22 results on '"Marc Herzlich"'
Search Results
2. A remark on renormalized volume and Euler characteristic for ache 4-manifolds
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,0209 industrial biotechnology ,High Energy Physics::Lattice ,02 engineering and technology ,01 natural sciences ,General Relativity and Quantum Cosmology ,High Energy Physics::Theory ,symbols.namesake ,020901 industrial engineering & automation ,Complex hyperbolic space ,Euler characteristic ,FOS: Mathematics ,0101 mathematics ,Einstein ,renormalized volume ,Mathematics ,Mathematical physics ,53C55, 58J28 ,010102 general mathematics ,Mathematical analysis ,Mathematics::Geometric Topology ,Differential Geometry (math.DG) ,Computational Theory and Mathematics ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,Condensed Matter::Strongly Correlated Electrons ,Mathematics::Differential Geometry ,Geometry and Topology ,Analysis ,Volume (compression) - Abstract
This note computes the "renormalized volume" and a renormalizedGauss-Bonnet-Chern formula for the Euler characteristic ofasymptotically complex hyperbolic Einstein (in short: ACHE)4-manifolds., Comment: revised version ; reference to math.DG/0404455 added
- Published
- 2007
- Full Text
- View/download PDF
3. Analyse sur un demi-espace hyperbolique et polyhomogénéité locale
- Author
-
Olivier Biquard, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Université Pierre et Marie Curie - Paris 6 (UPMC), Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Paris (ENS Paris)
- Subjects
Mathematics - Differential Geometry ,Applied Mathematics ,010102 general mathematics ,Mathematics::Spectral Theory ,01 natural sciences ,General Relativity and Quantum Cosmology ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,FOS: Mathematics ,010307 mathematical physics ,0101 mathematics ,58J60, 58J32, 53B20 ,Humanities ,Analysis ,Mathematics - Abstract
International audience; Nous démontrons que toute métrique d'Einstein asymptotiquement hyperbolique réelle ou complexe possède un développement polyhomogène au voisinage de son bord à l'infini. La preuve s'étend également au cas dit local, c'est-à-dire quand le bord à l'infini est un ouvert de R^n . Ces résultats sont nouveaux en hyperbolique réel dans le cas local en dimension impaire et en hyperbolique complexe dans tous les cas.
- Published
- 2014
- Full Text
- View/download PDF
4. [Untitled]
- Author
-
Marc Herzlich and Andrei Moroianu
- Subjects
Pure mathematics ,Spinor ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,Dimension (graph theory) ,Conformal map ,Dirac operator ,01 natural sciences ,symbols.namesake ,Differential geometry ,Ricci-flat manifold ,0103 physical sciences ,symbols ,Mathematics::Differential Geometry ,Geometry and Topology ,0101 mathematics ,Analysis ,Eigenvalues and eigenvectors ,Mathematics ,Spin-½ - Abstract
In this paper we prove the Spinc analog of the Hijazi inequality on the first eigenvalue of the Dirac operator on compact Riemannian manifolds and study its equality case. During this study, we are naturally led to consider generalized Killing spinors on Spinc manifolds and we prove that such objects can only exist on low-dimensional manifolds (up to dimension three). This allows us to give a nice geometrical description of the manifolds satisfying the equality case of the above-mentioned inequality and to classify them in dimension three and four.
