24 results on '"Koziarz, Vincent"'
Search Results
2. Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
- Author
-
Koziarz, Vincent and Nguyen, Duc-Manh
- Subjects
Mathematics - Geometric Topology ,Mathematics - Algebraic Geometry ,Mathematics - Differential Geometry ,14D23, 14D07, 51M15 - Abstract
Let $S$ be a connected closed oriented surface of genus $g$. Given a triangulation (resp. quadrangulation) of $S$, define the index of each of its vertices to be the number of edges originating from this vertex minus $6$ (resp. minus $4$). Call the set of integers recording the non-zero indices the profile of the triangulation (resp. quadrangulation). If $\kappa$ is a profile for triangulations (resp. quadrangulations) of $S$, for any $m\in \mathbb{Z}_{>0}$, denote by $\mathscr{T}(\kappa,m)$ (resp. $\mathscr{Q}(\kappa,m)$) the set of (equivalence classes of) triangulations (resp. quadrangulations) with profile $\kappa$ which contain at most $m$ triangles (resp. squares). In this paper, we will show that if $\kappa$ is a profile for triangulations (resp. for quadrangulations) of $S$ such that none of the indices in $\kappa$ is divisible by $6$ (resp. by $4$), then $\mathscr{T}(\kappa,m)\sim c_3(\kappa)m^{2g+|\kappa|-2}$ (resp. $\mathscr{Q}(\kappa,m) \sim c_4(\kappa)m^{2g+|\kappa|-2}$), where $c_3(\kappa) \in \mathbb{Q}\cdot(\sqrt{3}\pi)^{2g+|\kappa|-2}$ and $c_4(\kappa)\in \mathbb{Q}\cdot\pi^{2g+|\kappa|-2}$. The key ingredient of the proof is a result of J. Koll\'ar on the link between the curvature of the Hogde metric on vector subbundles of a variation of Hodge structure over algebraic varieties, and Chern classes of their extensions. By the same method, we also obtain the rationality (up to some power of $\pi$) of the Masur-Veech volume of arithmetic affine submanifolds of translation surfaces that are transverse to the kernel foliation., Comment: 24 pages, to appear in Journal de l'Ecole Polytechnique: Math\'ematiques
- Published
- 2020
3. Stability of the Albanese fibration on the Cartwright-Steger surface
- Author
-
Koziarz, Vincent and Yeung, Sai-Kee
- Subjects
Mathematics - Algebraic Geometry - Abstract
We verify that the Albanese fibration of the Cartwright-Steger surface is stable, answering a problem left open in [CKY].
- Published
- 2020
4. The Bolza curve and some orbifold ball quotient surfaces
- Author
-
Koziarz, Vincent, Rito, Carlos, and Roulleau, Xavier
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Geometric Topology ,22E40 (14L30 20H15 14J26) - Abstract
We study Deraux's non arithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient $X$ of a particular Abelian surface $A$. Using the fact that $A$ is the Jacobian of the Bolza genus $2$ curve, we identify $X$ as the weighted projective plane $\mathbb{P}(1,3,8)$. We compute the equation of the mirror $M$ of the orbifold ball quotient $(X,M)$ and by taking the quotient by an involution, we obtain an orbifold ball quotient surface with mirror birational to an interesting configuration of plane curves of degrees $1,2$ and $3$. We also exhibit an arrangement of four conics in the plane which provides the above-mentioned ball quotient orbifold surfaces.
