. F., Brückner, J., Cabrol, N. A., Calvin, W., Carr, M. H., Christensen, P. R., Clark, B. C., Crumpler, L., d'Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J. A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K. E., Hviid, S., Johnson, J., Klingelhöfer, G., Knoll, A., Landis, G., Lemmon, M., Li, R., Madsen, M. B., Malin, M. C., McLennan, S. M., McSween, H. Y., Ming, D. W., Moersch, J., Morris, R. V., Parker, T., Rice, J. W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L. A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., and Yen, A.
- Published
- 2004
11. Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater
- Author
-
Bell, J. F., Squyres, S. W., Arvidson, R. E., Arneson, H. M., Bass, D., Blaney, D., Cabrol, N., Calvin, W., Farmer, J., Farrand, W. H., Goetz, W., Golombek, M., Grant, J. A., Greeley, R., Guinness, E., Hayes, A. G., Hubbard, M. Y. H., Herkenhoff, K. E., Johnson, M. J., Johnson, J. R., Joseph, J., Kinch, K. M., Lemmon, M. T., Li, R., Madsen, M. B., Maki, J. N., Malin, M., McCartney, E., McLennan, S., McSween, H. Y., Ming, D. W., Moersch, J. E., Morris, R. V., Parker, T. J., Proton, J., Rice, J. W., Seelos, F., Soderblom, J., Soderblom, L. A., Sohl-Dickstein, J. N., Sullivan, R. J., Wolff, M. J., and Wang, A.
- Published
- 2004
12. Evaluating the appropriateness of risk-based approaches to assess the sustainability of fishery impacts on seabirds
- Author
-
Good, SD, primary, Gummery, M, additional, McLennan, S, additional, Dewar, K, additional, Votier, SC, additional, and Phillips, RA, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Global Crustal Thickness Revealed by Surface Waves Orbiting Mars
- Author
-
Kim, D., primary, Duran, C., additional, Giardini, D., additional, Plesa, A.‐C., additional, Stähler, S. C., additional, Boehm, C., additional, Lekić, V., additional, McLennan, S. M., additional, Ceylan, S., additional, Clinton, J. F., additional, Davis, P., additional, Khan, A., additional, Knapmeyer‐Endrun, B., additional, Panning, M. P., additional, Wieczorek, M., additional, Lognonné, P., additional, and Banerdt, W. B., additional
- Published
- 2023
- Full Text
- View/download PDF
14. High‐Frequency Receiver Functions With Event S1222a Reveal a Discontinuity in the Martian Shallow Crust
- Author
-
Shi, J., primary, Plasman, M., additional, Knapmeyer‐Endrun, B., additional, Xu, Z., additional, Kawamura, T., additional, Lognonné, P., additional, McLennan, S. M., additional, Sainton, G., additional, Banerdt, W. B., additional, Panning, M. P., additional, and Wang, T., additional
- Published
- 2023
- Full Text
- View/download PDF
15. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., Quantin-Nataf, C., Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., and Quantin-Nataf, C.
- Abstract
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.
- Published
- 2023
16. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., Williford, K. H., Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., and Williford, K. H.
- Abstract
The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet’s interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
- Published
- 2023
17. Evaluating the appropriateness of risk-based approaches to assess the sustainability of fishery impacts on seabirds
- Author
-
Good, S.D., Gummery, M., McLennan, S., Dewar, K., Votier, S.C., Phillips, R.A., Good, S.D., Gummery, M., McLennan, S., Dewar, K., Votier, S.C., and Phillips, R.A.
- Abstract
Many seabird populations are declining, with fisheries bycatch as one of the greatest threats. Explicit risk criteria should be used to identify whether bycatch is a problem for particular species and fisheries, but these are often poorly defined. A variety of methods are used to determine the risk that a specific fishery is having an unsustainable impact on a seabird population. Up until October 2022, the Marine Stewardship Council (MSC) applied a general semi-quantitative productivity susceptibility analysis (PSA), a tool that has also been used widely by other management agencies for diverse taxa. Given the need to ensure fisheries risk assessments are robust and consistent, we examined how general PSAs perform when applied in 2 situations with good information on both the seabird population and fisheries bycatch rates and compare the outputs with those from 2 accessible and more quantitative tools: potential biological removal and population viability analysis. We found that risk scoring using the previous MSC version of the PSA was less robust and precautionary than using other approaches, given the steep declines observed in some seabird breeding populations. We make recommendations on how to select attributes for species-specific PSAs and, depending on the data available, identify the most appropriate risk assessment method to achieve a given objective. These should help ensure more consistent assessment and prioritisation of seabird bycatch issues, and improved ecosystem-based management of fisheries.
