138 results on '"Livartowski A"'
Search Results
2. Greedy clustering of count data through a mixture of multinomial PCA
- Author
-
Jouvin, Nicolas, Latouche, Pierre, Bouveyron, Charles, Bataillon, Guillaume, and Livartowski, Alain
- Subjects
Statistics - Methodology - Abstract
Count data is becoming more and more ubiquitous in a wide range of applications, with datasets growing both in size and in dimension. In this context, an increasing amount of work is dedicated to the construction of statistical models directly accounting for the discrete nature of the data. Moreover, it has been shown that integrating dimension reduction to clustering can drastically improve performance and stability. In this paper, we rely on the mixture of multinomial PCA, a mixture model for the clustering of count data, also known as the probabilistic clustering-projection model in the literature. Related to the latent Dirichlet allocation model, it offers the flexibility of topic modeling while being able to assign each observation to a unique cluster. We introduce a greedy clustering algorithm, where inference and clustering are jointly done by mixing a classification variational expectation maximization algorithm, with a branch & bound like strategy on a variational lower bound. An integrated classification likelihood criterion is derived for model selection, and a thorough study with numerical experiments is proposed to assess both the performance and robustness of the method. Finally, we illustrate the qualitative interest of the latter in a real-world application, for the clustering of anatomopathological medical reports, in partnership with expert practitioners from the Institut Curie hospital., Comment: 34 pages, 11 figures, published in : Computational Statistics
- Published
- 2019
- Full Text
- View/download PDF
3. Treatment patterns and outcomes among patients with small-cell lung cancer (SCLC) in Europe: a retrospective cohort study
- Author
-
Nuria Lara, Montserrat Roset, Fiona Blackhall, Nicolas Girard, Laura McDonald, Alain Livartowski, and Ariadna Juarez García
- Subjects
Medicine - Abstract
Objective Describe characteristics, treatment patterns and clinical outcomes of patients with small-cell lung cancer (SCLC).Design Retrospective chart review study defining several cohorts: (1) limited-stage disease (LD) SCLC initiating 1L therapy (1 L LD-SCLC), (2) extensive-stage disease (ED) SCLC initiating 1L therapy (1L ED-SCLC) and (3) patients initiating 2L therapy.Setting 39 physicians (medical oncologists, thoracic oncologists and/or pulmonologists) from France, Italy and the UK.Participants Patients >18 years of age with a confirmed diagnosis of LD-SCLC or ED-SCLC and a full oncology medical history. Patients included initiated a 1L (2013–2015) or 2L (2013–2016) treatment (chemotherapy and/or radiotherapy—RT).Primary and secondary outcome measures Overall survival (OS) and progression-free survival (PFS).Results 231 patients in 1L LD-SCLC, 308 in 1L ED-SCLC and 225 with relapse/refractory SCLC initiating 2L treatment were included. The proportion of men was higher across all groups (56.8% to 68.5%) and mean age at time of diagnosis was 66.0 and 65.4 years in 1L LD-SCLC and 2L ED-SCLC cohorts. The majority of patients in LD-SCLC 1L group received chemotherapy with RT (76.2%). Patients initiating 2L therapy predominantly received chemotherapy alone (79.6%).Median OS in 1 L patients was 17.3 months in LD-SCLC and 8.8 months in ED-SCLC. Median PFS was 11.6 months in LD-SCLC and 6.1 months in ED-SCLC patients. Median OS in patients initiating 2L treatment was 6.6 months. OS from start of 2L treatment was lower in patients initially diagnosed with ED (5.1 months) than in patients initially diagnosed with LD (9.3 months) (p
- Published
- 2023
- Full Text
- View/download PDF
4. Identification of Tissue of Origin and Guided Therapeutic Applications in Cancers of Unknown Primary Using Deep Learning and RNA Sequencing (TransCUPtomics)
- Author
-
Vibert, Julien, Pierron, Gaëlle, Benoist, Camille, Gruel, Nadège, Guillemot, Delphine, Vincent-Salomon, Anne, Le Tourneau, Christophe, Livartowski, Alain, Mariani, Odette, Baulande, Sylvain, Bidard, François-Clément, Delattre, Olivier, Waterfall, Joshua J., and Watson, Sarah
- Published
- 2021
- Full Text
- View/download PDF
5. Promising Candidate Prognostic Biomarkers in [18F]FDG PET Images: Evaluation in Independent Cohorts of Non-Small Cell Lung Cancer Patients
- Author
-
Hovhannisyan-Baghdasarian, Narinée, Luporsi, Marie, Captier, Nicolas, Nioche, Christophe, Cuplov, Vesna, Woff, Erwin, Hegarat, Nadia, Livartowski, Alain, Girard, Nicolas, Buvat, Irene, Orlhac, Fanny, Hovhannisyan-Baghdasarian, Narinée, Luporsi, Marie, Captier, Nicolas, Nioche, Christophe, Cuplov, Vesna, Woff, Erwin, Hegarat, Nadia, Livartowski, Alain, Girard, Nicolas, Buvat, Irene, and Orlhac, Fanny
- Abstract
The normalized distances from the hot spot of radiotracer uptake (SUVmax) to the tumor centroid (NHOC) and to the tumor perimeter (NHOP) have recently been suggested as novel PET features reflecting tumor aggressiveness. These biomarkers characterizing the shift of SUVmax toward the lesion edge during tumor progression have been shown to be prognostic factors in breast and non-small cell lung cancer (NSCLC) patients. We assessed the impact of imaging parameters on NHOC and NHOP, their complementarity to conventional PET features, and their prognostic value for advanced-NSCLC patients. Methods: This retrospective study investigated baseline [18F]FDG PET scans: cohort 1 included 99 NSCLC patients with no treatmentrelated inclusion criteria (robustness study); cohort 2 included 244 NSCLC patients (survival analysis) treated with targeted therapy (93), immunotherapy (63), or immunochemotherapy (88). Although 98% of patients had metastases, radiomic features including SUVs were extracted from the primary tumor only. NHOCs and NHOPs were computed using 2 approaches: the normalized distance from the localization of SUVmax or SUVpeak to the tumor centroid or perimeter. Bland-Altman analyses were performed to investigate the impact of both spatial resolution (comparing PET images with and without gaussian postfiltering) and image sampling (comparing 2 voxel sizes) on feature values. The correlation of NHOCs and NHOPs with other features was studied using Spearman correlation coefficients (r). The ability of NHOCs and NHOPs to predict overall survival (OS) was estimated using the Kaplan-Meier method. Results: In cohort 1, NHOC and NHOP features were more robust to image filtering and to resampling than were SUVs. The correlations were weak between NHOCs and NHOPs (r ≤ 0.45) and between NHOCs or NHOPs and any other radiomic features (r ≤ 0.60). In cohort 2, the patients with short OS demonstrated higher NHOCs and lower NHOPs than those with long OS. NHOCs significantly disting, SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2024
6. Real-World Survival Impact of New Treatment Strategies for Lung Cancer: A 2000–2020 French Cohort.
- Author
-
Basse, Clemence, Carton, Matthieu, Milder, Maud, Geiss, Romain, Du Rusquec, Pauline, Daniel, Catherine, Massiani, Marie-Ange, Livartowski, Alain, and Girard, Nicolas
- Subjects
TREATMENT of lung tumors ,IMMUNOTHERAPY ,DESCRIPTIVE statistics ,RETROSPECTIVE studies ,LONGITUDINAL method ,KAPLAN-Meier estimator ,LUNG tumors ,MEDICAL records ,ACQUISITION of data ,OVERALL survival - Abstract
Simple Summary: The prognosis of metastatic lung cancer has been largely modified with targeted therapies and immunotherapies. Whether this survival benefit for subgroups of patients is beneficial to all patients treated for lung cancer has never been explored. The Institut Curie is an anti-cancer center in Paris, France, treating patients with lung cancer. Since the 2000s, Institut Curie has implemented dematerialized medical records, allowing for a large overview of the survival of patients with lung cancer according to treatment evolution. We found that the survival of patients with metastatic lung cancer has improved over the past 20 years, mostly in NSCLC (non-small cell lung cancer) but not in SCLC (small cell lung cancer). SCLC remains a disease with poor prognosis for which novel therapies are needed. Over the past 20 years, several innovative therapies have been implemented in the treatment of lung cancer that have had reported survival benefits in clinical trials. Whether these improvements translate into the clinic setting has not been studied yet. We retrospectively analyzed all patients consecutively treated at Institute Curie for metastatic lung cancer. Diagnosis date was used to define three periods, based on the approvals of novel treatment strategies in the first-line setting, including targeted therapies in 2010 and immunotherapy in 2018. Endpoints included Overall survival (OS), survival rate of 2 years and 5 years, and a conditional survival rate of 2 years (if still alive at 6 months from treatment initiation). A total of 673 patients were identified for Period 1—2000 to 2009, 752 for Period 2—2010 to 2017, and 768 for Period 3—2018 to 2020. Median OS in the whole cohort was 11.1, 15.5, and 16.2 months, respectively. Median OS for patients with NSCLC or SCLC was 11.2, 17.2, and 18.2 months, or 10.9, 11.7, and 11.2 months, respectively. The two-year conditional survival was more favorable for NSCLC than SCLC patients. Outcomes were statistically higher for women as compared to men in all periods and all subgroups. Survival of patients with metastatic lung cancer has improved over the past 20 years, mostly in NSCLC, along with the implementation of novel treatment strategies. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Consore: A Powerful Federated Data Mining Tool Driving a French Research Network to Accelerate Cancer Research
- Author
-
Guérin, Julien, primary, Nahid, Amine, additional, Tassy, Louis, additional, Deloger, Marc, additional, Bocquet, François, additional, Thézenas, Simon, additional, Desandes, Emmanuel, additional, Le Deley, Marie-Cécile, additional, Durando, Xavier, additional, Jaffré, Anne, additional, Es-Saad, Ikram, additional, Crochet, Hugo, additional, Le Morvan, Marie, additional, Lion, François, additional, Raimbourg, Judith, additional, Khay, Oussama, additional, Craynest, Franck, additional, Giro, Alexia, additional, Laizet, Yec’han, additional, Bertaut, Aurélie, additional, Joly, Frederik, additional, Livartowski, Alain, additional, and Heudel, Pierre, additional
- Published
- 2024
- Full Text
- View/download PDF
8. Greedy clustering of count data through a mixture of multinomial PCA
- Author
-
Jouvin, Nicolas, Latouche, Pierre, Bouveyron, Charles, Bataillon, Guillaume, and Livartowski, Alain
- Published
- 2021
- Full Text
- View/download PDF
9. Promising Candidate Prognostic Biomarkers in [18F]FDG PET Images: Evaluation in Independent Cohorts of Non--Small Cell Lung Cancer Patients.
- Author
-
Hovhannisyan-Baghdasarian, Narinée, Luporsi, Marie, Captier, Nicolas, Nioche, Christophe, Cuplov, Vesna, Woff, Erwin, Hegarat, Nadia, Livartowski, Alain, Girard, Nicolas, Buvat, Iréne, and Orlhac, Fanny
- Published
- 2024
- Full Text
- View/download PDF
10. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
- Author
-
Jean Ogier du Terrail, Armand Leopold, Clément Joly, Constance Béguier, Mathieu Andreux, Charles Maussion, Benoît Schmauch, Eric W. Tramel, Etienne Bendjebbar, Mikhail Zaslavskiy, Gilles Wainrib, Maud Milder, Julie Gervasoni, Julien Guerin, Thierry Durand, Alain Livartowski, Kelvin Moutet, Clément Gautier, Inal Djafar, Anne-Laure Moisson, Camille Marini, Mathieu Galtier, Félix Balazard, Rémy Dubois, Jeverson Moreira, Antoine Simon, Damien Drubay, Magali Lacroix-Triki, Camille Franchet, Guillaume Bataillon, and Pierre-Etienne Heudel
- Subjects
General Medicine ,General Biochemistry, Genetics and Molecular Biology - Published
- 2023
- Full Text
- View/download PDF
11. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study
- Author
-
Cabel, L., Riva, F., Servois, V., Livartowski, A., Daniel, C., Rampanou, A., Lantz, O., Romano, E., Milder, M., Buecher, B., Piperno-Neumann, S., Bernard, V., Baulande, S., Bieche, I., Pierga, J.Y., Proudhon, C., and Bidard, F.-C.