- Published
- 1999
- Full Text
- View/download PDF
5. Erratum to 'The Huber theorem for non-compact conformally flat manifolds'
- Author
-
Marc Herzlich and Gilles Carron
- Subjects
Pure mathematics ,Argument ,General Mathematics ,Calculus ,Tian ,Mathematics - Abstract
An argument in our paper The Huber theorem for non-compact conformally flat manifolds [Comment. Math. Helv. 77 (2002), 192?220] was not justified. Using recent work by G. Tian and J. Viaclovsky, we show that our result holds true
- Published
- 2007
- Full Text
- View/download PDF
6. Théorèmes de masse positive
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010102 general mathematics ,0103 physical sciences ,Yamabe problem ,0101 mathematics ,010306 general physics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Mathematical physics ,Scalar curvature - Abstract
International audience
- Published
- 1998
- Full Text
- View/download PDF
7. Universal positive mass theorems
- Author
-
Marc Herzlich, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and ANR-12-BS01-0004,GTO,Géométrie et Topologie des variétés ouvertes(2012)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,media_common.quotation_subject ,positive mass theorem ,Curvature ,Mathematical proof ,01 natural sciences ,Weitzenböck formulas ,53B21, 53A55, 58J60, 83C30 ,0103 physical sciences ,FOS: Mathematics ,Stein-Weiss operators ,0101 mathematics ,Mathematical Physics ,Mathematics ,media_common ,010102 general mathematics ,asymptotically flat manifolds ,Statistical and Nonlinear Physics ,Infinity ,Natural bundle ,Algebra ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
In this paper, we develop a general study of contributions at infinity of Bochner-Weitzenb\"ock-type formulas on asymptotically flat manifolds, inspired by Witten's proof of the positive mass theorem. As an application, we show that similar proofs can be obtained in a much more general setting as any choice of an irreducible natural bundle and a very large choice of first-order operators may lead to a positive mass theorem along the same lines if the necessary curvature conditions are satisfied., Comment: Communications in Mathematical Physics, Springer Verlag, 2016, to appear
- Published
- 2014
- Full Text
- View/download PDF
8. A Penrose-like Inequality for the Mass of Riemannian Asymptotically Flat Manifolds
- Author
-
Marc Herzlich
- Subjects
Pure mathematics ,Conjecture ,Mathematical analysis ,Statistical and Nonlinear Physics ,Space (mathematics) ,Sobolev space ,General Relativity and Quantum Cosmology ,Riemannian Penrose inequality ,Bounded function ,Metric (mathematics) ,Mathematics::Differential Geometry ,Schwarzschild radius ,Mathematical Physics ,Scalar curvature ,Mathematics - Abstract
We prove an optimal Penrose-like inequality for the mass of any asymptotically flat Riemannian 3-manifold having an inner minimal 2-sphere and nonnegative scalar curvature. Our result shows that the mass is bounded from below by an expression involving the area of the minimal sphere (as in the original Penrose conjecture) and some nomalized Sobolev ratio. As expected, the equality case is achieved if and only if the metric is that of a standard spacelike slice in the Schwarzschild space.
- Published
- 1997
- Full Text
- View/download PDF
9. Compactification conforme des variétés asymptotiquement plates
- Author
-
Marc Herzlich
- Subjects
Physics ,Weyl tensor ,Pure mathematics ,symbols.namesake ,Riemann manifold ,General Mathematics ,symbols ,Compactification (mathematics) - Abstract
Le theme de cet article est la recherche de compactifications conformes compactes et suffisamment regulieres de varietes riemanniennes asymptotiquement plates: une telle compactification existe si les tenseurs de Weyl et de Cotton-York decroissent a l'infini plus vite que r -4 et r -5 . Nous etudions egalement le cas critique ou ces tenseurs ont exactement la decroissance citee.
- Published
- 1997
- Full Text
- View/download PDF
10. Parabolic geodesics as parallel curves in parabolic geometries
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Geodesic ,General Mathematics ,Geometry ,Parabolic geometries ,Space (mathematics) ,01 natural sciences ,Parabolic cylindrical coordinates ,0103 physical sciences ,FOS: Mathematics ,Tangent vector ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,010102 general mathematics ,Mathematical analysis ,Parabola ,Parabolic cylinder function ,parabolic geodesics ,MSC (2000) : 53B25, 53A55, R3A30 ,Manifold ,Connection (mathematics) ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
International audience; We give a simple characterization of the parabolic geodesics introduced by Cap, Slovak and Zadnik for all parabolic geometries. This goes through the definition of a natural connection on the space of Weyl structures. We then show that parabolic geodesics can be characterized as the following data: a curve on the manifold and a Weyl structure along the curve, so that the curve is a geodesic for its companion Weyl structure and the Weyl structure is parallel along the curve and in the direction of the tangent vector of the curve.