- Published
- 2023
18. Virus Genotype-Dependent Transcriptional Alterations in Lipid Metabolism and Inflammation Pathways in the Hepatitis C Virus-infected Liver
- Author
-
d’Avigdor, W. M. H., Budzinska, M. A., Lee, M., Lam, R., Kench, J., Stapelberg, M., McLennan, S. V., Farrell, G., George, J., McCaughan, G. W., Tu, T., and Shackel, N. A.
- Published
- 2019
- Full Text
- View/download PDF
19. A patient-specific numerical model to assess the impact of calcification stress during endovascular aortic aneurysm repair
- Author
-
McLennan, S., primary, Soulez, G., additional, Mohammadi, H., additional, Pfister, M., additional, Lessard, S., additional, and Mongrain, R., additional
- Published
- 2023
- Full Text
- View/download PDF
20. Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager
- Author
-
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., Bass, D. S., Bell, J. F., Bertelsen, P., Cabrol, N. A., Gaddis, L., Hayes, A. G., Hviid, S. F., Johnson, J. R., Kinch, K. M., Madsen, M. B., Maki, J. N., McLennan, S. M., McSween, H. Y., Rice, J. W., Sims, M., Smith, P. H., Soderblom, L. A., Spanovich, N., Sullivan, R., and Wang, A.
- Published
- 2004
21. Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
- Author
-
Wiens, R.C., Udry, A., Mangold, N., Beyssac, O., Quantin, C., Sautter, V., Cousin, A., Brown, A., Bosak, T., Mandon, L., Forni, O., Johnson, J.R., Mclennan, S., Legett, C., Maurice, S., Mayhew, L., Crumpler, L., Anderson, R.B., Clegg, S.M., Ollila, A.M., Hall, J., Meslin, P.-Y., Kah, L.C., Gabriel, T.S.J., Gasda, P., Simon, J.I., Hausrath, E.M., Horgan, B., Poulet, F., Beck, P., Gupta, S., Chide, B., Clavé, E., Connell, S., Dehouck, E., Dromart, G., Fouchet, T., Royer, C., Frydenvang, J., Gasnault, Olivier, Gibbons, E., Kalucha, H., Lanza, N., Lasue, J., Mouelic, S. Le, Leveillé, R., Cloutis, E., Reyes, G. Lopez, Arana, G., Castro, K., Madariaga, J.M., Manrique, J.-A., Pilorget, C., Pinet, P., Laserna, J., Sharma, S.K., Acosta-Maeda, T., Kelly, E., Montmessin, Franck, Fischer, W., Francis, R., Stack, K., Farley, K., Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], Plancius Research LLC, Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Colorado [Boulder], New Mexico Museum of Natural History and Science (NMMNHS), United States Geological Survey (USGS), The University of Tennessee [Knoxville], NASA Johnson Space Center (JSC), NASA, University of Nevada [Las Vegas] (WGU Nevada), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Grenoble Alpes (UGA), Imperial College London, Université de Bordeaux (UB), University of Winnipeg, Université de Lyon, Observatoire de Paris, Université Paris sciences et lettres (PSL), McGill University = Université McGill [Montréal, Canada], California Institute of Technology (CALTECH), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Hawaii, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and pinet, patrick
- Subjects
[SDU] Sciences of the Universe [physics] ,jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,perseverance in situ exploration ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,supercam ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,mars geology ,mineralogy ,petrology - Abstract
International audience
- Published
- 2022
22. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., and Willis, P.
- Abstract
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency, and (iii) high frequency waves are strongly attenuated with distance in CO₂. However, theoretical models were uncertain because of a lack of experimental data at low pressure, and the difficulty to characterize turbulence or attenuation in a closed environment. Here using Perseverance microphone recordings, we present the first characterization of Mars’ acoustic environment and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, revealing a dissipative regime extending over 5 orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are ~10 m/s apart below and above 240 Hz, a unique characteristic of low-pressure CO₂-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to elucidate the large contribution of the CO₂ vibrational relaxation in the audible range. These results establish a ground truth for modelling of acoustic processes, which is critical for studies in atmospheres like Mars and Venus ones.