- Published
- 2017
- Full Text
- View/download PDF
12. Treatment patterns and outcomes among patients with small-cell lung cancer (SCLC) in Europe: a retrospective cohort study
- Author
-
Blackhall, Fiona, primary, Girard, Nicolas, additional, Livartowski, Alain, additional, McDonald, Laura, additional, Roset, Montserrat, additional, Lara, Nuria, additional, and Juarez García, Ariadna, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Intelligence artificielle et cancer
- Author
-
Livartowski, A., primary
- Published
- 2022
- Full Text
- View/download PDF
14. High in vitro and in vivo synergistic activity between mTORC1 and PLK1 inhibition in adenocarcinoma NSCLC
- Author
-
Leila Zemoura, Damien Treguer, Nicolas Girard, Marie Brevet, A. Chapelier, Didier Decaudin, Olivier Deas, Sophie Chateau-Joubert, Stefano Cairo, Rania El Botty, Sergio Roman-Roman, André Nicolas, Didier Meseure, Ivan Bièche, Sophie Vacher, Ludmilla de Plater, Elodie Montaudon, Elisabetta Marangoni, Catherine Daniel, Fariba Nemati, Adnan Naguez, and Alain Livartowski
- Subjects
0301 basic medicine ,Everolimus ,business.industry ,Volasertib ,mTORC1 ,Carbonic Anhydrase 9 ,medicine.disease ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,Oncology ,chemistry ,In vivo ,030220 oncology & carcinogenesis ,Cancer research ,Medicine ,Adenocarcinoma ,business ,Protein kinase B ,PI3K/AKT/mTOR pathway ,medicine.drug - Abstract
Significant rational is available for specific targeting of PI3K/AKT/mTOR pathway in the treatment of non-small cell lung cancer (NSCLC). However, almost all clinical trials that have evaluated Pi3K pathway-based monotherapies/combinations did not observe an improvement of patient's outcome. The aim of our study was therefore to define combination of treatment based on the determination of predictive markers of resistance to the mTORC1 inhibitor RAD001/Everolimus. An in vivo study showed high efficacy of RAD001 in NSCLC Patient-Derived Xenografts (PDXs). When looking at biomarkers of resistance by RT-PCR study, three genes were found to be highly expressed in resistant tumors, i.e., PLK1, CXCR4, and AXL. We have then focused our study on the combination of RAD001 + Volasertib, a PLK1 inhibitor, and observed a high antitumor activity of the combination in comparison to each monotherapy; similarly, a clear synergistic effect between the two compounds was found in an in vitro study. Pharmacodynamics study demonstrated that this synergy was due to (1) tumor vascularization decrease, increase of the HIF1 protein expression and decrease of the intracellular pH, and (2) decrease of the Carbonic Anhydrase 9 (CAIX) protein that could not correct intracellular acidosis. In conclusion, all these preclinical data strongly suggest that the inhibition of mTORC1 and PLK1 proteins may be a promising therapeutic approach for NSCLC patients.
- Published
- 2021
- Full Text
- View/download PDF
15. Intelligence artificielle et cancer
- Author
-
A. Livartowski
- Subjects
General Medicine - Published
- 2022
- Full Text
- View/download PDF
16. Cost comparison of axillary sentinel lymph node detection and axillary lymphadenectomy in early breast cancer. A national study based on a prospective multi-institutional series of 985 patients ‘on behalf of the Group of Surgeons from the French Unicancer Federation’
- Author
-
Classe, J.M., Baffert, S., Sigal-Zafrani, B., Fall, M., Rousseau, C., Alran, S., Rouanet, P., Belichard, C., Mignotte, H., Ferron, G., Marchal, F., Giard, S., Tunon de Lara, C., Le Bouedec, G., Cuisenier, J., Werner, R., Raoust, I., Rodier, J.-F., Laki, F., Colombo, P.-E., Lasry, S., Faure, C., Charitansky, H., Olivier, J.-B., Chauvet, M.-P., Bussières, E., Gimbergues, P., Flipo, B., Houvenaeghel, G., Dravet, F., and Livartowski, A.
- Published
- 2012
- Full Text
- View/download PDF
17. 54P Overall survival in patients with metastatic lung cancer from 2000 to 2020: Implementation of innovative strategies in a real-world setting
- Author
-
Basse, C., primary, Carton, M., additional, Milder, M., additional, Beaucaire Danel, S., additional, Daniel, C., additional, Du Rusquec, P., additional, Livartowski, A., additional, and Girard, N., additional
- Published
- 2022
- Full Text
- View/download PDF
18. Greedy clustering of count data through a mixture of multinomial PCA
- Author
-
Nicolas Jouvin, Charles Bouveyron, Pierre Latouche, Alain Livartowski, Guillaume Bataillon, Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM), Université Paris 1 Panthéon-Sorbonne (UP1), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Modèles et algorithmes pour l’intelligence artificielle (MAASAI), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria), Institut Curie [Paris], Département d'Information Médicale [Paris], DIM MathInnov, ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (LJAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
FOS: Computer and information sciences ,Statistics and Probability ,Computer science ,02 engineering and technology ,computer.software_genre ,01 natural sciences ,Latent Dirichlet allocation ,Clustering ,Methodology (stat.ME) ,010104 statistics & probability ,symbols.namesake ,Expectation–maximization algorithm ,0202 electrical engineering, electronic engineering, information engineering ,0101 mathematics ,Cluster analysis ,Statistics - Methodology ,Count data ,Model selection ,Probabilistic logic ,Statistical model ,Mixture model ,Topic modeling ,Computational Mathematics ,ComputingMethodologies_PATTERNRECOGNITION ,Dimension reduction ,symbols ,020201 artificial intelligence & image processing ,Data mining ,Statistics, Probability and Uncertainty ,Variational inference ,Mixture models ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,computer - Abstract
Count data is becoming more and more ubiquitous in a wide range of applications, with datasets growing both in size and in dimension. In this context, an increasing amount of work is dedicated to the construction of statistical models directly accounting for the discrete nature of the data. Moreover, it has been shown that integrating dimension reduction to clustering can drastically improve performance and stability. In this paper, we rely on the mixture of multinomial PCA, a mixture model for the clustering of count data, also known as the probabilistic clustering-projection model in the literature. Related to the latent Dirichlet allocation model, it offers the flexibility of topic modeling while being able to assign each observation to a unique cluster. We introduce a greedy clustering algorithm, where inference and clustering are jointly done by mixing a classification variational expectation maximization algorithm, with a branch & bound like strategy on a variational lower bound. An integrated classification likelihood criterion is derived for model selection, and a thorough study with numerical experiments is proposed to assess both the performance and robustness of the method. Finally, we illustrate the qualitative interest of the latter in a real-world application, for the clustering of anatomopathological medical reports, in partnership with expert practitioners from the Institut Curie hospital., 34 pages, 11 figures, published in : Computational Statistics
- Published
- 2020
- Full Text
- View/download PDF
19. Treatment patterns and outcomes among patients with small-cell lung cancer (SCLC) in Europe: a retrospective cohort study
- Author
-
Fiona Blackhall, Nicolas Girard, Alain Livartowski, Laura McDonald, Montserrat Roset, Nuria Lara, and Ariadna Juarez García
- Subjects
General Medicine - Abstract
ObjectiveDescribe characteristics, treatment patterns and clinical outcomes of patients with small-cell lung cancer (SCLC).DesignRetrospective chart review study defining several cohorts: (1) limited-stage disease (LD) SCLC initiating 1L therapy (1 L LD-SCLC), (2) extensive-stage disease (ED) SCLC initiating 1L therapy (1L ED-SCLC) and (3) patients initiating 2L therapy.Setting39 physicians (medical oncologists, thoracic oncologists and/or pulmonologists) from France, Italy and the UK.ParticipantsPatients >18 years of age with a confirmed diagnosis of LD-SCLC or ED-SCLC and a full oncology medical history. Patients included initiated a 1L (2013–2015) or 2L (2013–2016) treatment (chemotherapy and/or radiotherapy—RT).Primary and secondary outcome measuresOverall survival (OS) and progression-free survival (PFS).Results231 patients in 1L LD-SCLC, 308 in 1L ED-SCLC and 225 with relapse/refractory SCLC initiating 2L treatment were included. The proportion of men was higher across all groups (56.8% to 68.5%) and mean age at time of diagnosis was 66.0 and 65.4 years in 1L LD-SCLC and 2L ED-SCLC cohorts. The majority of patients in LD-SCLC 1L group received chemotherapy with RT (76.2%). Patients initiating 2L therapy predominantly received chemotherapy alone (79.6%).Median OS in 1 L patients was 17.3 months in LD-SCLC and 8.8 months in ED-SCLC. Median PFS was 11.6 months in LD-SCLC and 6.1 months in ED-SCLC patients. Median OS in patients initiating 2L treatment was 6.6 months. OS from start of 2L treatment was lower in patients initially diagnosed with ED (5.1 months) than in patients initially diagnosed with LD (9.3 months) (pConclusionsDespite the availability of a high number of treatments and combinations, the prognosis of SCLC is still unsatisfactory, especially for those patients diagnosed with ED-SCLC, indicating high unmet need in this patient population.
- Published
- 2023
- Full Text
- View/download PDF
20. Collaborative Federated Learning behind Hospitals’ Firewalls for Predicting Histological Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
- Author
-
Moisson, Marini, Beguier, Bendjebbar, Djafar, Milder, Moutet, Joly, Gautier, Bataillon, Livartowski, Gervasoni, Tramel, Wainrib, Galtier, Andreux, Zaslavskiy, Guerin, Maussion, Durand, Ogier du Terrail, Schmauch, Heudel, and Leopold
- Subjects
Oncology ,medicine.medical_specialty ,Chemotherapy ,Poor prognosis ,business.industry ,medicine.medical_treatment ,Histological response ,medicine.disease ,Clinical method ,Federated learning ,Breast cancer ,Internal medicine ,Medicine ,Biomarker discovery ,business ,Triple-negative breast cancer - Abstract
1AbstractTriple-Negative Breast Cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options compared to other breast cancers. The current standard of care in non-metastatic settings is neoadjuvant chemotherapy (NACT), with the goal of breast-conserving surgery and for an in vivo assessment of chemosensitivity. However, the efficacy of this treatment varies significantly across patients, and this histological response heterogeneity is still poorly understood partly due to the paucity of available curated TNBC data. Motivated by this problem, we investigate the use of machine learning (ML) to predict at diagnosis the histological response to NACT for early TNBC patients. To overcome the known biases of related small scale studies while respecting data privacy, we conduct, for the first time, a TNBC study in a multi-centric fashion behind hospitals’ firewalls using collaborative Federated Learning (FL). Thereby allowing access to enough TNBC data to sustain a complete response heterogeneity investigation. We show evidence that local ML models relying on Whole-Slide Images (WSIs) at diagnosis are able to predict the histological response to NACT as accurately as current clinical approaches, which rely on time-consuming expert annotations. We demonstrate that collaborative training further improves performance over single-center training outperforming clinical methods. Our ML model is interpretable by design, and we show that it is sensitive to specific histological patterns. While we identify known predictive biomarkers among them, this proof of concept for real-world collaborative FL paves the way for future biomarker discovery using unprecedently large datasets.
- Published
- 2021
- Full Text
- View/download PDF
21. Survival of breast cancer patients with meningeal carcinomatosis
- Author
-
Gauthier, H., Guilhaume, M.N., Bidard, F.C., Pierga, J.Y., Girre, V., Cottu, P.H., Laurence, V., Livartowski, A., Mignot, L., and Diéras, V.