- Published
- 2012
- Full Text
- View/download PDF
11. Unique continuation results for Ricci curvature and applications
- Author
-
Marc Herzlich, Michael T. Anderson, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Department of Mathematics, Stony Brook University [SUNY] (SBU), and State University of New York (SUNY)-State University of New York (SUNY)
- Subjects
Mathematics - Differential Geometry ,Curvature of Riemannian manifolds ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Boundary (topology) ,Conformal map ,01 natural sciences ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Ricci-flat manifold ,Bounded function ,0103 physical sciences ,FOS: Mathematics ,Isometry ,Mathematics::Differential Geometry ,Geometry and Topology ,0101 mathematics ,Mathematical Physics ,Ricci curvature ,ComputingMilieux_MISCELLANEOUS ,Scalar curvature ,Mathematics - Abstract
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete, conformally compact metrics. Related to this issue, an isometry extension property is proved: continuous groups of isometries at conformal infinity extend into the bulk of any complete conformally compact Einstein metric. Relations of this property with the invariance of the Gauss-Codazzi constraint equations under deformations are also discussed., 32 pages, supercedes math.DG/0501067; final published version
- Published
- 2008
- Full Text
- View/download PDF
12. The canonical Cartan bundle and connection in CR geometry
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Cartan bundle ,Parallel transport ,General Mathematics ,010102 general mathematics ,Cartan formalism ,Geometry ,Affine connection ,01 natural sciences ,Connection (mathematics) ,010104 statistics & probability ,Canonical connection ,Differential Geometry (math.DG) ,Cartan connection ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,CR geometry ,FOS: Mathematics ,Projective connection ,Connection form ,Mathematics::Differential Geometry ,0101 mathematics ,53B21, 53C15 ,Mathematics - Abstract
We give a differential geometric description of the Cartan (or tractor) bundle and its canonical connection in CR geometry, thus offering a direct, alternative, definition to the usual abstract approach., minor changes ; wrong author in reference [7] corrected
- Published
- 2006
- Full Text
- View/download PDF
13. A Burns-Epstein invariant for ACHE 4-manifolds
- Author
-
Olivier Biquard, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Polynomial ,General Mathematics ,32V15 ,Invariant manifold ,Curvature ,01 natural sciences ,Renormalization ,0103 physical sciences ,58J28 ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Sequence ,010102 general mathematics ,Mathematical analysis ,58J60 ,Mathematics::Geometric Topology ,53C55 ,Manifold ,Characteristic class ,58J37 ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Mathematics::Differential Geometry ,010307 mathematical physics - Abstract
We define a renormalized characteristic class for Einstein asymptotically complex hyperbolic (ACHE) manifolds of dimension 4: for any such manifold, the polynomial in the curvature associated to the characteristic class euler-3signature is shown to converge. This extends a work of Burns and Epstein in the Kahler-Einstein case. This extends a work of Burns and Epstein in the Kahler-Einstein case. We also define a new global invariant for any 3-dimensional pseudoconvex CR manifold, by a renormalization procedure of the eta invariant of a sequence of metrics which approximate the CR structure. Finally, we get a formula relating the renormalized characteristic class to the topological number euler-3signature and the invariant of the CR structure arising at infinity., Lemma 2.6 changed because of a mistake. Section 5 (using lemma 2.6) rewritten
- Published
- 2005
- Full Text
- View/download PDF
14. Diabatic Limit, Eta Invariants and Cauchy-Riemann Manifolds of Dimension 3
- Author
-
Marc Herzlich, Olivier Biquard, Michel Rumin, Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,General Mathematics ,Computation ,Diabatic ,Cauchy–Riemann equations ,53C20 ,01 natural sciences ,symbols.namesake ,Ricci-flat manifold ,0103 physical sciences ,58J28 ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Einstein ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,Mathematical analysis ,32V05 ,Mathematics::Geometric Topology ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,32V20 ,CR manifold ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
International audience; We relate a recently introduced non-local geometric invariant of compact strictly pseudoconvex Cauchy-Riemann (CR) manifolds of dimension 3 to various eta-invariants in CR geometry: on the one hand a renormalized eta-invariant appearing when considering a sequence of metrics converging to the CR structure by expanding the size of the Reeb field; on the other hand the eta-invariant of the middle degree operator of the contact complex. We then provide explicit computations for a class of examples: transverse circle invariant CR structures on Seifert manifolds. Applications are given to the problem of filling a CR manifold by a complex hyperbolic manifold, and more generally by a Kahler-Einstein or an Einstein metric.