- Published
- 2022
23. Highly Differentiated Basaltic Lavas Examined by PIXL in Jezero Crater
- Author
-
Schmidt, M. E., Allwood, A., Christian, J., Clark, B., Flannery, David, Hennecke, J., Herd, C. D. K., Hurowitz, J. A., Kizovski, Tanya V., Liu, Y., McLennan, S. M., Nachon, Marion, Pedersen, D. A. K., Shuster, D. L., Simon, J. I., Tice, M., Tosca, Nicholas, Treiman, A. H., Udry, Arya, Van Bommel, Scott, Wadhwa, Meenakshi, Schmidt, M. E., Allwood, A., Christian, J., Clark, B., Flannery, David, Hennecke, J., Herd, C. D. K., Hurowitz, J. A., Kizovski, Tanya V., Liu, Y., McLennan, S. M., Nachon, Marion, Pedersen, D. A. K., Shuster, D. L., Simon, J. I., Tice, M., Tosca, Nicholas, Treiman, A. H., Udry, Arya, Van Bommel, Scott, and Wadhwa, Meenakshi
- Abstract
Textural, bulk chemical, and mineralogical data collected by PIXL (Planetary Instrument for X-ray Lithochemistry) indicate that the first rock unit (Cf-fr, Crater Floor-Fractured rough) examined by the M2020 Perseverance rover in Jezero crater is from a basaltic lava flow. This unit was originally mapped as volcanic flow [1] but has been reinterpreted as a clastic or volcaniclastic sediment [2]. We here present evidence that it is a basalt flow, with implications for its petrogenesis as a highly differentiated basalt.
- Published
- 2022
24. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, Zorzano, M-P, Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, and Zorzano, M-P
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
- Published
- 2022
25. Surface waves and crustal structure on Mars
- Author
-
Kim, D., Banerdt, W. B., Ceylan, S., Giardini, D., Lekic, V., Lognonne, P., Beghein, C., Beucler, E., Carrasco, S., Charalambous, C., Clinton, J., Drilleau, M., Duran, C., Golombek, M., Joshi, R., Khan, A., Knapmeyer-Endrun, B., Li, J., Maguire, R., Pike, W. T., Samuel, H., Schimmel, M., Schmerr, N. C., Stahler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Q., Kawamura, T., King, Scott D., McLennan, S. M., Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhausern, G., Daubar, I. J., Fernando, B., Garcia, R. F., Posiolova, L., Panning, M. P., Kim, D., Banerdt, W. B., Ceylan, S., Giardini, D., Lekic, V., Lognonne, P., Beghein, C., Beucler, E., Carrasco, S., Charalambous, C., Clinton, J., Drilleau, M., Duran, C., Golombek, M., Joshi, R., Khan, A., Knapmeyer-Endrun, B., Li, J., Maguire, R., Pike, W. T., Samuel, H., Schimmel, M., Schmerr, N. C., Stahler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Q., Kawamura, T., King, Scott D., McLennan, S. M., Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhausern, G., Daubar, I. J., Fernando, B., Garcia, R. F., Posiolova, L., and Panning, M. P.
- Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
26. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., Zorzano, M.-P., Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., and Zorzano, M.-P.
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
27. Surface waves and crustal structure on Mars
- Author
-
ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., Panning, Mark P., ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., and Panning, Mark P.
- Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
28. Exploration of Victoria Crater by the Mars Rover Opportunity
- Author
-
Squyres, S. W., Knoll, A. H., Arvidson, R. E., Ashley, J. W., Bell, J. F., Calvin, W. M., Christensen, P. R., Clark, B. C., Cohen, B. A., de Souza, P. A., Edgar, L., Farrand, W. H., Fleischer, I., Gellert, R., Golombek, M. P., Grant, J., Grotzinger, J., Hayes, A., Herkenhoff, K. E., Johnson, J. R., Jolliff, B., Klingelhöfer, G., Knudson, A., Li, R., McCoy, T. J., McLennan, S. M., Ming, D. W., Mittlefehldt, D. W., Morris, R. V., Rice, J. W., Schröder, C., Sullivan, R. J., Yen, A., and Yingst, R. A.
- Published
- 2009
- Full Text
- View/download PDF
29. Detection of Silica-Rich Deposits on Mars
- Author
-
Squyres, S. W., Arvidson, R. E., Ruff, S., Gellert, R., Morris, R. V., Ming, D. W., Crumpler, L., Farmer, J. D., Des Marais, D. J., Yen, A., McLennan, S. M., Calvin, W., Bell, J. F., Clark, B. C., Wang, A., McCoy, T. J., Schmidt, M. E., and de Souza, P. A.