- Published
- 2010
- Full Text
- View/download PDF
22. High
- Author
-
Elodie, Montaudon, Rania, El Botty, Sophie, Vacher, Olivier, Déas, Adnan, Naguez, Sophie, Chateau-Joubert, Damien, Treguer, Ludmilla, de Plater, Leïla, Zemoura, Fariba, Némati, André, Nicolas, Alain, Chapelier, Alain, Livartowski, Stefano, Cairo, Catherine, Daniel, Marie, Brevet, Elisabetta, Marangoni, Didier, Meseure, Sergio, Roman-Roman, Ivan, Bieche, Nicolas, Girard, and Didier, Decaudin
- Subjects
Pi3K signalling pathway ,RAD001 (everolimus) ,NSCLC ,PLK1 ,mTORC1 ,Research Paper - Abstract
Significant rational is available for specific targeting of PI3K/AKT/mTOR pathway in the treatment of non-small cell lung cancer (NSCLC). However, almost all clinical trials that have evaluated Pi3K pathway-based monotherapies/combinations did not observe an improvement of patient’s outcome. The aim of our study was therefore to define combination of treatment based on the determination of predictive markers of resistance to the mTORC1 inhibitor RAD001/Everolimus. An in vivo study showed high efficacy of RAD001 in NSCLC Patient-Derived Xenografts (PDXs). When looking at biomarkers of resistance by RT-PCR study, three genes were found to be highly expressed in resistant tumors, i.e., PLK1, CXCR4, and AXL. We have then focused our study on the combination of RAD001 + Volasertib, a PLK1 inhibitor, and observed a high antitumor activity of the combination in comparison to each monotherapy; similarly, a clear synergistic effect between the two compounds was found in an in vitro study. Pharmacodynamics study demonstrated that this synergy was due to (1) tumor vascularization decrease, increase of the HIF1 protein expression and decrease of the intracellular pH, and (2) decrease of the Carbonic Anhydrase 9 (CAIX) protein that could not correct intracellular acidosis. In conclusion, all these preclinical data strongly suggest that the inhibition of mTORC1 and PLK1 proteins may be a promising therapeutic approach for NSCLC patients.
- Published
- 2021
23. Identification of Tissue of Origin and Guided Therapeutic Applications in Cancers of Unknown Primary Using Deep Learning and RNA Sequencing (TransCUPtomics)
- Author
-
Joshua J. Waterfall, Anne Vincent-Salomon, François-Clément Bidard, Alain Livartowski, Delphine Guillemot, Odette Mariani, Camille Benoist, Sylvain Baulande, Gaëlle Pierron, Christophe Le Tourneau, Sarah Watson, Julien Vibert, Olivier Delattre, Nadège Gruel, Unité de génétique et biologie des cancers (U830), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie [Paris], Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe, MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Investigation Clinique en Biotherapie des cancers (CIC 1428 , CBT 507 ), Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles Saint-Quentin-en-Yvelines - UFR Sciences de la santé Simone Veil (UVSQ Santé), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
Adult ,Male ,Oncology ,medicine.medical_specialty ,[SDV]Life Sciences [q-bio] ,Pathology and Forensic Medicine ,03 medical and health sciences ,Deep Learning ,0302 clinical medicine ,Internal medicine ,Biomarkers, Tumor ,medicine ,Humans ,Prospective Studies ,RNA-Seq ,Aged ,Retrospective Studies ,030304 developmental biology ,Interpretability ,Aged, 80 and over ,0303 health sciences ,business.industry ,Deep learning ,Cancer ,Retrospective cohort study ,Middle Aged ,medicine.disease ,Primary tumor ,Autoencoder ,Data Accuracy ,3. Good health ,Identification (information) ,030220 oncology & carcinogenesis ,Unknown primary ,Neoplasms, Unknown Primary ,Molecular Medicine ,Female ,Artificial intelligence ,Gene Fusion ,Transcriptome ,business - Abstract
International audience; Cancers of unknown primary (CUP) are metastatic cancers for which the primary tumor is not found despite thorough diagnostic investigations. Multiple molecular assays have been proposed to identify the tissue of origin (TOO) and inform clinical care; however, none has been able to combine accuracy, interpretability, and easy access for routine use. We developed a classifier tool based on the training of a variational autoencoder to predict tissue of origin based on RNA-sequencing data. We used as training data 20,918 samples corresponding to 94 different categories, including 39 cancer types and 55 normal tissues. The TransCUPtomics classifier was applied to a retrospective cohort of 37 CUP patients and 11 prospective patients. TransCUPtomics exhibited an overall accuracy of 96% on reference data for TOO prediction. The TOO could be identified in 38 (79%) of 48 CUP patients. Eight of 11 prospective CUP patients (73%) could receive first-line therapy guided by TransCUPtomics prediction, with responses observed in most patients. The variational autoencoder added further utility by enabling prediction interpretability, and diagnostic predictions could be matched to detection of gene fusions and expressed variants. TransCUPtomics confidently predicted TOO for CUP and enabled tailored treatments leading to significant clinical responses. The interpretability of our approach is a powerful addition to improve the management of CUP patients. Copyright
- Published
- 2021
- Full Text
- View/download PDF
24. 54P Overall survival in patients with metastatic lung cancer from 2000 to 2020: Implementation of innovative strategies in a real-world setting
- Author
-
C. Basse, M. Carton, M. Milder, S. Beaucaire Danel, C. Daniel, P. Du Rusquec, A. Livartowski, and N. Girard
- Subjects
Oncology ,Hematology - Published
- 2022
- Full Text
- View/download PDF
25. Interstrain Variations in the Cytomegalovirus (CMV) Glycoprotein B Gene Sequence among CMV-Infected Children Attending Six Day Care Centers
- Author
-
Lasry, Serge, Dény, Paul, Asselot, Catherine, Rauzy, Monique, Boucher, Jeanne, Guyot, Chantal, Leroux, Marie-Claude, Livartowski, Alain, Reinert, Philippe, and Nicolas, Jean-Claude
- Published
- 1996
26. High in vitro and in vivo synergistic activity between mTORC1 and PLK1 inhibition in adenocarcinoma NSCLC
- Author
-
Montaudon, Elodie, primary, El Botty, Rania, additional, Vacher, Sophie, additional, Déas, Olivier, additional, Naguez, Adnan, additional, Chateau-Joubert, Sophie, additional, Treguer, Damien, additional, de Plater, Ludmilla, additional, Zemoura, Leïla, additional, Némati, Fariba, additional, Nicolas, André, additional, Chapelier, Alain, additional, Livartowski, Alain, additional, Cairo, Stefano, additional, Daniel, Catherine, additional, Brevet, Marie, additional, Marangoni, Elisabetta, additional, Meseure, Didier, additional, Roman-Roman, Sergio, additional, Bieche, Ivan, additional, Girard, Nicolas, additional, and Decaudin, Didier, additional
- Published
- 2021
- Full Text
- View/download PDF
27. Can we identify 'twin patients' to predict response to neoadjuvant chemotherapy in breast cancer?
- Author
-
Orlhac, Fanny, Cassou-Mounat, Thibaut, Pierga, Jean-Yves, Luporsi, Marie, Nioche, Christophe, Bouveyron, Charles, Ayache, Nicholas, Jehanno, Nina, Livartowski, Alain, Buvat, Irene, Orlhac, Fanny, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO ), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Departement de Médecine nucleaire [Saint-Cloud], Institut Curie [Paris], Departement d'Oncologie médicale [Paris], Modèles et algorithmes pour l’intelligence artificielle (MAASAI), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Direction des data [Paris], Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
[SDV.IB.MN]Life Sciences [q-bio]/Bioengineering/Nuclear medicine ,[SDV.IB.MN] Life Sciences [q-bio]/Bioengineering/Nuclear medicine - Abstract
International audience; Objectives: Most supervised learning approaches currently applied in radiomics consist in classifying patients in groups (eg, responder versus non-responder, short overall survival versus long overall survival). With these methods, individual information from each patient is used only to assign a patient to a group. To preserve detailed information of each patient, we are developing an alternative approach that consists in identifying a "twin patient" based on radiomic features and clinical parameters in a patient database, i.e. another patient with feature values similar to the ones observed in the tested patient. Here, we studied whether this approach could predict the response to neoadjuvant chemotherapy in breast cancer patients. Methods: 117 patients with a triple-negative breast cancer were included in this study. All patients underwent a baseline 18F-FDG PET/CT using Gemini GXL 16 (Philips, 41 patients) or Discovery 710 Elite (GE, 76 patients) with a standard imaging protocol, before a neo-adjuvant chemotherapy associating anthracycline and taxane. The pathological response was assessed on the surgical specimen after chemotherapy according to the Residual Cancer Burden (RCB score). Based on PET images, the primary lesion of each patient was segmented using a threshold set to 40% of SUVmax, and a 6 mm thick ring around the tumor region was also used to measure the peri-tumoral metabolic activity. In each resulting volume of interest, we computed 48 radiomic features using LIFEx software (intensity resampling: 128 gray-levels between 0 and 40 SUV; spatial resampling: 2x2x2 mm) [1]. Radiomic features were harmonized between the two PET devices using ComBat [2]. The profile of each patient included 96 radiomic features and 3 clinical variables (age, Ki-67 expression, body mass index), each expressed as z-score. Using a leave-one-out approach, we computed the Euclidian distance between the profile of the tested patient and the profiles of all patients of the database. The smallest distance was used to identify the twin of the tested patient. This procedure was repeated by defining profiles including only 2, 4 and 6 features using a systematic feature selection process. The performance was evaluated using the Youden Index (YI=Sensitity+Specificity-1) to predict the response to neoadjuvant chemotherapy. Results: In our cohort, 68 patients were identified as responders to therapy and 49 patients as non-responders. Without feature selection, YI was 0.13 (Se=45% ; Sp=68%). When using 2 features only, the best performance was obtained for the combination of Entropy_Tumor and LZE_Ring with YI=0.36 (Se=59% ; Sp=76%). With 4 features, the best YI (=0.50) was obtained by adding Energy_Ring and SRE_Ring to Entropy_Tumor and LZE_Ring (Se=73% ; Sp=76%). With 6 features, the best combination was obtained by adding LZE_Tumor and LZHGE_Ring, yielding a YI of 0.56 (Se=80% ; Sp=76%). When we selected features, clinical variables were never included in the best combination, and radiomic features extracted from the peri-tumoral regions (ring) improved the identification of relevant twins. Conclusion: We demonstrated that the so called "twin patients" defined as sharing a number of similar radiomic features were likely to present similar response to neo-adjuvant chemotherapy. Feature selection improved the performance by including only features relevant to the prediction task into the profile. Unlike the conventional group-based patient management, the twin approach uses the detailed individual information of each patient previously treated. Further studies involving an independent cohort and more features in the combination are underway to further explore the potential of this concept. The identification of patient similarities also acts as a discovery approach to formulate new biological hypotheses, for instance, highlighting here the association between peri-tumoral heterogeneity and response to therapy.
- Published
- 2020
28. Use of a Pleural Implantable Access System for the Management of Malignant Pleural Effusion: The Institut Curie Experience
- Author
-
Daniel, Catherine, Kriegel, Irène, Di Maria, Sophie, Patrubani, Gabriela, Levesque, Regine, Livartowski, Alain, and Esteve, Marc
- Published
- 2007
- Full Text
- View/download PDF
29. Abstract P3-06-11: Withdrawn
- Author
-
M Priour, Julien Guerin, Alice Pinheiro, J-Y Pierga, Alain Livartowski, F Reyal, Marick Laé, C Val de Lièvre, Lauren Darrigues, L. Escalup, A S Hamy, Roman Rouzier, Enora Laas, Bernard Asselain, Christophe Laurent, D Decroze, and T Balezeau
- Subjects
Cancer Research ,Oncology - Abstract
This abstract was withdrawn by the authors.