- Published
- 2005
- Full Text
- View/download PDF
15. Conformally flat manifolds with nonnegative Ricci curvature
- Author
-
Marc Herzlich, Gilles Carron, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Algebra and Number Theory ,Curvature of Riemannian manifolds ,010102 general mathematics ,Mathematical analysis ,Conformally flat manifolds ,Conformally flat manifold ,Space (mathematics) ,01 natural sciences ,Ricci curvature ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Ricci-flat manifold ,Product (mathematics) ,0103 physical sciences ,FOS: Mathematics ,Ricci decomposition ,010307 mathematical physics ,Mathematics::Differential Geometry ,53C15, 53C24, 58J60 ,0101 mathematics ,Scalar curvature ,Mathematics - Abstract
We show that complete conformally flat manifolds of dimension n>2 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to flat space or to a spherical spaceform. This extends previous works by Q.-M. Cheng, M.H. Noronha, B.-L. Chen and X.-P. Zhu, and S. Zhu., revised version, added reference to previous paper by S. Zhu on the same subject
- Published
- 2004
- Full Text
- View/download PDF
16. Extremality for the Vafa-Witten bound on the sphere
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Momentum operator ,Dirac operator ,58J50 ,01 natural sciences ,eigenvalue estimate ,symbols.namesake ,Corollary ,0103 physical sciences ,FOS: Mathematics ,scalar curvature ,0101 mathematics ,Eigenvalues and eigenvectors ,Mathematics ,Mathematical physics ,010102 general mathematics ,Mathematical analysis ,58J60 ,53C27 ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Metric (mathematics) ,symbols ,010307 mathematical physics ,Geometry and Topology ,Analysis ,Scalar curvature - Abstract
We prove that the round metric on the sphere has the largest first eigenvalue of the Dirac operator among all metrics that are larger than it. As a corollary, this gives an alternative proof of an extremality result for scalar curvature due to M. Llarull., Comment: to appear in G.A.F.A
- Published
- 2004
- Full Text
- View/download PDF
17. The Huber theorem for non-compact conformally flat manifolds
- Author
-
Gilles Carron, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Pure mathematics ,Riemann curvature tensor ,Curvature of Riemannian manifolds ,General Mathematics ,Prescribed scalar curvature problem ,010102 general mathematics ,Mathematical analysis ,Curvature ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,Curvature form ,Mathematics::Differential Geometry ,010307 mathematical physics ,Sectional curvature ,0101 mathematics ,Ricci curvature ,ComputingMilieux_MISCELLANEOUS ,Scalar curvature ,Mathematics - Abstract
It was proved in 1957 by Huber that any complete surface with integrable Gauss curvature is conformally equivalent to a compact surface with a finite number of points removed. Counterexamples show that the curvature assumption must necessarily be strengthened in order to get an analogous conclusion in higher dimensions. We show in this paper that any non compact Riemannian manifold with finite $ L^{n/2} $ -norm of the Ricci curvature satisfies Huber-type conclusions if either it is a conformal domain with volume growth controlled from above in a compact Riemannian manifold or if it is conformally flat of dimension 4 and a natural Sobolev inequality together with a mild scalar curvature decay assumption hold. We also get partial results in other dimensions.