- Published
- 2008
- Full Text
- View/download PDF
30. Molecular Aspects of Wound Healing in Diabetes
- Author
-
McLennan, S, Yue, DK, and Twigg, SM
- Published
- 2006
31. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R, Mimoun, D., Wiens, R., Stott, A., Jacob, X., Bertrand, T., Montmessin, Franck, Lanza, N, Alvarez-Llamas, C., Angel, S, Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, Jérémie, Maki, J., Mcclean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C., Rodríguez Manfredi, J., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de La Torre Juárez, M., Tzanetos, T., Stack, K., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R., Applin, D., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S, Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J., Kalucha, H., Kelly, E., Knutsen, Elise Wright, Lacombe, Gaetan, Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L., Mcconnochie, T., Mclennan, S., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R, Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), Purdue University [West Lafayette], Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Department of Chemistry and Biochemistry [Columbia, South Carolina], University of South Carolina [Columbia], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Heliospace Corporation, MIT Haystack Observatory, Massachusetts Institute of Technology (MIT), Department of Aeronautics and Astronautics [Cambridge], Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Escuela de Ingeniería de Bilbao, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Aeolis Corporation, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Blue Marble Space Institute of Science (BMSIS), University of Hawai‘i [Mānoa] (UHM), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of Winnipeg, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Université de Lyon, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), McGill University = Université McGill [Montréal, Canada], Universidad de Valladolid [Valladolid] (UVa), IT University of Copenhagen (ITU), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geological Sciences [Boulder], University of Colorado [Boulder], University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Physics and Applied Physics [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), University of Nevada [Las Vegas] (WGU Nevada), and NASA’s Mars Exploration ProgramCNES
- Subjects
Multidisciplinary ,Carbon dioxide ,Modélisation ,[SDU]Sciences of the Universe [physics] ,Atmospheric Turbulence ,Atmospheric Sound ,Microphone ,Mars ,Attenuation ,CO2 ,Perseverance ,Acoustic Environment - Abstract
International audience
- Published
- 2022
- Full Text
- View/download PDF
32. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Gasnault, O., Anderson, Ryan B., Beyssac, Olivier, Bonal, L., Clegg, Samuel M., DeFlores, Lauren, Dromart, G, Fischer, W. W., Forni, Olivier, Grotzinger, J. P., Johnson, J. R., Martinez-Frias, J., Mangold, Nicolas, McLennan, S., Montmessin, Franck, Rull, Fernando, Sharma, Shiv K., Cousin, Agnès, Pilleri, Paolo, Sautter, V, Lewin, E, Cloutis, E., Poulet, F., Bernard, Sylvain, McConnochie, T., Lanza, N., Newsom, H., Ollila, A., Leveille, R., Le Mouelic, S., Lasue, J, Melikechi, N., Meslin, P-Y, Grasset, O, Angel, S. M., Fouchet, T., Beck, Pierre, Bousquet, Bruno, Fabre, C., Pinet, P., Benzerara, K., Montagnac, Gilles, Arana, Gorka, Castro, Kepa, Laserna, Javier, Madariaga, Juan Manuel, Manrique, Jose Antonio, Lopez, G., Lorenz, R., Mimoun, D., Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Doressoundiram, A., Francis, R., Frydenvang, J., Gabriel, T. S. J., Jacob, Xavier, Madsen, M. B., Moros, J., Murdoch, N, Newell, Raymond T., Porter, J. M., Quantin-Nataf, C., Rapin, William, Schröder, Susanne, Sobron, Pablo, Toplis, M., Brown, A.J., Veneranda, M., Chide, Baptiste, Legett, Carey, Royer, Clement, Stott, A., Vogt, David, Robinson, Scott H., DeLapp, D., Clave, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, Imanol, Shkolyar, Svetlana, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of Hawai‘i [Mānoa] (UHM), Université Grenoble Alpes (UGA), University of Winnipeg, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), NASA Goddard Space Flight Center (GSFC), The University of New Mexico [Albuquerque], McGill University = Université McGill [Montréal, Canada], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Lyon, University of Copenhagen = Københavns Universitet (UCPH), University of Hawai'i [Honolulu] (UH), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Search for Extraterrestrial Intelligence Institute (SETI), Plancius Research LLC, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Cardon, Catherine, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Málaga, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU]Sciences of the Universe [physics] ,Mars2020 SuperCam Perseverance Mars Planetenforschung Spektroskopie Kamera Laser ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
33. The Composition and Evolution of the Continental Crust: Rare Earth Element Evidence from Sedimentary Rocks [and Discussion]
- Author
-
Taylor, S. R., McLennan, S. M., Armstrong, R. L., and Tarney, J.