- Published
- 2018
- Full Text
- View/download PDF
30. Treatment and outcome of a patient with radiation-induced organizing pneumonia in the context of coronavirus disease 2019 (COVID-19)
- Author
-
Raffaele Caliandro, Vincent Servois, Augusta D'Huy, Nicolas Girard, A. Beddok, Alain Livartowski, Gilles Créhange, and Sylvie Helfre
- Subjects
medicine.medical_specialty ,2019-20 coronavirus outbreak ,Lung ,Coronavirus disease 2019 (COVID-19) ,SARS-CoV-2 ,business.industry ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,COVID-19 ,Context (language use) ,Radiation induced ,Pneumonia ,Hematology ,medicine.disease ,Treatment Outcome ,medicine.anatomical_structure ,Oncology ,Internal medicine ,medicine ,Humans ,Radiology, Nuclear Medicine and imaging ,Organizing pneumonia ,business ,Letter to the Editor - Published
- 2021
- Full Text
- View/download PDF
31. PCN287 An Innovative Methodology to Predict the Size of Treatment Targeted Population Combining DATA from a Retrospective Registry (KADOR) and a Hospitalization Database
- Author
-
Perol, D., primary, Cottu, P., additional, Tredan, O., additional, Livartowski, A., additional, Gilberg, M., additional, Ghorbal, R., additional, Dupin, J., additional, and Maillard, C., additional
- Published
- 2020
- Full Text
- View/download PDF
32. 52P Discontinuation of immune checkpoint inhibitor (ICI) above 18 months of treatment in real-life patients with non small-cell lung carcinoma (NSCLC): INTEPI, a multicentric retrospective study
- Author
-
Bilger, G., primary, Girard, N., additional, Doubre, H., additional, Levra, M. Giaj, additional, Leprieur, E. Giroux, additional, Giraud, F., additional, Decroisette, C., additional, Livartowski, A., additional, and Massiani, M-A., additional
- Published
- 2020
- Full Text
- View/download PDF
33. PCN190 Kador: A French Retrospective Study Describing the Therapeutic Management of Patients WHO Received Trastuzumab Based Neoadjuvant Treatment for HER2-Positive EARLY Breast Cancer (EBC)
- Author
-
Cottu, P., primary, Tredan, O., additional, Livartowski, A., additional, Perol, D., additional, Gilberg, M., additional, Ghorbal, R., additional, Dupin, J., additional, and Maillard, C., additional
- Published
- 2020
- Full Text
- View/download PDF
34. 1330P Discontinuation of ICIs above 18 months of treatment in real-life patients with NSCLC: A multicentric retrospective study
- Author
-
Bilger, G., primary, Girard, N., additional, Giroux-Leprieur, E., additional, Giraud, F., additional, Friard, S., additional, Decroisette, C., additional, Levra, M. Giaj, additional, Livartowski, A., additional, and Massiani, M.A., additional
- Published
- 2020
- Full Text
- View/download PDF
35. Greedy clustering of count data through a mixture of multinomial PCA
- Author
-
Jouvin, Nicolas, primary, Latouche, Pierre, additional, Bouveyron, Charles, additional, Bataillon, Guillaume, additional, and Livartowski, Alain, additional
- Published
- 2020
- Full Text
- View/download PDF
36. PCN190 Kador: A French Retrospective Study Describing the Therapeutic Management of Patients WHO Received Trastuzumab Based Neoadjuvant Treatment for HER2-Positive EARLY Breast Cancer (EBC)
- Author
-
Olivier Tredan, R. Ghorbal, D. Perol, M. Gilberg, Julien Dupin, A. Livartowski, Paul-Henri Cottu, and C. Maillard
- Subjects
Oncology ,medicine.medical_specialty ,Trastuzumab ,Neoadjuvant treatment ,business.industry ,Health Policy ,Internal medicine ,Public Health, Environmental and Occupational Health ,medicine ,Retrospective cohort study ,business ,medicine.drug ,Early breast cancer - Published
- 2020
- Full Text
- View/download PDF
37. 52P Discontinuation of immune checkpoint inhibitor (ICI) above 18 months of treatment in real-life patients with non small-cell lung carcinoma (NSCLC): INTEPI, a multicentric retrospective study
- Author
-
M. Giaj Levra, Nicolas Girard, M.-A. Massiani, Frédérique Giraud, Chantal Decroisette, E. Giroux Leprieur, Hélène Doubre, Geoffroy Bilger, and Alain Livartowski
- Subjects
Oncology ,medicine.medical_specialty ,Lung ,business.industry ,Immune checkpoint inhibitors ,Retrospective cohort study ,Hematology ,medicine.disease ,Discontinuation ,medicine.anatomical_structure ,Internal medicine ,Carcinoma ,medicine ,In real life ,Non small cell ,business - Published
- 2020
- Full Text
- View/download PDF
38. 1330P Discontinuation of ICIs above 18 months of treatment in real-life patients with NSCLC: A multicentric retrospective study
- Author
-
M. Giaj Levra, Etienne Giroux-Leprieur, Marie-Ange Massiani, Frédérique Giraud, S. Friard, Chantal Decroisette, Alain Livartowski, Geoffroy Bilger, and Nicolas Girard
- Subjects
Pediatrics ,medicine.medical_specialty ,Oncology ,business.industry ,Medicine ,In real life ,Retrospective cohort study ,Hematology ,business ,Discontinuation - Published
- 2020
- Full Text
- View/download PDF
39. World alliance against antibiotic resistance: The WAAAR declaration against antibiotic resistance
- Author
-
Carlet, J, Aaron, L, Abassi, M, Abbo, L, Aboderin, O, Abraham, E, Abroug, F, Acar, J, Achour, W, Adachi, J, Al-Abri, S, Al-Mousa, H, Albaya-Moreno, A, Alberti, C, Alfandari, S, Alnimr, A, Aranda, C, de Lerma, F, Amer, F, Andremont, A, Angoulvant, F, Anguill, M, Antonelli, M, Antoniadou, E, Arlet, G, Armaganidis, A, Arnera, A, Artigas, A, Attali, C, Auber, F, Aubert, J, Augereau, B, Aupee, M, Bahri, O, Ballereau, F, Bapt, G, Baquero, F, Barkhan, T, Barouti, O, Barthelemy, M, Barton, G, Bastoni, D, Baussier, M, Bavestrello, L, Beger, B, Benenson, S, Bensalem, F, Beraud, G, Bergheau, F, Bernard, G, Berthelot, P, Bertrand, X, Beuhorry-Sassus, F, Beuret, P, Billington, J, Birge, J, Biscardi, S, Blanch, L, Blanchard, H, Bleck, T, Blondeau, J, Blot, F, Borgey, F, Bousquet-Melou, A, Brami, J, Brard, C, Bretagne, S, Bretonniere, C, Brink, A, Brown, S, Bruant-Rodier, C, Brun-Buisson, C, Bruneel, F, de Carvalho, F, Buhot, C, Bukharie, H, Cabie, A, Calandra, T, Caniaux, I, Canica, M, Canton, R, Carenco, P, Carlet, C, Carlet, F, Carlet, R, Cars, O, Cassiano-Neves, M, Castan, B, Castellan, V, Cazenave-Roblot, F, Ceretti, A, Chakarian, J, Chalumeau-Lemoine, L, Chandy, J, Chanfreau, B, Chastre, J, Chausset, R, Chavanet, P, Cheadle, W, Chiche, J, Chidiac, C, Chosidow, O, Chueca, N, Cohen, J, Cohen, R, Collignon, P, Collot, F, Coloby, P, Conly, J, Cordero, C, Cordonnier, C, Corso, A, Cosgrove, S, Courcol, R, Crane, S, Craven, D, Crespin, A, Cyrillo, M, Danin, P, Waele, J, Dellamonica, P, Patchen Dellinger, E, Dellinger, P, Delmont, J, Denes, E, Dimopoulos, G, Drekonja, D, Mansilla, A, Druais, P, Dufour-Pierrat, S, Dumartin, C, Dunser, M, Dupont, M, Durlach, R, Dyar, O, Echaniz, G, Edelstein, P, Eggimann, P, Elghonemi, M, Elmdaghri, N, Elsaid, R, Elsokari, R, Engelhard, D, Fabry, J, Farmer, C, Fernandez, J, Finfer, S, Finn, P, Fjeldsted, K, Floret, D, Flozaro, F, Foegle, J, Forceville, X, Fournier, S, Frachon, I, Friedrich, A, Funuel, P, Gaillard, D, Gaillat, J, Galperine, T, Gambarotto, K, Garo, B, Garrouste-Orgeas, M, Gastemeier, P, Gauchot, J, Gauzit, R, Gavazzi, G, Gazagne, L, Gerberding, J, Ghafur, A, Giamarellos-Bourboulis, E, Giamarellou, E, Giard, M, Gilchrist, M, Gilquin, J, Gilsanz, F, Gniadkowski, M, Gogos, C, Goldman, D, Gordon, F, Gottlieb, T, Gould, I, Gouveia, J, Grant, J, Grason, L, Greder, A, Grundman, H, Guaguere, E, Gueroult-Locher, G, Guery, B, Guidet, B, Guignabert, C, Gupta, P, Gupta, S, Gurjar, M, Guzman, M, Hajjar, J, Hammad, N, Hammerum, A, Hanberger, H, Hanke, R, Harbarth, S, Harel, A, Heisbourg, E, Hermes, I, Hermet, J, Hirschel, B, Hoen, B, Hollis, A, Honghong, X, Hooper, D, Horcajada, J, Housset, B, Hryniewicz, W, Hsu, L, Huang, S, Hughes, J, Hunault, J, Jakobsen, L, Jalil, N, Jansens, H, Jarlier, V, Jarvis, W, Jean, D, Jereb, M, Johnson, J, Joly-Guillou, M, Jonquet, O, Kac, G, Kaddu-Mulindwa, D, Kaku, M, Kilani, B, Kim, E, Gazard, D, Klugman, K, Klutts, S, Kluytmans, J, Kollef, M, Koulenti, D, Kresken, M, Lacoin, F, Lajonchere, J, Landgraf, N, Larroussinie, G, Laterre, P, Lavenaire, A, Lavigne, T, Laxminarayan, R, Le, T, Leblanc-Jouffre, F, Lee, N, Lehiani, O, Lelouet, H, Lemanach-Kergueris, F, Lepape, A, Leroy, J, Lescure, X, Levy, M, Levy-Hara, G, Lin, L, Lipman, J, Livartowski, J, Looke, D, Cardozo, F, Medrano, F, Lotthe, A, Lucet, J, Lupande, D, Madec, J, Mainardi, J, Maiylagan, S, Mancebo, J, Mansour-Adeoti, F, Maravi, E, Marchou, B, Marciniuk, D, Marshall, J, Martin, C, Martin, D, Martinez-Martinez, L, Martinot, A, Maseda, E, Matamis, D, Matheron, S, Matos, R, Matthews, M, May, T, Mayet, T, Mcgowan, J, Mehtar, S, Teles, J, Mendelson, M, Michelet, C, Mifsud, A, Mikaszewska-Sokolewicz, M, Minion, J, Miquel, C, Mira, J, Miro, J, Misset, B, Monot, J, Montravers, P, Mootien, J, Moreno, R, Morris, A, Moulin, G, Mourlan, C, Mouthon, G, Mowafy, W, Muhl, E, Muruganathan, A, Mushira, E, N'Doye, B, Nana, A, Niederman, M, Nitenberg, G, Nordman, P, Novira, A, Nowak, C, Okeke, I, Olaechea, P, Omar, A, Opal, S, Leyba, C, Oudega, B, Oziol, E, Page, B, Paiva, J, Palmer, L, Palomar-Martinez, M, Parneix, P, de la