11 results on '"Marina Casiraghi"'
Search Results
2. Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor
- Author
-
Maxime Louet, Marina Casiraghi, Marjorie Damian, Mauricio GS Costa, Pedro Renault, Antoniel AS Gomes, Paulo R Batista, Céline M'Kadmi, Sophie Mary, Sonia Cantel, Severine Denoyelle, Khoubaib Ben Haj Salah, David Perahia, Paulo M Bisch, Jean-Alain Fehrentz, Laurent J Catoire, Nicolas Floquet, and Jean-Louis Banères
- Subjects
GPCR ,hydration ,signaling ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.
- Published
- 2021
- Full Text
- View/download PDF
3. Time-resolved cryo-EM of G protein activation by a GPCR
- Author
-
Makaía M. Papasergi-Scott, Guillermo Pérez-Hernández, Hossein Batebi, Yang Gao, Gözde Eskici, Alpay B. Seven, Ouliana Panova, Daniel Hilger, Marina Casiraghi, Feng He, Luis Maul, Peter Gmeiner, Brian K. Kobilka, Peter W. Hildebrand, and Georgios Skiniotis
- Subjects
Article - Abstract
SummaryG protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor (β2AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor. Twenty transition structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of events driving G protein activation upon GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα Switch regions and the α5 helix that weaken the G protein-receptor interface. Molecular dynamics (MD) simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP upon closure of the alpha-helical domain (AHD) against the nucleotide-bound Ras-homology domain (RHD) correlates with irreversible α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signaling events.
- Published
- 2023
4. Investigation of G-protein specificity and biased agonism at the beta-2 adrenergic receptor (β2AR)
- Author
-
Marina Casiraghi
- Subjects
Biophysics - Published
- 2023
5. Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor
- Author
-
Laurent J. Catoire, Sonia Cantel, Marjorie Damian, Jean-Alain Fehrentz, Maxime Louet, Antoniel As Gomes, Jean-Louis Banères, Sophie Mary, Paulo R. Batista, David Perahia, Paulo Mascarello Bisch, Mauricio Gs Costa, Khoubaib Ben Haj Salah, Céline M'Kadmi, Marina Casiraghi, Pedro Renault, Severine Denoyelle, Nicolas Floquet, Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie physico-chimique des protéines membranaires (LBPC-PM (UMR_7099)), Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Department of Molecular and Cellular Physiology [Stanford], Stanford Medicine, Stanford University-Stanford University, Laboratoire de biologie et pharmacologie appliquée (LBPA), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Universidade Federal do Rio de Janeiro (UFRJ), This work was supported by CNRS, Université de Montpellier, Agence Nationale de la Recherche (ANR-17-CE11-0011, ANR-17-CE11-22, ANR-17-CE18-0022), EpiGenMed Labex (post-doctoral fellowship to KBH) and DYNAMO Labex (post-doctoral fellowship to MC). This programreceived funding from the European Union’s Horizon 2020 research and innovation programmeunder the Marie Sklodowska-Curie grant agreement n˚ 799376. Mass spectrometry analyses wereperformed on the instruments located in the IBMM platform of instrumentation, Laboratoire deMesures Physiques (LMP) of Université de Montpellier. We thank GENCI (Grand EquipementNational de Calcul Intensif), CINES (Centre Informatique National de l’Enseignement Supérieur), and IDRIS (Institut du développement et des ressources en informatique scientifique) for computational, ANR-17-CE11-0011,allosig,allostérie, dynamique conformationnelle et signalisation via les RCPG(2017), ANR-17-CE11-0022,GPCteR,Mécanismes moléculaires des régions C-terminales désordonnées et fonctionnelles des RCPG et impact sur les voies de la signalisation cellulaire dépendantes de l'arrestine(2017), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
QH301-705.5 ,Science ,Growth hormone secretagogue receptor ,Chemical biology ,chemical biology ,010402 general chemistry ,Ligands ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Receptors, G-Protein-Coupled ,03 medical and health sciences ,Molecular dynamics ,GPCR ,Biochemistry and Chemical Biology ,biochemistry ,Humans ,Biology (General) ,Receptor ,Receptors, Ghrelin ,030304 developmental biology ,G protein-coupled receptor ,chemistry.chemical_classification ,0303 health sciences ,General Immunology and Microbiology ,[SDV.BA]Life Sciences [q-bio]/Animal biology ,General Neuroscience ,digestive, oral, and skin physiology ,E. coli ,General Medicine ,Ghrelin ,0104 chemical sciences ,Amino acid ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,Transmembrane domain ,chemistry ,Biophysics ,Medicine ,signaling ,hydration ,Research Article ,Human ,Signal Transduction - Abstract
International audience; There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.