- Published
- 1981
34. The interior of Mars as seen by InSight (Invited)
- Author
-
Staehler, Simon C., Khan, A., Knapmeyer‐Endrun, Brigitte, Panning, Mark P., Banerdt, William B., Lognonné, P., Giardini, Domenico, Antonangeli, D., Beucler, E., Bissig, F., Bozdag, E., Brinkmann, N., Ceylan, S., Charalambous, C., Clinton, John F., Compaire, Nicolas, Dahmen, N. L., Davis, P., van Driel, M., Drilleau, M., Garcia, Raphael F., Huang, Quancheng, Joshi, Rakshit, Gudkova, T., Irving, Jessica C. E., Johnson, C., Kawamura, T., Kim, Doyeon, Knapmeyer, Martin, Maguire, R., Lekic, Vedran, Margerin, L., Marusiak, A, McLennan, S M, Mittelholz, A., Michaut, Chloe, Plasman, M., Pan, L., Duran, C., Perrin, C., Pike, T., Plesa, Ana-Catalina, Pinot, Baptiste, Rivoldini, A., Scholz, J.-R., Schimmel, Martin, Schmerr, N., Stutzmann, Éléonore, Samuel, H., Smrekar, S., Spohn, Tilman, Tauzin, B., Tharimena, S., Widmer-Schnidrig, R, Wieczorek, M., Xu, Zongbo, Zenhäusern, Geraldine, Karakostas, F., and InSight, Science Team
- Abstract
InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CMB
- Published
- 2021
35. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
- Author
-
Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., Horgan, B., Quantin-Nataf, C., Brown, A. J., Le Mouélic, S., Yingst, R., Bell, J. F., Beyssac, O., Bosak, T., Calef, F., III, Ehlmann, B. L., Farley, K. A., Grotzinger, J. P., Hickman-Lewis, K., Holm-Alwmark, S., Kah, L. C., Martínez-Frías, J., McLennan, S. M., Maurice, S., Nuñez, J. I., Ollila, A. M., Pilleri, P., Rice, J. W., Jr., Rice, M., Simon, J. I., Shuster, D. L., Stack, K. M., Sun, V. Z., Treiman, A. H., Weiss, B. P., Wiens, R. C., Williams, A. J., Williams, N. R., Williford, K. H., Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., Horgan, B., Quantin-Nataf, C., Brown, A. J., Le Mouélic, S., Yingst, R., Bell, J. F., Beyssac, O., Bosak, T., Calef, F., III, Ehlmann, B. L., Farley, K. A., Grotzinger, J. P., Hickman-Lewis, K., Holm-Alwmark, S., Kah, L. C., Martínez-Frías, J., McLennan, S. M., Maurice, S., Nuñez, J. I., Ollila, A. M., Pilleri, P., Rice, J. W., Jr., Rice, M., Simon, J. I., Shuster, D. L., Stack, K. M., Sun, V. Z., Treiman, A. H., Weiss, B. P., Wiens, R. C., Williams, A. J., Williams, N. R., and Williford, K. H.
- Abstract
Observations from orbital spacecraft have shown that Jezero crater, Mars, contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the three months after landing. The fan has outcrop faces that were invisible from orbit, which record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition, from a sustained hydrologic activity in a persistent lake environment, to highly energetic short-duration fluvial flows.
- Published
- 2021
36. Sampling Mars: Notional Caches from Mars 2020 Strategic Planning
- Author
-
Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., Farley, K. A., Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., and Farley, K. A.
- Abstract
A central objective of the NASA Mars 2020 Perseverance rover mission is to collect and document a suite of scientifically compelling samples for possible return to Earth by a subsequent mission [1]. Strategic planning by the Mars 2020 Science Team has thus far identified a set of notional sample caches. These arose from integrating the testable hypotheses that could be addressed by Mars 2020 within the framework of the geology of Jezero crater and its surroundings [2], identifying specific locations of high scientific interest by analysis of remotely sensed data, and traversability considerations [1]. Here we describe the general characteristics of the identified notional caches and compare them to the types of samples previously prioritized by the wider Mars science community [3]. While strategic planning will guide and streamline the decision-making processes once the rover lands at Jezero crater, the actual samples collected will depend on the landing location, the traverse taken, and decisions made by the Mars 2020 Science Team.
- Published
- 2021
37. Curation and analysis of global sedimentary geochemical data to inform earth history
- Author
-
Mehra, A, Keller, C. B, Zhang, T, Tosca, N, McLennan, S, Sperling, E, Farrell, U, Brocks, J, Canfield, D, Cole, D, Crockford, P, Cui, H, Dahl, T, Dewing, K, Emmings, Joseph F., Gaines, R, Gibson, T, Gilleaudeau, G, Guilbaud, R, Hodgskiss, M, Jarrett, A, Kabanov, P, Kunzmann, M, Li, C, Loydell, D, Lu, X, Miller, A, Mills, N. T., Mouro, L, O'Connell, B, Peters, S, Poulton, S, Ritzer, S, Smith, E, Wilby, Philip, Woltz, C, Strauss, J, Mehra, A, Keller, C. B, Zhang, T, Tosca, N, McLennan, S, Sperling, E, Farrell, U, Brocks, J, Canfield, D, Cole, D, Crockford, P, Cui, H, Dahl, T, Dewing, K, Emmings, Joseph F., Gaines, R, Gibson, T, Gilleaudeau, G, Guilbaud, R, Hodgskiss, M, Jarrett, A, Kabanov, P, Kunzmann, M, Li, C, Loydell, D, Lu, X, Miller, A, Mills, N. T., Mouro, L, O'Connell, B, Peters, S, Poulton, S, Ritzer, S, Smith, E, Wilby, Philip, Woltz, C, and Strauss, J
- Abstract
Large datasets increasingly provide critical insights into crustal and surface processes on Earth. These data come in the form of published and contributed observations, which often include associated metadata. Even in the best-case scenario of a carefully curated dataset, it may be non-trivial to extract meaningful analyses from such compilations, and choices made with respect to filtering, resampling, and averaging can affect the resulting trends and any interpretation(s) thereof. As a result, a thorough understanding of how to digest, process, and analyze large data compilations is required. Here, we present a generalizable workflow developed using the Sedimentary Geochemistry and Paleoenvironments Project database. We demonstrate the effects of filtering and weighted resampling on Al2O3 and U contents, two representative geochemical components of interest in sedimentary geochemistry (one major and one trace element, respectively). Through our analyses, we highlight several methodological challenges in a “bigger data” approach to Earth science. We suggest that, with slight modifications to our workflow, researchers can confidently use large collections of observations to gain new insights into processes that have shaped Earth’s crustal and surface environments.