Garanderie, D, Perencevich, E, Perl, T, Perronne, C, Peters, G, Peters, M, Peyramond, D, Philippart, F, Pittet, D, Pittet, J, Plesiat, P, Pletz, M, Ploy, M, Pospisil, F, Pouedras, P, Poulakou, G, Poursinoff, A, Pronovost, P, Pulcini, C, Puoti, M, Puvanendiram, S, Quintel, M, Rabaud, C, Rambaud, C, Ramos, H, Rassla, O, Raymond, J, Regnier, B, Reinhart, K, Condomines, J, Revil, J, Riche, A, Richman, P, Richmann, R, Rodriguez, V, Rodriguez-Bano, J, Romain, O, Romand, K, Rossines, E, Rothan-Tondeur, M, Rousselot, J, Rubinstein, E, Rudnov, V, Saini, N, Salmon, D, Salomao, R, Garcia, M, Santos-Bouza, A, Saux, M, Savey, A, Saxinger, L, Schlemmer, B, Schmit, J, Schneider, D, Schoemaker, J, Singh, S, Sole-Violan, J, Soto, S, Stahl, J, Stoclin, A, Tabah, A, Tabut, J, Tambyah, P, Tamion, F, Tarr, P, Tattevin, P, Tenover, F, Terzi, N, Lecompte, M, Theodore, J, Thevenin, D, Thevenot, P, Thiriet, L, Thompson, C, Thurn, J, Tillotson, G, Tiouiri, H, Torres, A, Tremolieres, F, Troadec, M, Umar, R, Upham, G, Urban, C, Vaarten, J, Valla, D, Van Der Mee-Marquet, N, Van der Meer, J, Van Der Poll, T, Vancel, J, Vanhems, P, Varin, R, Varon, E, Vaughan, D, Veilly, M, Vijayakumar, K, Villanueva, A, Vincent, J, Vitrat, V, Voss, A, Wachter, R, Walsh, T, Wark, P, Waterer, G, Wegener, H, Weinbreck, P, Weinstein, R, Weissman, S, Wiener-Kronish, J, Wilmer, A, Wyplosz, B, Yacoub-Agha, I, Young, M, Yusuf, I, Zein, E, Zhanel, G, Zinner, S, Zoungrana, J, Zubareva, N, Carlet J., Aaron L., Abassi M. S., Abbo L., Aboderin O., Abraham E., Abroug F., Acar J., Achour W., Adachi J., Al-Abri S., Al-Mousa H., Albaya-Moreno A., Alberti C., Alfandari S., Alnimr A., Aranda C. A., de Lerma F. A., Amer F., Andremont A., Angoulvant F., Anguill M., Antonelli M., Antoniadou E., Arlet G., Armaganidis A., Arnera A., Artigas A., Attali C., Auber F., Aubert J. -P., Augereau B., Aupee M., Bahri O., Ballereau F., Bapt G., Baquero F., Barkhan T., Barouti O., Barthelemy M. -A., Barton G., Bastoni D., Baussier M., Bavestrello L., Beger B., Benenson S., Bensalem F., Beraud G., Bergheau F., Bernard G., Berthelot P., Bertrand X., Beuhorry-Sassus F., Beuret P., Billington J., Birge J., Biscardi S., Blanch L., Blanchard H., Bleck T., Blondeau J., Blot F., Borgey F., Bousquet-Melou A., Brami J., Brard C., Bretagne S., Bretonniere C., Brink A., Brown S., Bruant-Rodier C., Brun-Buisson C., Bruneel F., de Carvalho F. B., Buhot C., Bukharie H., Cabie A., Calandra T., Caniaux I., Canica M., Canton R., Carenco P., Carlet C., Carlet F., Carlet R., Cars O., Cassiano-Neves M., Castan B., Castellan V., Cazenave-Roblot F., Ceretti A. -M., Chakarian J. -C., Chalumeau-Lemoine L., Chandy J., Chanfreau B., Chastre J., Chausset R., Chavanet P., Cheadle W., Chiche J. -D., Chidiac C., Chosidow O., Chueca N., Cohen J., Cohen R., Collignon P., Collot F., Coloby P., Conly J., Cordero C., Cordonnier C., Corso A., Cosgrove S., Courcol R., Crane S., Craven D., Crespin A., Cyrillo M., Danin P. -E., Waele J. D., Dellamonica P., Patchen Dellinger E., Dellinger P., Delmont J., Denes E., Dimopoulos G., Drekonja D., Mansilla A. D., Druais P. -L., Dufour-Pierrat S., Dumartin C., Dunser M., Dupont M., Durlach R., Dyar O., Echaniz G., Edelstein P., Eggimann P., Elghonemi M., Elmdaghri N., Elsaid R., Elsokari R., Engelhard D., Fabry J., Farmer C., Fernandez J., Finfer S., Finn P., Fjeldsted K., Floret D., Flozaro F., Foegle J., Forceville X., Fournier S., Frachon I., Friedrich A., Funuel P., Gaillard D., Gaillat J., Galperine T., Gambarotto K., Garo B., Garrouste-Orgeas M., Gastemeier P., Gauchot J. -Y., Gauzit R., Gavazzi G., Gazagne L., Gerberding J., Ghafur A., Giamarellos-Bourboulis E., Giamarellou E., Giard M., Gilchrist M., Gilquin J., Gilsanz F., Gniadkowski M., Gogos C., Goldman D., Gordon F., Gottlieb T., Gould I., Gouveia J., Grant J., Grason L., Greder A., Grundman H., Guaguere E., Gueroult-Locher G., Guery B., Guidet B., Guignabert C., Gupta P., Gupta S., Gurjar M., Guzman M., Hajjar J., Hammad N., Hammerum A., Hanberger H., Hanke R., Harbarth S., Harel A., Heisbourg E., Hermes I., Hermet J. -P., Hirschel B., Hoen B., Hollis A., Honghong X., Hooper D., Horcajada J. P., Housset B., Hryniewicz W., Hsu L. Y., Huang S., Hughes J., Hunault J. -L., Jakobsen L., Jalil N., Jansens H., Jarlier V., Jarvis W., Jean D., Jereb M., Johnson J., Joly-Guillou M. -L., Jonquet O., Kac G., Kaddu-Mulindwa D., Kaku M., Kilani B., Kim E. -C., Gazard D. K., Klugman K., Klutts S., Kluytmans J., Kollef M., Koulenti D., Kresken M., Lacoin F., Lajonchere J. -P., Landgraf N., Larroussinie G., Laterre P. -F., Lavenaire A. -M., Lavigne T., Laxminarayan R., Le T. A. T., Leblanc-Jouffre F., Lee N. Y., Lehiani O., Lelouet H., Lemanach-Kergueris F., Lepape A., Leroy J., Lescure X., Levy M., Levy-Hara G., Lin L. M., Lipman J., Livartowski J., Looke D., Cardozo F. L. L., Medrano F. L., Lotthe A., Lucet J. C., Lupande D., Madec J. -Y., Mainardi J. -L., Maiylagan S., Mancebo J., Mansour-Adeoti F., Maravi E., Marchou B., Marciniuk D., Marshall J., Martin C., Martin D., Martinez-Martinez L., Martinot A., Maseda E., Matamis D., Matheron S., Matos R., Matthews M., May T., Mayet T., McGowan J., Mehtar S., Teles J. M. M., Mendelson M., Michelet C., Mifsud A., Mikaszewska-Sokolewicz M., Minion J., Miquel C., Mira J. -P., Miro J., Misset B., Monot J. -J., Montravers P., Mootien J., Moreno R., Morris A., Moulin G., Mourlan C., Mouthon G., Mowafy W., Muhl E., Muruganathan A., Mushira E., N'Doye B., Nana A., Niederman M., Nitenberg G., Nordman P., Novira A., Nowak C., Okeke I., Olaechea P. M., Omar A., Opal S., Leyba C. O., Oudega B., Oziol E., Page B., Paiva J. A., Palmer L., Palomar-Martinez M., Parneix P., de la Garanderie D. P., Perencevich E., Perl T., Perronne C., Peters G., Peters M., Peyramond D., Philippart F., Pittet D., Pittet J. -F., Plesiat P., Pletz M., Ploy M. -C., Pospisil F., Pouedras P., Poulakou G., Poursinoff A., Pronovost P., Pulcini C., Puoti M., Puvanendiram S., Quintel M., Rabaud C., Rambaud C., Ramos H., Rassla O., Raymond J., Regnier B., Reinhart K., Condomines J. R., Revil J. -C., Riche A., Richman P., Richmann R., Rodriguez V., Rodriguez-Bano J., Romain O., Romand K., Rossines E., Rothan-Tondeur M. I., Rousselot J. -F., Rubinstein E., Rudnov V., Saini N., Salmon D., Salomao R., Garcia M. S., Santos-Bouza A., Saux M. -C., Savey A., Saxinger L., Schlemmer B., Schmit J. -L., Schneider D., Schoemaker J., Singh S., Sole-Violan J., Soto S., Stahl J. -P., Stoclin A., Tabah A., Tabut J. -P., Tambyah P. A., Tamion F., Tarr P., Tattevin P., Tenover F., Terzi N., Lecompte M. T., Theodore J., Thevenin D., Thevenot P., Thiriet L., Thompson C., Thurn J., Tillotson G., Tiouiri H., Torres A., Tremolieres F., Troadec M., Umar R., Upham G., Urban C., Vaarten J., Valla D., Van Der Mee-Marquet N., Van der Meer J., Van Der Poll T., Vancel J., Vanhems P., Varin R., Varon E., Vaughan D., Veilly M., Vijayakumar K., Villanueva A., Vincent J. -L., Vitrat V., Voss A., Wachter R., Walsh T., Wark P., Waterer G., Wegener H. C., Weinbreck P., Weinstein R., Weissman S., Wiener-Kronish J., Wilmer A., Wyplosz B., Yacoub-Agha I., Young M., Yusuf I., Zein E., Zhanel G., Zinner S., Zoungrana J., Zubareva N., Carlet, J, Aaron, L, Abassi, M, Abbo, L, Aboderin, O, Abraham, E, Abroug, F, Acar, J, Achour, W, Adachi, J, Al-Abri, S, Al-Mousa, H, Albaya-Moreno, A, Alberti, C, Alfandari, S, Alnimr, A, Aranda, C, de Lerma, F, Amer, F, Andremont, A, Angoulvant, F, Anguill, M, Antonelli, M, Antoniadou, E, Arlet, G, Armaganidis, A, Arnera, A, Artigas, A, Attali, C, Auber, F, Aubert, J, Augereau, B, Aupee, M, Bahri, O, Ballereau, F, Bapt, G, Baquero, F, Barkhan, T, Barouti, O, Barthelemy, M, Barton, G, Bastoni, D, Baussier, M, Bavestrello, L, Beger, B, Benenson, S, Bensalem, F, Beraud, G, Bergheau, F, Bernard, G, Berthelot, P, Bertrand, X, Beuhorry-Sassus, F, Beuret, P, Billington, J, Birge, J, Biscardi, S, Blanch, L, Blanchard, H, Bleck, T, Blondeau, J, Blot, F, Borgey, F, Bousquet-Melou, A, Brami, J, Brard, C, Bretagne, S, Bretonniere, C, Brink, A, Brown, S, Bruant-Rodier, C, Brun-Buisson, C, Bruneel, F, de Carvalho, F, Buhot, C, Bukharie, H, Cabie, A, Calandra, T, Caniaux, I, Canica, M, Canton, R, Carenco, P, Carlet, C, Carlet, F, Carlet, R, Cars, O, Cassiano-Neves, M, Castan, B, Castellan, V, Cazenave-Roblot, F, Ceretti, A, Chakarian, J, Chalumeau-Lemoine, L, Chandy, J, Chanfreau, B, Chastre, J, Chausset, R, Chavanet, P, Cheadle, W, Chiche, J, Chidiac, C, Chosidow, O, Chueca, N, Cohen, J, Cohen, R, Collignon, P, Collot, F, Coloby, P, Conly, J, Cordero, C, Cordonnier, C, Corso, A, Cosgrove, S, Courcol, R, Crane, S, Craven, D, Crespin, A, Cyrillo, M, Danin, P, Waele, J, Dellamonica, P, Patchen