- Published
- 2021
6. Author response: Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor
- Author
-
Céline M'Kadmi, Maxime Louet, Paulo R. Batista, Paulo Mascarello Bisch, Sophie Mary, Nicolas Floquet, Marina Casiraghi, Jean-Alain Fehrentz, Khoubaib Ben Haj Salah, Laurent J. Catoire, Sonia Cantel, Jean-Louis Banères, Antoniel As Gomes, David Perahia, Mauricio Gs Costa, Marjorie Damian, Pedro Renault, and Severine Denoyelle
- Subjects
Chemistry ,Water Movements ,Dynamics (mechanics) ,Biophysics ,Ghrelin ,G protein-coupled receptor - Published
- 2021
7. Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure
- Author
-
Alexandre Pozza, François Giraud, Quentin Cece, Marina Casiraghi, Elodie Point, Marjorie Damian, Christel Le Bon, Karine Moncoq, Jean-Louis Banères, Ewen Lescop, and Laurent J. Catoire
- Subjects
Multidisciplinary ,Magnetic Resonance Spectroscopy ,Cell Membrane ,Lipid Bilayers ,Hydrostatic Pressure ,General Physics and Astronomy ,Membrane Proteins ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology - Abstract
Cell membranes represent a complex and variable medium in time and space of lipids and proteins. Their physico-chemical properties are determined by lipid components which can in turn influence the biological function of membranes. Here, we used hydrostatic pressure to study the close dynamic relationships between lipids and membrane proteins. Experiments on the β–barrel OmpX and the α–helical BLT2 G Protein-Coupled Receptor in nanodiscs of different lipid compositions reveal conformational landscapes intimately linked to pressure and lipids. Pressure can modify the conformational landscape of the membrane protein per se, but also increases the gelation of lipids, both being monitored simultaneously at high atomic resolution by NMR. Our study also clearly shows that a membrane protein can modulate, at least locally, the fluidity of the bilayer. The strategy proposed herein opens new perspectives to scrutinize the dynamic interplay between membrane proteins and their surrounding lipids.
- Published
- 2021
8. Structure of the agonist 12–HHT in its BLT2 receptor-bound state
- Author
-
Christel Le Bon, Jutta Rieger, Karine Moncoq, Marjorie Damian, Elodie Point, Jean-Louis Banères, Alexandre Pozza, Marina Casiraghi, Fabrice Giusti, Laurent J. Catoire, Physico-chimie moléculaire des membranes biologiques (PCMMB), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Institut Parisien de Chimie Moléculaire (IPCM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de biochimie et biophysique moléculaire et cellulaire (IBBMC), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie physico-chimique des protéines membranaires (LBPC-PM (UMR_7099)), Institut de biologie physico-chimique (IBPC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Unité de Chimie et Procédés (UCP), École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie physico-chimique (IBPC (FR_550)), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Agonist ,Leukotriene B4 ,medicine.drug_class ,Molecular Conformation ,Receptors, Leukotriene B4 ,lcsh:Medicine ,Ligand ,Cell surface receptor ,Ligands ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,Docking (dog) ,Stereochemistry ,medicine ,Humans ,Homology modeling ,lcsh:Science ,Receptor ,Nuclear Magnetic Resonance, Biomolecular ,Unsaturated fatty acid ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Leukotriene receptor ,lcsh:R ,030302 biochemistry & molecular biology ,Molecular Docking Simulation ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[CHIM.POLY]Chemical Sciences/Polymers ,Docking (molecular) ,Biophysics ,Fatty Acids, Unsaturated ,lcsh:Q ,Solution-state NMR ,[CHIM.CHEM]Chemical Sciences/Cheminformatics ,Protein Binding - Abstract
G Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds. We present here the NMR structure of the agonist 12–HHT in its BLT2-bound state and a model of interaction of the ligand with the receptor based on a conformational homology modeling associated with docking simulations. Put into perspective with the data obtained with leukotriene B4, our results illuminate the ligand selectivity of BLT2 and may help define new molecules to modulate the activity of this receptor.
- Published
- 2020
9. NMR analysis of GPCR conformational landscapes and dynamics
- Author
-
Laurent Catoire, Karine Moncoq, Elodie Point, Jean-Louis Banères, Alexandre Pozza, Marina Casiraghi, Physico-chimie moléculaire des membranes biologiques (PCMMB), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut de biochimie et biophysique moléculaire et cellulaire (IBBMC), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie physico-chimique des protéines membranaires (LBPC-PM (UMR_7099)), Institut de biologie physico-chimique (IBPC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Stanford University, Institut de biologie physico-chimique (IBPC (FR_550)), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
0301 basic medicine ,Models, Molecular ,Magnetic Resonance Spectroscopy ,Protein Conformation ,Allosteric regulation ,030209 endocrinology & metabolism ,Context (language use) ,Computational biology ,Crystallography, X-Ray ,Biochemistry ,Receptors, G-Protein-Coupled ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Molecular level ,Animals ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,G protein-coupled receptor ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Mechanism (biology) ,Cryoelectron Microscopy ,Energy landscape ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,030104 developmental biology ,Structural biology ,Function (biology) ,Protein Binding ,Signal Transduction - Abstract
Understanding the signal transduction mechanism mediated by the G Protein-Coupled Receptors (GPCRs) in eukaryote cells represents one of the main issues in modern biology. At the molecular level, various biophysical approaches have provided important insights on the functional plasticity of these complex allosteric machines. In this context, X-ray crystal structures published during the last decade represent a major breakthrough in GPCR structural biology, delivering important information on the activation process of these receptors through the description of the three-dimensional organization of their active and inactive states. In complement to crystals and cryo-electronic microscopy structures, information on the probability of existence of different GPCR conformations and the dynamic barriers separating those structural sub-states is required to better understand GPCR function. Among the panel of techniques available, nuclear magnetic resonance (NMR) spectroscopy represents a powerful tool to characterize both conformational landscapes and dynamics. Here, we will outline the potential of NMR to address such biological questions, and we will illustrate the functional insights that NMR has brought in the field of GPCRs in the recent years.