- Published
- 2021
38. The SuperCam Instrument Suite on the Mars 2020 Rover:Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., Wong, K. W., Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
39. Tracking of body mass indices over 2 years in Māori and European children
- Author
-
Rush, E, Reed, P W, McLennan, S, Coppinger, T, Simmons, D, and Graham, D
- Published
- 2012
- Full Text
- View/download PDF
40. Investigational medicinal products, related costs and hospital pharmacy services for investigator-initiated trials: A mixed-methods study
- Author
-
Taji Heravi, A., Henn, A., Deuster, S., McLennan, S., Gloy, V., Mitter, V. R., Briel, M., and Making Randomized Trials Affordable Group
- Subjects
Pharmacies ,Organizations ,Multidisciplinary ,Humans ,610 Medicine & health ,biochemical phenomena, metabolism, and nutrition ,Pharmacy Service, Hospital ,Research Personnel - Abstract
Background Conducting high quality investigator-initiated trials (IITs) is challenging and costly. The costs of investigational medicinal products (IMPs) in IITs and the role of hospital pharmacies in the planning of IITs are unclear. We conducted a mixed-methods study to compare planned and actual costs of IMPs in Swiss IITs, to examine potential reasons for differences, and to gather stakeholder views about hospital services for IITs. Methods We included all IITs with IMP services from the Basel hospital pharmacy invoiced between January 2014 and June 2020 (n = 24). We documented trial and IMP characteristics including planned and actual IMP costs. Our working definition for a substantial cost difference was that the actual IMP costs were more than 10% higher than the planned IMP costs in a trial. We conducted semi-structured interviews with investigators, clinical trials unit and hospital pharmacy staff, and qualitatively analyzed transcribed interviews. Results For 13 IITs we observed no differences between planned and actual costs of IMPs (median, 11’000 US$; interquartile range [IQR], 8’882–16’302 US$), but for 11 IITs we found cost increases from a median of 11’000 US$ (IQR, 8’922–36’166 US$) to a median over 28’000 US$ (IQR, 13’004–49’777 US$). All multicenter trials and 10 of 11 IITs with patients experienced substantial cost differences. From the interviews we identified four main themes: 1) Patient recruitment and organizational problems were identified as main reasons for cost differences, 2) higher actual IMP costs were bearable for most investigators, 3) IMP services for IITs were not a priority for the hospital pharmacy, and 4) closer collaboration between clinical trial unit and hospital pharmacy staff, and sufficient staff for IITs at the hospital pharmacy could improve IMP services. Conclusions Multicenter IITs enrolling patients are particularly at risk for higher IMP costs than planned. These trials are more difficult to plan and logistically challenging, which leads to delays and expiring IMP shelf-lives. IMP services of hospital pharmacies are important for IITs in Switzerland, but need to be further developed.
- Published
- 2022
- Full Text
- View/download PDF
41. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies
- Author
-
Nesbitt, H. W., Young, G. M., McLennan, S. M., and Keays, R. R.
- Published
- 1996
42. Heat Flow and the Chemical Composition of Continental Crust
- Author
-
McLennan, S. M. and Taylor, S. R.
- Published
- 1996
43. A novel primate model of delayed wound healing in diabetes: dysregulation of connective tissue growth factor
- Author
-
Thomson, S. E., McLennan, S. V., Hennessy, A., Boughton, P., Bonner, J., Zoellner, H., Yue, D. K., and Twigg, S. M.
- Published
- 2010
- Full Text
- View/download PDF
44. Mitochondrial DNA content in peripheral blood monocytes: relationship with age of diabetes onsetand diabetic complications
- Author
-
Wong, J., McLennan, S. V., Molyneaux, L., Min, D., Twigg, S. M., and Yue, D. K.