Dellinger, E, Dellinger, P, Delmont, J, Denes, E, Dimopoulos, G, Drekonja, D, Mansilla, A, Druais, P, Dufour-Pierrat, S, Dumartin, C, Dunser, M, Dupont, M, Durlach, R, Dyar, O, Echaniz, G, Edelstein, P, Eggimann, P, Elghonemi, M, Elmdaghri, N, Elsaid, R, Elsokari, R, Engelhard, D, Fabry, J, Farmer, C, Fernandez, J, Finfer, S, Finn, P, Fjeldsted, K, Floret, D, Flozaro, F, Foegle, J, Forceville, X, Fournier, S, Frachon, I, Friedrich, A, Funuel, P, Gaillard, D, Gaillat, J, Galperine, T, Gambarotto, K, Garo, B, Garrouste-Orgeas, M, Gastemeier, P, Gauchot, J, Gauzit, R, Gavazzi, G, Gazagne, L, Gerberding, J, Ghafur, A, Giamarellos-Bourboulis, E, Giamarellou, E, Giard, M, Gilchrist, M, Gilquin, J, Gilsanz, F, Gniadkowski, M, Gogos, C, Goldman, D, Gordon, F, Gottlieb, T, Gould, I, Gouveia, J, Grant, J, Grason, L, Greder, A, Grundman, H, Guaguere, E, Gueroult-Locher, G, Guery, B, Guidet, B, Guignabert, C, Gupta, P, Gupta, S, Gurjar, M, Guzman, M, Hajjar, J, Hammad, N, Hammerum, A, Hanberger, H, Hanke, R, Harbarth, S, Harel, A, Heisbourg, E, Hermes, I, Hermet, J, Hirschel, B, Hoen, B, Hollis, A, Honghong, X, Hooper, D, Horcajada, J, Housset, B, Hryniewicz, W, Hsu, L, Huang, S, Hughes, J, Hunault, J, Jakobsen, L, Jalil, N, Jansens, H, Jarlier, V, Jarvis, W, Jean, D, Jereb, M, Johnson, J, Joly-Guillou, M, Jonquet, O, Kac, G, Kaddu-Mulindwa, D, Kaku, M, Kilani, B, Kim, E, Gazard, D, Klugman, K, Klutts, S, Kluytmans, J, Kollef, M, Koulenti, D, Kresken, M, Lacoin, F, Lajonchere, J, Landgraf, N, Larroussinie, G, Laterre, P, Lavenaire, A, Lavigne, T, Laxminarayan, R, Le, T, Leblanc-Jouffre, F, Lee, N, Lehiani, O, Lelouet, H, Lemanach-Kergueris, F, Lepape, A, Leroy, J, Lescure, X, Levy, M, Levy-Hara, G, Lin, L, Lipman, J, Livartowski, J, Looke, D, Cardozo, F, Medrano, F, Lotthe, A, Lucet, J, Lupande, D, Madec, J, Mainardi, J, Maiylagan, S, Mancebo, J, Mansour-Adeoti, F, Maravi, E, Marchou, B, Marciniuk, D, Marshall, J, Martin, C, Martin, D, Martinez-Martinez, L, Martinot, A, Maseda, E, Matamis, D, Matheron, S, Matos, R, Matthews, M, May, T, Mayet, T, Mcgowan, J, Mehtar, S, Teles, J, Mendelson, M, Michelet, C, Mifsud, A, Mikaszewska-Sokolewicz, M, Minion, J, Miquel, C, Mira, J, Miro, J, Misset, B, Monot, J, Montravers, P, Mootien, J, Moreno, R, Morris, A, Moulin, G, Mourlan, C, Mouthon, G, Mowafy, W, Muhl, E, Muruganathan, A, Mushira, E, N'Doye, B, Nana, A, Niederman, M, Nitenberg, G, Nordman, P, Novira, A, Nowak, C, Okeke, I, Olaechea, P, Omar, A, Opal, S, Leyba, C, Oudega, B, Oziol, E, Page, B, Paiva, J, Palmer, L, Palomar-Martinez, M, Parneix, P, de la Garanderie, D, Perencevich, E, Perl, T, Perronne, C, Peters, G, Peters, M, Peyramond, D, Philippart, F, Pittet, D, Pittet, J, Plesiat, P, Pletz, M, Ploy, M, Pospisil, F, Pouedras, P, Poulakou, G, Poursinoff, A, Pronovost, P, Pulcini, C, Puoti, M, Puvanendiram, S, Quintel, M, Rabaud, C, Rambaud, C, Ramos, H, Rassla, O, Raymond, J, Regnier, B, Reinhart, K, Condomines, J, Revil, J, Riche, A, Richman, P, Richmann, R, Rodriguez, V, Rodriguez-Bano, J, Romain, O, Romand, K, Rossines, E, Rothan-Tondeur, M, Rousselot, J, Rubinstein, E, Rudnov, V, Saini, N, Salmon, D, Salomao, R, Garcia, M, Santos-Bouza, A, Saux, M, Savey, A, Saxinger, L, Schlemmer, B, Schmit, J, Schneider, D, Schoemaker, J, Singh, S, Sole-Violan, J, Soto, S, Stahl, J, Stoclin, A, Tabah, A, Tabut, J, Tambyah, P, Tamion, F, Tarr, P, Tattevin, P, Tenover, F, Terzi, N, Lecompte, M, Theodore, J, Thevenin, D, Thevenot, P, Thiriet, L, Thompson, C, Thurn, J, Tillotson, G, Tiouiri, H, Torres, A, Tremolieres, F, Troadec, M, Umar, R, Upham, G, Urban, C, Vaarten, J, Valla, D, Van Der Mee-Marquet, N, Van der Meer, J, Van Der Poll, T, Vancel, J, Vanhems, P, Varin, R, Varon, E, Vaughan, D, Veilly, M, Vijayakumar, K, Villanueva, A, Vincent, J, Vitrat, V, Voss, A, Wachter, R, Walsh, T, Wark, P, Waterer, G, Wegener, H, Weinbreck, P, Weinstein, R, Weissman, S, Wiener-Kronish, J, Wilmer, A, Wyplosz, B, Yacoub-Agha, I, Young, M, Yusuf, I, Zein, E, Zhanel, G, Zinner, S, Zoungrana, J, Zubareva, N, Carlet J., Aaron L., Abassi M. S., Abbo L., Aboderin O., Abraham E., Abroug F., Acar J., Achour W., Adachi J., Al-Abri S., Al-Mousa H., Albaya-Moreno A., Alberti C., Alfandari S., Alnimr A., Aranda C. A., de Lerma F. A., Amer F., Andremont A., Angoulvant F., Anguill M., Antonelli M., Antoniadou E., Arlet G., Armaganidis A., Arnera A., Artigas A., Attali C., Auber F., Aubert J. -P., Augereau B., Aupee M., Bahri O., Ballereau F., Bapt G., Baquero F., Barkhan T., Barouti O., Barthelemy M. -A., Barton G., Bastoni D., Baussier M., Bavestrello L., Beger B., Benenson S., Bensalem F., Beraud G., Bergheau F., Bernard G., Berthelot P., Bertrand X., Beuhorry-Sassus F., Beuret P., Billington J., Birge J., Biscardi S., Blanch L., Blanchard H., Bleck T., Blondeau J., Blot F., Borgey F., Bousquet-Melou A., Brami J., Brard C., Bretagne S., Bretonniere C., Brink A., Brown S., Bruant-Rodier C., Brun-Buisson C., Bruneel F., de Carvalho F. B., Buhot C., Bukharie H., Cabie A., Calandra T., Caniaux I., Canica M., Canton R., Carenco P., Carlet C., Carlet F., Carlet R., Cars O., Cassiano-Neves M., Castan B., Castellan V., Cazenave-Roblot F., Ceretti A. -M., Chakarian J. -C., Chalumeau-Lemoine L., Chandy J., Chanfreau B., Chastre J., Chausset R., Chavanet P., Cheadle W., Chiche J. -D., Chidiac C., Chosidow O., Chueca N., Cohen J., Cohen R., Collignon P., Collot F., Coloby P., Conly J., Cordero C., Cordonnier C., Corso A., Cosgrove S., Courcol R., Crane S., Craven D., Crespin A., Cyrillo M., Danin P. -E., Waele J. D., Dellamonica P., Patchen Dellinger E., Dellinger P., Delmont J., Denes E., Dimopoulos G., Drekonja D., Mansilla A. D., Druais P. -L., Dufour-Pierrat S., Dumartin C., Dunser M., Dupont M., Durlach R., Dyar O., Echaniz G., Edelstein P., Eggimann P., Elghonemi M., Elmdaghri N., Elsaid R., Elsokari R., Engelhard D., Fabry J., Farmer C., Fernandez J., Finfer S., Finn P., Fjeldsted K., Floret D., Flozaro F., Foegle J., Forceville X., Fournier S., Frachon I., Friedrich A., Funuel P., Gaillard D., Gaillat J., Galperine T., Gambarotto K., Garo B., Garrouste-Orgeas M., Gastemeier P., Gauchot J. -Y., Gauzit R., Gavazzi G., Gazagne L., Gerberding J., Ghafur A., Giamarellos-Bourboulis E., Giamarellou E., Giard M., Gilchrist M., Gilquin J., Gilsanz F., Gniadkowski M., Gogos C., Goldman D., Gordon F., Gottlieb T., Gould I., Gouveia J., Grant J., Grason L., Greder A., Grundman H., Guaguere E., Gueroult-Locher G., Guery B., Guidet B., Guignabert C., Gupta P., Gupta S., Gurjar M., Guzman M., Hajjar J., Hammad N., Hammerum A., Hanberger H., Hanke R., Harbarth S., Harel A., Heisbourg E., Hermes I., Hermet J. -P., Hirschel B., Hoen B., Hollis A., Honghong X., Hooper D., Horcajada J. P., Housset B., Hryniewicz W., Hsu L. Y., Huang S., Hughes J., Hunault J. -L., Jakobsen L., Jalil N., Jansens H., Jarlier V., Jarvis W., Jean D., Jereb M., Johnson J., Joly-Guillou M. -L., Jonquet O., Kac G., Kaddu-Mulindwa D., Kaku M., Kilani B., Kim E. -C., Gazard D. K., Klugman K., Klutts S., Kluytmans J., Kollef M., Koulenti D., Kresken M., Lacoin F., Lajonchere J. -P., Landgraf N., Larroussinie G., Laterre P. -F., Lavenaire A. -M., Lavigne T., Laxminarayan R., Le T. A. T., Leblanc-Jouffre F., Lee N. Y., Lehiani O., Lelouet H., Lemanach-Kergueris F., Lepape A., Leroy J., Lescure X., Levy M., Levy-Hara G., Lin L. M., Lipman J., Livartowski J., Looke D., Cardozo F. L. L., Medrano F. L., Lotthe A., Lucet J. C., Lupande D., Madec J. -Y., Mainardi J. -L., Maiylagan S., Mancebo J., Mansour-Adeoti F., Maravi E., Marchou B., Marciniuk D., Marshall J., Martin C., Martin D., Martinez-Martinez L., Martinot A., Maseda E., Matamis D., Matheron S., Matos R., Matthews M., May T., Mayet T., McGowan J., Mehtar S., Teles J. M. M., Mendelson M., Michelet C., Mifsud A., Mikaszewska-Sokolewicz M., Minion J., Miquel C., Mira J. -P., Miro J., Misset B., Monot J. -J., Montravers P., Mootien J., Moreno R., Morris A., Moulin G., Mourlan C., Mouthon G., Mowafy W., Muhl E., Muruganathan A., Mushira E., N'Doye B., Nana A., Niederman M., Nitenberg G., Nordman P., Novira A., Nowak C., Okeke I., Olaechea P. M., Omar A., Opal S., Leyba C. O., Oudega B., Oziol E., Page B., Paiva J. A., Palmer L., Palomar-Martinez M., Parneix P., de la Garanderie D. P., Perencevich E., Perl T., Perronne C., Peters G., Peters M., Peyramond D., Philippart F., Pittet D., Pittet J. -F., Plesiat P., Pletz M., Ploy M. -C., Pospisil F., Pouedras P., Poulakou G., Poursinoff A., Pronovost P., Pulcini C., Puoti M., Puvanendiram S., Quintel M., Rabaud C., Rambaud C., Ramos H., Rassla O., Raymond J., Regnier B., Reinhart K., Condomines J. R., Revil J. -C., Riche A., Richman P., Richmann R., Rodriguez V., Rodriguez-Bano J., Romain O., Romand K., Rossines E., Rothan-Tondeur M. I., Rousselot J. -F., Rubinstein E., Rudnov V., Saini N., Salmon D., Salomao R., Garcia M. S., Santos-Bouza A., Saux M. -C., Savey A., Saxinger L., Schlemmer B., Schmit J. -L., Schneider D., Schoemaker J., Singh S., Sole-Violan J., Soto S., Stahl J. -P., Stoclin A., Tabah A., Tabut J. -P., Tambyah P. A., Tamion F., Tarr P., Tattevin P., Tenover F., Terzi N., Lecompte M. T., Theodore J., Thevenin D., Thevenot P., Thiriet L., Thompson C., Thurn J., Tillotson G., Tiouiri H., Torres A., Tremolieres F., Troadec M., Umar R., Upham G., Urban C., Vaarten J., Valla D., Van Der Mee-Marquet N., Van der Meer J., Van Der Poll T., Vancel J., Vanhems P., Varin R., Varon E., Vaughan D., Veilly M., Vijayakumar K., Villanueva A., Vincent J. -L., Vitrat V., Voss A., Wachter R., Walsh T., Wark P., Waterer G., Wegener H. C., Weinbreck P., Weinstein R., Weissman S., Wiener-Kronish J., Wilmer A., Wyplosz B., Yacoub-Agha I., Young M., Yusuf I., Zein E., Zhanel G., Zinner S., Zoungrana J., and Zubareva N.