- Published
- 2018
10. Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion
- Author
-
Bruno Miroux, Ian Collinson, Robin A. Corey, Marina Casiraghi, Euan Pyle, William J. Allen, Daniel W. Watkins, Ignacio Arechaga, Argyris Politis, Biotechnology and Biological Sciences Research Council (UK), Wellcome Trust, Centre National de la Recherche Scientifique (France), Imperial College London, Laboratoire de biologie physico-chimique des protéines membranaires (LBPC-PM (UMR_7099)), Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Department of Biochemistry, School of Medical Sciences, ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), ANR-17-CE09-0007,GenCaps,Bioproduction de capsules fonctionnelles génétiquement encodées(2017), and Universidad de Cantabria
- Subjects
0301 basic medicine ,SecYEG ,Membrane lipids ,Molecular Dynamics Simulation ,Biology ,Molecular dynamics ,Motor protein ,03 medical and health sciences ,chemistry.chemical_compound ,Native mass spectrometry ,ATP hydrolysis ,Escherichia coli ,Cardiolipin ,Thermotoga maritima ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Bacterial Secretion Systems ,ComputingMilieux_MISCELLANEOUS ,Protein translocation ,Multidisciplinary ,Chemiosmosis ,Escherichia coli Proteins ,Proton-Motive Force ,Biological Sciences ,biology.organism_classification ,Transmembrane protein ,Transport protein ,030104 developmental biology ,chemistry ,Biochemistry ,Biophysics ,SEC Translocation Channels - Abstract
The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA–SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein–lipid interactions., This work was funded by the Biotechnology and Biological Sciences Research Council (Grants BB/M003604/1, BB/I008675/1, and BB/N015126/1) and the Wellcome Trust (Grants 104632 and 109854/Z/15/Z). The mass spectrometry work was supported by the Centre National de la Recherche Scientifique, INSERM (Grant “DYNAMO,” ANR-11-LABEX-0011-01 to M.C.) and the Région Ile de France for cofunding the Le Service d’Analyse des Médicaments et Métabolites Mass Spectrometry Facility at IPSIT. E.P. is the recipient of an Imperial College London Institute of Chemical Biology Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training studentship.
- Published
- 2018
11. Specific cardiolipin-SecY interactions are required for proton-motive-force stimulation of protein secretion
- Author
-
Argyris Politis, Bruno Miroux, Ian Collinson, Robin A. Corey, Ignacio Arechaga, Euan Pyle, Marina Casiraghi, and William J. Allen
- Subjects
0303 health sciences ,010304 chemical physics ,Chemiosmosis ,Membrane lipids ,01 natural sciences ,Transport protein ,Motor protein ,03 medical and health sciences ,chemistry.chemical_compound ,chemistry ,Membrane protein ,0103 physical sciences ,Cardiolipin ,Biophysics ,Cardiolipin binding ,SEC Translocation Channels ,030304 developmental biology - Abstract
The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of pre-proteins across the plasma membrane, powered by ATP hydrolysis and the trans-membrane proton-motive-force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly by cardiolipin, a specialised phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific cardiolipin binding sites on theThermotoga maritimaSecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites usingin vitromutagenesis, native mass spectrometry and biochemical analysis ofEscherichia coliSecYEG. The results show that the two sites account for the preponderance of functional cardiolipin binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for cardiolipin in the conferral of PMF-stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery and thereby stimulate protein transport, by an as yet unknown mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, towards investigation of both the nature and functional implications of protein-lipid interactions.Significance StatementMany proteins are located in lipid membranes surrounding cells and cellular organelles. The membrane can impart important structural and functional effects on the protein, making understanding of this interaction critical. Here, we apply computational simulation to the identification of conserved lipid binding sites on an important highly conserved bacterial membrane protein, the Sec translocase (SecA-SecYEG), which uses ATP and the proton motive force (PMF) to secrete proteins across the bacterial plasma membrane. We experimentally validate and reveal the conserved nature of these binding sites, and use functional analyses to investigate the biological significance of this interaction. We demonstrate that these interactions are specific, transient, and critical for both ATP- and PMF- driven protein secretion.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.