- Published
- 2009
- Full Text
- View/download PDF
45. Alterations in liver sinusoidal endothelium in a baboon model of type 1 diabetes
- Author
-
Jamieson, H. A., Cogger, V. C., Twigg, S. M., McLennan, S. V., Warren, A., Cheluvappa, R., Hilmer, S. N., Fraser, R., de Cabo, R., and Le Couteur, D. G.
- Published
- 2007
- Full Text
- View/download PDF
46. Australian Multibeam Guidelines [Version 2]
- Author
-
Picard, K., Leplastrier, A., Austine, K., Bergensen, N., Cullen, R., Dando, N., Donohue, D., Edwards, S., Ingleton, T., Jordan, A., Lucieer, V., Parnum, I., Siwabessy, J., Spinoccia, M., Talbot-Smith, R., Waterson, C., Barrett, N., Beaman, R., Bergersen, D., Boyd, M., Brace, B., Brooke, B., Cantrill, O., Case, M., Dunne, S., Felllows, M., Harris, U., Ierodicaonou, D., Johnstone, E., Kennedy, P., Lewis, A., Lytton, S., Mackay, K., McLennan, S., Mitchell, C., Nichol, S., Post, A., Price, A., Przeslawski, R., Pugsley, L., Quadros, N., Smith, J., Stewart, W., Sullivan, J., Tran, M., and Whiteway, T.
- Subjects
Data quality control [Data Management Practices] ,Environment [Parameter Discipline] ,Data archival/stewardship/curation ,Data analysis ,multi-beam echosounders [Instrument Type Vocabulary] ,Marine geology [Parameter Discipline] ,Marine acoustics ,Data processing [Data Management Practices] ,Data acquisition [Data Management Practices] ,Metadata management [Data Management Practices] - Abstract
The primary objective of this guideline is thus to establish common approaches of acquisition and processing that will result in greater applicability and interoperability of swath acoustic mapping data. These approaches will also provide improved consistency in the collection and description of the data, increasing utility. To achieve this objective, AusSeabed, a national seabed mapping coordination program run by a consortium of representatives from Commonwealth and State governments, universities and industry, was formed. AusSeabed’s role is to encourage and facilitate the initial collection of seabed mapping data and make it available for use by all stakeholders. Published Current 14.a N/A Bathymetry Backscatter
- Published
- 2020
47. New seismological constraints on the crustal structure of Mars and the Moon
- Author
-
Knapmeyer-Endrun, B., Panning, M., Bissig, Felix, Joshi, Rakshit, Khan, A., Kim, Doyeon, Lekic, V., Tauzin, B., Tharimena, S., Plasman, Matthieu, Compaire, Nicolas, Garcia, Raphaël F., Margerin, L., Schimmel, M., Stutzmann, Éléonore, Schmerr, N., Antonangeli, D., Bozdag, E., McLennan, S M, Peter, Daniel, Plesa, Ana-Catalina, Samuel, H., Wieczorek, M., Davis, Paul, Lognonne, P., Pinot, Baptiste, Scholz, J.-R., Stähler, S., Knapmeyer, Martin, Brinkmann, Nienke, van Driel, M, Giardini, D., Johnson, Catherine L., Smrekar, S., and Banerdt, B.
- Subjects
receiver functions ,crustal thickness ,Mars ,seismological constraints ,InSight - Abstract
Planetary crusts are the results of mantle differentiation, so their thickness provides important constraints on the thermochemical evolution of a planet, including its heat budget and mantle rheology. Information on crustal layering and seismic velocities can also provide important constraints on porosity and geochemistry of the crust. Here, we use data from the InSight mission, which landed in November 2018, to provide seismological constraints on the crustal layering and thickness of Mars for the first time. Results are mainly based on Ps-receiver functions from three events with magnitudes between 3.1 and 3.6 at distances between 27.5° and 47° (±10°) from the lander, originating in the Cerberus Fossae region, the only events, so far, with clear, impulsive P-wave onsets and known epicenter. Ps-receiver functions use converted phases in the P-wave coda to derive information on discontinuities beneath the seismometer. Due to the limited number of events and the small epicentral distance range covered, inversions of the data are still ambiguous. Two sets of models can explain the waveforms, one consisting of a two-layer crust of about 20 to 23 km thickness, the other having a three-layer crust of about 40 to 45 km thickness. By excluding crustal thicknesses in excess of 45 km at the landing site, we can constrain the global average crustal thickness of Mars to be less than 70 km. Both model types also agree with S-receiver functions for two events and seismic P-waves reflected in the crust and extracted from autocorrelations using the coda of different types of marsquakes as well as the background wavefield. Furthermore, the results are compatible with independently conducted moment tensor inversions for a limited number of events as well as modeling of the wave-propagation of high-frequency events. We find low seismic P-wave velocities below 3.4 km/s within the upper approximately 10 km, likely indicating a high porosity. For the Moon, we present Sp-receiver functions for three Apollo landing sites, including the first application of this method to Apollo 15 and 16 data. Data are compatible with a two-layer crust beneath a thin, low-velocity regolith layer and a crustal thickness of 35 to 45 km, with an increased thickness at the Apollo 15 and 16 sites compared to the Apollo12 location.