- Abstract
We must change how antibiotics are used and adopt proactive strategies, similar to those used to save endangered species. Preservation of the efficacy of antibiotics and to stabilization of antibiotic-susceptible bacterial ecosystems should be global goals. (C) 2014 Elsevier Espana, S.L.U. and SEMICYUC. All rights reserved.
- Published
- 2015
40. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study
- Author
-
Charlotte Proudhon, Maud Milder, E. Romano, Catherine Daniel, Ivan Bièche, Alain Livartowski, Jean-Yves Pierga, Vincent Servois, Sophie Piperno-Neumann, François-Clément Bidard, Sylvain Baulande, Bruno Buecher, Luc Cabel, Francesca Riva, Aurore Rampanou, Olivier Lantz, and Virginie Bernard
- Subjects
0301 basic medicine ,Male ,Colorectal cancer ,medicine.medical_treatment ,Pilot Projects ,Pembrolizumab ,Polymerase Chain Reaction ,B7-H1 Antigen ,03 medical and health sciences ,0302 clinical medicine ,Neoplasms ,medicine ,Humans ,Progression-free survival ,Prospective Studies ,Aged ,Monitoring, Physiologic ,Aged, 80 and over ,business.industry ,Melanoma ,Hematology ,Immunotherapy ,DNA, Neoplasm ,Middle Aged ,medicine.disease ,Prognosis ,Survival Analysis ,Immune checkpoint ,030104 developmental biology ,Oncology ,030220 oncology & carcinogenesis ,Cancer research ,Biomarker (medicine) ,Female ,Nivolumab ,business - Abstract
Recent clinical results support the use of new immune checkpoint blockers (ICB), such as anti-PD-1 (e.g. nivolumab and pembrolizumab) and anti-PD-L1 antibodies. Radiological evaluation of ICB efficacy during therapy is challenging due to tumor immune infiltration. Changes of circulating tumor DNA (ctDNA) levels during therapy could be a promising tool for very accurate monitoring of treatment efficacy, but data are lacking with ICB.This prospective pilot study was conducted in patients with nonsmall cell lung cancer, uveal melanoma, or microsatellite-instable colorectal cancer treated by nivolumab or pembrolizumab monotherapy at Institut Curie. ctDNA levels were assessed at baseline and after 8 weeks (w8) by bidirectional pyrophosphorolysis-activated polymerization, droplet digital PCR or next-generation sequencing depending on the mutation type. Radiological evaluation of efficacy of treatment was carried out by using immune-related response criteria.ctDNA was detected at baseline in 10 out of 15 patients. At w8, a significant correlation (r = 0.86; P = 0.002) was observed between synchronous changes in ctDNA levels and tumor size. Patients in whom ctDNA levels became undetectable at w8 presented a marked and lasting response to therapy. ctDNA detection at w8 was also a significant prognostic factor in terms of progression-free survival (hazard ratio = 10.2; 95% confidence interval 2.5-41, P 0.001) and overall survival (hazard ratio = 15; 95% confidence interval 2.5-94.9, P = 0.004).This proof-of-principle study is the first to demonstrate that quantitative ctDNA monitoring is a valuable tool to assess tumor response in patients treated with anti-PD-1 drugs.
- Published
- 2017
41. Abstract P2-03-04: Lymphovascular invasion in breast carcinoma following neodjuvant chemotherapy is a strong prognosis factor
- Author
-
Enora Laas, T Balezeau, A-S Hamy-Petit, Véronique Becette, Lauren Darrigues, F Reyal, F-C Bidard, Marick Laé, Florence Lerebours, Alain Livartowski, A Vincent-Salomon, E. Brain, G-T Lam, B Sadacca, Julien Guerin, J-Y Pierga, and Roman Rouzier
- Subjects
Oncology ,Cancer Research ,Chemotherapy ,medicine.medical_specialty ,business.industry ,Lymphovascular invasion ,medicine.medical_treatment ,Internal medicine ,Medicine ,business ,Breast carcinoma - Abstract
Purpose : Lymphovascular invasion (LVI) is a poor prognosis factor in breast cancer (BC), but data on its value in the neoadjuvant setting is scarce. This study evaluates the relationships between post-NAC LVI and prognosis in BC. Methods: We identified 1197 patients with primary BC receiving NAC +/- trastuzumab between 2002 and 2011. Information on LVI in post-NAC surgical specimen was retrieved from review of medical charts. Univariate and multivariate analyses were performed to assess the association of clinical, pathological factors with disease free survival (DFS) and overall survival (OS) was assessed using a cox proportional hazard model. Results: On 1197 tumors, 528 were luminal (44.1%), 375 were triple negative breast cancer (TNBC) (31.3%) and 294 were HER2-positive (24.6%). On post-NAC surgical specimens, LVI was present in 302 (25.2%), absent in 531 (44.4%), and was not mentionned in 364 cases (30.4%). The presence of post-NAC LVI was associated with an impaired DFS (HR=2.17, 95 CI [1.65 - 2.86], p Table 1 Univariate analysis and multivariate analysis on DFS (whole population) Univariate Multivariate VariableClassHRClpHRCIpAge< 451 0.35 45-550.82[0.62 - 1.08] >550.87[0.64 - 1.19] Menopausal statuspremenopausal1.04[0.81 - 1.34]0.75 postmenopausal1 BMI class19-251 < 191.24[0.75 - 2.05]0.41 > 251.36[1.06 - 1.75]0.01 Tumor sizeT1-T21 T31.77[1.38 - 2.27]201.54[1.06 - 2.22]0.02 Mitotic index≤221 >221.18[0.9 - 1.53]0.23 DCIS componentno1 yes1.33[0.88 - 2.01]0.18 Pre-NAC LVIno1 yes1.35[0.88 - 2.01]0.09 ER statusnegative1 positive0.72[0.56 - 0.91] Post-NAC LVI was an independent predictor of poor DFS, that overwhelmed the prognostic impact of pathological complete response in all 3 BC subtypes. Post-NAC LVI was also an independent predictor of poor OS in the whole cohort and in all BC subtypes. Table 1 resumes univariate and multivariate analysis on DFS in whole population. Conclusion: Post-NAC LVI is a strong independent prognostic factor associated with poor DFS and OS, that (i) should be systematically mentioned in pathological reports following NAC and (ii) could be used to select high risk patients candidates to second line trials in the post-neoadjuvant window. Citation Format: Hamy-Petit A-S, Lam G-T, Laas E, Darrigues L, Balezeau T, Guerin J, Livartowski A, Sadacca B, Pierga J-Y, Vincent-Salomon A, Bidard F-C, Lerebours F, Brain E, Becette V, Rouzier R, Lae M, Reyal F. Lymphovascular invasion in breast carcinoma following neodjuvant chemotherapy is a strong prognosis factor [abstract]. In: Proceedings of the 2017 San Antonio Breast Cancer Symposium; 2017 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2018;78(4 Suppl):Abstract nr P2-03-04.
- Published
- 2018
- Full Text
- View/download PDF
42. Abstract P2-03-04: Lymphovascular invasion in breast carcinoma following neodjuvant chemotherapy is a strong prognosis factor
- Author
-
Hamy-Petit, A-S, primary, Lam, G-T, additional, Laas, E, additional, Darrigues, L, additional, Balezeau, T, additional, Guerin, J, additional, Livartowski, A, additional, Sadacca, B, additional, Pierga, J-Y, additional, Vincent-Salomon, A, additional, Bidard, F-C, additional, Lerebours, F, additional, Brain, E, additional, Becette, V, additional, Rouzier, R, additional, Lae, M, additional, and Reyal, F, additional
- Published
- 2018
- Full Text
- View/download PDF
43. Abstract P3-06-11: Withdrawn
- Author
-
Hamy, A-S, primary, Val de Lièvre, C, additional, Laas, E, additional, Darrigues, L, additional, Priour, M, additional, Guerin, J, additional, Balezeau, T, additional, Livartowski, A, additional, Pierga, J-Y, additional, Escalup, L, additional, Asselain, B, additional, Rouzier, R, additional, Lae, M, additional, Decroze, D, additional, Pinheiro, A, additional, Laurent, C, additional, and Reyal, F, additional
- Published
- 2018
- Full Text
- View/download PDF
44. Quantitative Fluorescence in Situ Hybridization in Lung Cancer as a Diagnostic Marker
- Author
-
Truong, Khuong, Gerbault-Seureau, Michèle, Guilly, Marie-Noëlle, Vielh, Philippe, Zalcman, Gérard, Livartowski, Alain, Chapelier, Alain, Poupon, Marie-France, Dutrillaux, Bernard, and Malfoy, Bernard
- Published
- 1999
- Full Text
- View/download PDF
45. Abstract P4-13-14: Lung cancer after treatment of breast cancer:retrospective study from Curie Institut
- Author
-
A Livartowski, S Sebbagh, YM Kirova, and M Cosquer
- Subjects
Oncology ,Cancer Research ,medicine.medical_specialty ,business.industry ,medicine.medical_treatment ,Lumpectomy ,Cancer ,medicine.disease ,Small-cell carcinoma ,Radiation therapy ,Breast cancer ,Internal medicine ,medicine ,Carcinoma ,Adenocarcinoma ,Lung cancer ,business - Abstract
Background: Few studies have evaluated the effects of adjuvant radiotherapy (RT)of breast cancer(BC). The relation between the risk of lung carcinoma and radiotherapy have been controversial. Methods and materials: We retrospectively studied 127 patients treated at the Institut Curie with non metastatic breast cancer and lung carcinoma between 2000 and 2011(2/3 of BC apperead befor lung). Confirmation Diagnosis bronchial cancer obtained by: biopsy: histological data:architecture, IHC (HR, HER 2, TTF1), EGFR, Kras statut clinical and radiological Correlation. Comparison with breast tumor Results: BC: median age at diagnosis 54 years, predominatly invasive ductual carcinoma(IDC), lumpectomy 78%, mastectomy 21%. Lung cancer: median age at diagnosis: 63 years, 67 smokers. histology: 52 % Adenocarcinoma, 18.1 % scamous cell carcinoma, 18.1% large cell carcinoma, 13.4 % small cell carcinoma. EGFR mutation in 4.3%. 109 patients underwent RT (3 cases of lung cancer befor BC):Region: internal mammary chain: 46, supracalvicular: 42, axillary: 21. Technique: lateral decubitus position: 44, dorsal decubitus position: 57. Interval between breast and lung cancer: 0–3 years: 24.4%, 3–5 years: 15%, 6–10years: 16.5%, 11–20 years: 28%, >20 years: peak of incidence of lung cancer in the 3 years of diagnosis of breast cancer: 24.4 %. There was no apparent relation between treatment of BC and relative risk of developing lung carcinoma. 2nd peak between 11–20 years: 32 % patients, suggest that RT may increase risk of lung carcinoma (latency period for radiation induced second malignancy). Conclusion: This study suggest that adjuvant RT is associated with a real but small risk of developing lung carcinoma. Citation Information: Cancer Res 2012;72(24 Suppl):Abstract nr P4-13-14.