- Published
- 2002
- Full Text
- View/download PDF
18. Minimal spheres, the Dirac operator and the Penrose inequality
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Minimal surface ,Inequality ,010308 nuclear & particles physics ,media_common.quotation_subject ,010102 general mathematics ,Mathematical analysis ,Penrose diagram ,Dirac operator ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Mathematical physics ,Yamabe invariant ,media_common - Abstract
International audience
- Published
- 2002
- Full Text
- View/download PDF
19. The mass of asymptotically hyperbolic Riemannian manifolds
- Author
-
Marc Herzlich, Piotr T. Chruściel, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours-Centre National de la Recherche Scientifique (CNRS), and Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,83c40 ,Pure mathematics ,General Mathematics ,Hyperbolic geometry ,FOS: Physical sciences ,Conformal map ,Riemannian geometry ,01 natural sciences ,symbols.namesake ,Ricci-flat manifold ,Riemannian Penrose inequality ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,Mathematical Physics (math-ph) ,53c20 ,Differential geometry ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,Positive energy theorem - Abstract
We present a set of global invariants, called "mass integrals", which can be defined for a large class of asymptotically hyperbolic Riemannian manifolds. When the "boundary at infinity" has spherical topology one single invariant is obtained, called the mass; we show positivity thereof. We apply the definition to conformally compactifiable manifolds, and show that the mass is completion-independent. We also prove the result, closely related to the problem at hand, that conformal completions of conformally compactifiable manifolds are unique., Comment: 27 pages, Latex2e with several style files; various misprints corrected, positivity theorem for black holes considerably strengthened, to appear in Pacific Jour. of Mathematics
- Published
- 2001
- Full Text
- View/download PDF
20. Refined Kato inequalities in Riemannian geometry
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), and Herzlich, Marc
- Subjects
Pure mathematics ,010102 general mathematics ,General Medicine ,Riemannian geometry ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,Calculus ,symbols ,010307 mathematical physics ,0101 mathematics ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
International audience
- Published
- 2000
21. Conformally flat manifolds with nonnegative Ricci curvature.
- Author
-
Gilles Carron and Marc Herzlich
- Published
- 2006
- Full Text
- View/download PDF
22. Entropie minimale des espaces localement symétriques
- Author
-
MERLIN, Louis, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Christophe Bavard, Bavard, Christophe, Bessières, Laurent, Quint, Jean-François, Paulin, Frédéric, Besson, Gérard, Herzlich, Marc, Frédéric Paulin [Président], Gérard Besson [Rapporteur], Marc Herzlich [Rapporteur], Laurent Bessières, and Jean-François Quint
- Subjects
Conjecture de Gromov et Katok ,Entropie volumique ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Quotients compacts de (H2)n ,Geometry Ambient ,Conjecture by Gromov and Katok ,Géométrie ambiante ,Volume entropy - Abstract
In this thesis we give an overview of the volume entropy rigidity problem. A conjecture by Gromov and Katok states that, on a locally symmetric space (M; g0), the symmetric metric g0 has minimal volume entropy among metrices with the same total volume. The text is self-contained, assuming a basic knowledge in differential geometry. Therefore we discuss in the first chapter some background material used in the sequel. The case of compact quotients of H2 _ H2 was unknown before this work ; we give a fully detailled proof. The key-point is to build a calibrating form as in [BCG95]. As a by-product, we present some applications provided by the proof of the volume entropy rigidity conjecture. We conclude by an informal section explaining the motivations of the problem to a non-mathematical reader.; Nous donnons dans cette thèse une preuve du problème de l’entropie volumique minimale dans les quotients compacts de H2_H2. Une conjecture de Gromov et Katok prétend en effet que, sur un espace localement symétrique (M; g0), la métrique de plus petite entropie volumique parmi les métriques de volume fixé est la métrique g0. Le texte se veut relativement abordable. C’est pourquoi nous avons intégré un premier chapitre qui contient une bonne partie du matériel qui sera utilisé par la suite. Puis nous passons en revue les preuves des différents cas du problème déjà traités. Le cas des quotients compacts de H2_H2 n’était pas connu avant ce travail ; nous en détaillons minutieusement la preuve. Notre démarche consiste à faire fonctionner la méthode de calibration imaginée dans [BCG95]. Nous présentons aussi les principales applications qui découlent de la preuve de la conjecture de Gromov et Katok. Nous concluons par une discussion heuristique qui explique les enjeux du problème que nous étudions.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.