- Published
- 2020
48. New seismological constraints on the crustal structure of Mars and the Moon
- Author
-
Knapmeyer‐Endrun, Brigitte, Panning, Mark P., Bissig, F., Joshi, Rakshit, Khan, A., Kim, Doyeon, Lekic, Vedran, Tauzin, Benoit, Tharimena, S., Plasman, Matthieu, Compaire, Nicolas, Garcia, Raphael F., Margerin, Ludovic, Schimmel, Martin, Stutzmann, E., Schmerr, Nicholas C., Antonangeli, D., Bozdag, E., McLennan, S., Peter, Daniel B., Plesa, A. C., Samuel, H., Wieczorek, M., Davis, Paul, Lognonné, P., Pinot, Baptiste, Scholz, J. R., Staehler, Simon C., Knapmeyer, M., Brinkman, N., van Driel, M., Giardini, Domenico, Johnson, C., Smrekar, S. E., Banerdt, William B., Knapmeyer‐Endrun, Brigitte, Panning, Mark P., Bissig, F., Joshi, Rakshit, Khan, A., Kim, Doyeon, Lekic, Vedran, Tauzin, Benoit, Tharimena, S., Plasman, Matthieu, Compaire, Nicolas, Garcia, Raphael F., Margerin, Ludovic, Schimmel, Martin, Stutzmann, E., Schmerr, Nicholas C., Antonangeli, D., Bozdag, E., McLennan, S., Peter, Daniel B., Plesa, A. C., Samuel, H., Wieczorek, M., Davis, Paul, Lognonné, P., Pinot, Baptiste, Scholz, J. R., Staehler, Simon C., Knapmeyer, M., Brinkman, N., van Driel, M., Giardini, Domenico, Johnson, C., Smrekar, S. E., and Banerdt, William B.
- Abstract
Planetary crusts are the results of mantle differentiation, so their thickness provides important constraints on the thermochemical evolution of a planet, including its heat budget and mantle rheology. Information on crustal layering and seismic velocities can also provide important constraints on porosity and geochemistry of the crust. Here, we use data from the InSight mission, which landed in November 2018, to provide seismological constraints on the crustal layering and thickness of Mars for the first time. Results are mainly based on Ps-receiver functions from three events with magnitudes between 3.1 and 3.6 at distances between 27.5° and 47° (±10°) from the lander, originating in the Cerberus Fossae region, the only events, so far, with clear, impulsive P-wave onsets and known epicenter. Ps-receiver functions use converted phases in the P-wave coda to derive information on discontinuities beneath the seismometer. Due to the limited number of events and the small epicentral distance range covered, inversions of the data are still ambiguous. Two sets of models can explain the waveforms, one consisting of a two-layer crust of about 20 to 23 km thickness, the other having a three-layer crust of about 40 to 45 km thickness. By excluding crustal thicknesses in excess of 45 km at the landing site, we can constrain the global average crustal thickness of Mars to be less than 70 km. Both model types also agree with S-receiver functions for two events and seismic P-waves reflected in the crust and extracted from autocorrelations using the coda of different types of marsquakes as well as the background wavefield. Furthermore, the results are compatible with independently conducted moment tensor inversions for a limited number of events as well as modeling of the wave-propagation of high-frequency events. We find low seismic P-wave velocities below 3.4 km/s within the upper approximately 10 km, likely indicating a high porosity. For the Moon, we present Sp-receiver functi
- Published
- 2020
49. Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars
- Author
-
Grotzinger, J., Bell, J., III., Herkenhoff, K., Johnson, J., Knoll, A., McCartney, E., McLennan, S., Metz, J., Moore, J, Squyres, S., Sullivan, R., Ahronson, O., Arvidson, R., Joliff, B., Golombek, M., Lewis, K., Parker, T., and Soderblom, J.
- Subjects
Sediments (Geology) -- Research ,Craters -- Research ,Mars (Planet) -- Atmosphere ,Mars (Planet) -- Research ,Earth sciences - Abstract
New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum. Keywords: Mars, water, cross-lamination, shrinkage cracks, sedimentary structures.
- Published
- 2006
50. Diabetes and Nonalcoholic Fatty Liver Disease: A Pathogenic Duo
- Author
-
Williams, K. H., Shackel, N. A., Gorrell, M. D., McLennan, S. V., and Twigg, S. M.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.