- Published
- 2012
- Full Text
- View/download PDF
46. Survival of breast cancer patients with meningeal carcinomatosis
- Author
-
Véronique Diéras, Laurent Mignot, J-Y Pierga, François-Clément Bidard, Paul Cottu, Hélène Gauthier, Véronique Girre, Valérie Laurence, Alain Livartowski, and M.N. Guilhaume
- Subjects
Adult ,Antimetabolites, Antineoplastic ,medicine.medical_specialty ,Hydrocortisone ,Anti-Inflammatory Agents ,Leucovorin ,Breast Neoplasms ,Gastroenterology ,Folinic acid ,Breast cancer ,Internal medicine ,medicine ,Humans ,Neoplasm Metastasis ,Survival rate ,Aged ,Neoplasm Staging ,Performance status ,business.industry ,Carcinoma, Ductal, Breast ,Cancer ,Hematology ,Middle Aged ,Prognosis ,medicine.disease ,Chemotherapy regimen ,Surgery ,Survival Rate ,Carcinoma, Lobular ,Methotrexate ,Meningeal carcinomatosis ,Oncology ,Vitamin B Complex ,Drug Therapy, Combination ,Female ,Breast disease ,business ,Meningeal Carcinomatosis ,medicine.drug - Abstract
Background: Breast cancer is the leading nonhematologic cause of meningeal carcinomatosis (MC). The aim of this study was to report the outcome of patients diagnosed with breast cancer MC and treated in single institution by a high-dose intrathecal methotrexate (MTX) regimen. Methods: Ninety-one patients were diagnosed with breast cancer MC from 2000 to 2007. Intrathecal treatment was MTX 15 mg/day (days 1-5), hydrocortisone acetate (day 1) and oral folinic acid (days 1-5), repeated every 2 weeks. Patients and tumor characteristics were associated with the early clinical and biological outcome and with the overall survival (OS). Results: The median survival was 4.5 months (range 0-53). In multivariate analysis, adverse prognostic factors at diagnosis were performance status >2 [P = 0.006, response rate (RR) = 0.33 (0.15-0.71)], more than three chemotherapy regimens before MC diagnosis [P = 0.03, RR = 0.40 (0.19-0.93)], negative hormone receptor status [P = 0.02, RR = 0.4 (0.19-0.90)] and high Cyfra 21-1 level [P = 0.048, RR = (0.09-0.99)]. Clinical progression after one cycle and biological response after two cycles were independently associated with OS [P < 0.001, RR = 0.09 (0.02-0.37) and P = 0.003, RR = 3.6 (1.5-8.5), respectively]. We propose a prognostic score in order to define three distinct groups of prognosis. Conclusions: MC presents a poor prognosis, but 1-year survival rate was 25%. This score may become a useful tool for treatment decision and clinical trials.
- Published
- 2010
- Full Text
- View/download PDF
47. Use of a Pleural Implantable Access System for the Management of Malignant Pleural Effusion: The Institut Curie Experience
- Author
-
Sophie Di Maria, Irène Kriegel, Alain Livartowski, Regine Levesque, Catherine Daniel, Marc Esteve, and Gabriela Patrubani
- Subjects
Adult ,Male ,Pulmonary and Respiratory Medicine ,medicine.medical_specialty ,Palliative care ,Adolescent ,medicine.medical_treatment ,Thoracentesis ,Severity of Illness Index ,Catheterization ,Catheters, Indwelling ,Port (medical) ,Recurrence ,medicine ,Humans ,Malignant pleural effusion ,Prospective Studies ,Aged ,Aged, 80 and over ,business.industry ,Palliative Care ,Equipment Design ,Middle Aged ,Pleural cavity ,medicine.disease ,Pleural Effusion, Malignant ,Surgery ,Catheter ,Pneumonia ,Treatment Outcome ,medicine.anatomical_structure ,Equipment and Supplies ,Drainage ,Female ,Safety ,Cardiology and Cardiovascular Medicine ,business ,Pleurodesis ,Follow-Up Studies - Abstract
Purpose Malignant pleural effusion has a very poor prognosis, raises problems of medical management, and impairs quality of life. The authors report the first experience of a pleural implantable access system for the treatment of recurrent symptomatic malignant pleural effusion. Description Prospective follow-up of 29 patients between August 20, 2005 and August 1, 2007 in a single center. Thirty-four pleural implantable access systems were placed in 29 patients (23 patients with breast cancers, 4 patients with bilateral placements, and 1 patient with a replacement) under sedation after the decision of a multidisciplinary meeting. Evaluation Twenty-eight patients obtained partial or complete relief of their dyspnea. Six patients underwent pleurodesis after a maximum of 2 months. Fifteen patients were receiving chemotherapy at the time of placement. Seven patients died at the Institut Curie or in a palliative care unit without returning home. The other 22 patients presented a total of 280 days of hospitalization for 2,717 days of catheter implantation. No placement failures were observed in this series. Two infectious complications (infectious pneumonia and skin infection over the puncture site) and two mechanical complications (expulsion of the port and disconnection between the port and the catheter) were observed and easily treated. One patient had loculation of the pleural cavity develop after 16 thoracenteses making further thoracentesis ineffective. Conclusions The pleural implantable access system is an interesting alternative in terms of efficacy and safety for the outpatient management of malignant pleural effusion. It presents a number of advantages in terms of comfort and infectious risk compared with tunnelled pleural catheters.
- Published
- 2007
- Full Text
- View/download PDF
48. In vivo efficacy of STI571 in xenografted human small cell lung cancer alone or combined with chemotherapy
- Author
-
Jean-Gabriel Judde, Pierre Pouillart, Carine Tran-Perennou, Fariba Nemati, Xavier Sastre, Didier Decaudin, Marie-France Poupon, Paul Fréneaux, Patricia de Cremoux, and Alain Livartowski
- Subjects
Cancer Research ,Pathology ,medicine.medical_specialty ,Lung Neoplasms ,Receptor, Platelet-Derived Growth Factor alpha ,medicine.medical_treatment ,Transplantation, Heterologous ,Mice, Nude ,Apoptosis ,Piperazines ,Immunoenzyme Techniques ,Receptor, Platelet-Derived Growth Factor beta ,Mice ,chemistry.chemical_compound ,Antineoplastic Combined Chemotherapy Protocols ,medicine ,Animals ,Humans ,Ifosfamide ,Carcinoma, Small Cell ,Kinase activity ,Lung cancer ,Etoposide ,Cell Proliferation ,Chemotherapy ,biology ,business.industry ,medicine.disease ,Proto-Oncogene Proteins c-kit ,Pyrimidines ,Oncology ,chemistry ,Benzamides ,Imatinib Mesylate ,biology.protein ,Cancer research ,Topotecan ,Growth inhibition ,business ,Platelet-derived growth factor receptor ,medicine.drug - Abstract
STI571, or imatinib, selectively inhibits BCR/ABL, PDGFR and c-kit kinase activity. It has been reported that a large proportion of small cell lung cancer (SCLC) cell lines and tumors express c-kit and that STI571 inhibits tumor cell growth. We therefore investigated the therapeutic efficacy of STI571, alone or combined with chemotherapy, in human SCLC cells or tumors xenografted into nude mice. The level of c-kit mRNA expression was variable in SCLC tumors (positive for 2 of 4 xenografts), and c-kit protein was not detected by immunohistochemistry. On the 4 xenografted tumors, PDGFRalpha and PDGFRbeta were not detected by immunohistochemistry. STI571 induced inhibition of proliferation of the SCLC6 cell line without inducing apoptosis; in contrast, in combination with etoposide or topotecan, the growth inhibition of SCLC6 cells induced by STI571 was increased, with apoptotic DNA fragmentation. Four human SCLC xenografts (SCLC6, SCLC61, SCLC74 and SCLC108) were transplanted into mice. After intraperitoneal injection of STI571, we observed 80%, 40% and 78% growth inhibition of SCLC6, SCLC61 and SCLC108 tumors, respectively, without any significant inhibition of SCLC74 tumor growth. In mice bearing responsive SCLC tumors, we observed an increase of growth inhibition induced by chemotherapy (etoposide + ifosfamide or topotecan) by concomitant and continuous administration of STI571, associated with an increase of toxic deaths. In SCLC6-bearing mice receiving sequential treatments, we observed a reduction of toxic deaths but a decrease of synergistic antitumor efficacy. In conclusion, the efficacy of STI571 alone in SCLC xenografted tumors was variable and did not depend on c-kit expression. Moreover, a significant increase of chemotherapy-induced growth inhibition was obtained by concomitant administration of STI571 that should be carefully investigated in SCLC patients.
- Published
- 2004
- Full Text
- View/download PDF
49. Percutaneous Vertebroplasty in Vertebral Metastases from Breast Cancer: Interest in Terms of Pain Relief and Quality of Life
- Author
-
Pascal Astagneau, Evelyne Cormier, Jacques Chiras, M. Rose, Héctor Manuel Barragán-Campos, Marianne Doz, Anne-Laurence Le Faou, and Alain Livartowski
- Subjects
Adult ,medicine.medical_specialty ,medicine.medical_treatment ,Pain relief ,Pain ,Breast Neoplasms ,Percutaneous vertebroplasty ,Breast cancer ,Postoperative Complications ,medicine ,Humans ,Pain Management ,In patient ,Aged ,Pain Measurement ,Vertebroplasty ,Spinal Neoplasms ,Performance status ,medicine.diagnostic_test ,business.industry ,Mortality rate ,Retrospective cohort study ,Magnetic resonance imaging ,Original Articles ,Middle Aged ,medicine.disease ,Magnetic Resonance Imaging ,Surgery ,Treatment Outcome ,Quality of Life ,Female ,business ,Tomography, X-Ray Computed ,Follow-Up Studies - Abstract
Percutaneous vertebroplasty (PV) is a therapeutic option in patients with vertebral metastases (VM). However its efficacy in pain relief, improvement in quality of life and safety in patients with VM from breast cancer has not been reported. We present a longitudinal retrospective study of 31 consecutively treated female patients with VM from breast cancer where 88 vertebrae were treated in 44 sessions of PV, in which osteolytic, osteoblastic and mixed lesions were recorded. The visual analogue pain scale (VAS) was used to evaluate pain pre-PV, at one, three, six and 12 months post-PV. The Eastern Cooperative Group (ECOG) performance status scale was used at the same time intervals to measure quality of life: 90.3% pain relief was identified with a VAS reduction from 5.7 ± 2.0 pre-PV to 2.9 ± 2.2 post-PV at one-month follow-up (p
- Published
- 2014
50. Interstrain Variations in the Cytomegalovirus (CMV) Glycoprotein B Gene Sequence among CMV-Infected Children Attending Six Day Care Centers
- Author
-
Jeanne Boucher, Paul Dény, Jean-Claude Nicolas, Philippe Reinert, Catherine Asselot, Monique Rauzy, Serge Lasry, Chantal Guyot, Alain Livartowski, and Marie-Claude Leroux
- Subjects
Human cytomegalovirus ,Molecular Sequence Data ,Congenital cytomegalovirus infection ,Cytomegalovirus ,medicine.disease_cause ,Polymerase Chain Reaction ,Vial ,Herpesviridae ,Virus ,Viral Envelope Proteins ,Betaherpesvirinae ,medicine ,Humans ,Immunology and Allergy ,Base Sequence ,biology ,Infant, Newborn ,Genetic Variation ,Infant ,Sequence Analysis, DNA ,medicine.disease ,biology.organism_classification ,Virology ,Infectious Diseases ,Cytomegalovirus Infections ,Immunology ,Coinfection ,Viral disease - Abstract
Using the shell vial assay and sequence analysis of a variable region of the glycoprotein B (gB) gene, cytomegalovirus (CMV) excretion rates in urine and virus transmission were studied among 93 children from six day care centers (DCCs). During a 6-month period, excretion rates differed significantly between DCCs (P < .001). The 6 gB gene sequences, obtained from 24 CMV-infected children, were classified in four previously defined groups. In five DCCs, 2 or 3 strains cocirculated, and none was dominant. Infection could have been acquired outside the DCC for 2 children and inside it for 9. Two children from the same DCC had mixed infections. No differences in hygiene, child care practices, or experience and level of qualification of the staff could explain this wide variety of excretion rates between DCCs. The distribution of gB gene patterns observed does not suggest that 1 type was dominant or more efficiently transmitted.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.