- Published
- 2019
5. Stability of the Albanese Fibration on the Cartwright-Steger Surface
- Author
-
Koziarz, Vincent and Yeung, Sai-Kee
- Published
- 2021
6. Complex hyperbolic volume and intersection of boundary divisors in moduli spaces of genus zero curves
- Author
-
Koziarz, Vincent and Nguyen, Duc-Manh
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Geometric Topology - Abstract
We show that the complex hyperbolic metrics defined by Deligne-Mostow and Thurston on ${\mathcal{M}}_{0,n}$ are singular K\"ahler-Einstein metrics when ${\mathcal{M}}_{0,n}$ is embedded in the Deligne-Mumford-Knudsen compactification $\overline{\mathcal{M}}_{0,n}$. As a consequence, we obtain a formula computing the volumes of ${\mathcal{M}}_{0,n}$ with respect to these metrics using intersection of boundary divisors of $\overline{\mathcal{M}}_{0,n}$. In the case of rational weights, following an idea of Y. Kawamata, we show that these metrics actually represent the first Chern class of some line bundles on $\overline{\mathcal{M}}_{0,n}$, from which other formulas computing the same volumes are derived., Comment: Added a new expression of the divisor whose self-intersection computes the volume in Theorem 1.1. Exposition improved
- Published
- 2016
7. Maximal representations of uniform complex hyperbolic lattices
- Author
-
Koziarz, Vincent and Maubon, Julien
- Subjects
Mathematics - Differential Geometry ,Mathematics - Algebraic Geometry - Abstract
Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset{\rm SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $H$. We prove that necessarily $H={\rm SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from complex hyperbolic space to the symmetric space associated to ${\rm SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of ${\rm SU}(p,q)$, the representation $\rho$ extends to a representation of ${\rm SU}(n,1)$ in ${\rm SU}(p,q)$., Comment: 35 pages. Final version before publication
- Published
- 2015
8. On the Cartwright-Steger surface
- Author
-
Cartwright, Donald I., Koziarz, Vincent, and Yeung, Sai-Kee
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Complex Variables - Abstract
In this article, we study various concrete algebraic and differential geometric properties of the Cartwright-Steger surface. In particular, we determine the genus of a generic fiber of the Albanese fibration, and deduce that the singular fibers are not totally geodesic, answering an open problem about fibrations of a complex ball quotient over a Riemann surface., Comment: A longer version of this paper, which contains some geometric results we have omitted here, provides more details of some calculations, and adopts a different approach to proving some results, can be found on the webpage of the first named author (see reference [CKY]). It is an update of version 1 of this paper
- Published
- 2014
9. On the equidistribution of totally geodesic submanifolds in compact locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors
- Author
-
Koziarz, Vincent and Maubon, Julien
- Subjects
Mathematics - Differential Geometry ,Mathematics - Algebraic Geometry - Abstract
We prove an equidistribution result for totally geodesic submanifolds in a compact locally symmetric space. In the case of Hermitian locally symmetric spaces, this gives a convergence theorem for currents of integration along totally geodesic subvarieties. As a corollary, we obtain that on a complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self intersection. More generally, we prove that there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of the noncompact type of dimension at least 2., Comment: The paper has been substantially rewritten. Corollary 1.3 in the previous versions was false as stated. This has been corrected (see Corollary 1.5). The main results are not affected
- Published
- 2014
10. Extensions with estimates of cohomology classes
- Author
-
Koziarz, Vincent
- Subjects
Mathematics - Complex Variables ,Mathematics - Algebraic Geometry - Abstract
We prove an extension theorem of "Ohsawa-Takegoshi type" for Dolbeault q$-classes of cohomology ($q\geq 1$) on smooth compact hypersurfaces in a weakly pseudoconvex K\"ahler manifold, Comment: to appear in Manuscripta Mathematica
- Published
- 2010
11. On the second cohomology of K\'ahler groups
- Author
-
Klingler, Bruno, Koziarz, Vincent, and Maubon, Julien
- Subjects
Mathematics - Differential Geometry ,Mathematics - Algebraic Geometry ,Mathematics - Geometric Topology - Abstract
Carlson and Toledo conjectured that any infinite fundamental group $\Gamma$ of a compact K\"ahler manifold satisfies $H^2(\Gamma,\R)\not =0$. We assume that $\Gamma$ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ($\C$-VHS) on the K\"ahler manifold. We prove the conjecture under some assumption on the $\C$-VHS. We also study some related geometric/topological properties of period domains associated to such $\C$-VHS., Comment: 21 pages. Exposition improved. Final version
- Published
- 2010
12. Numerical character of the effectivity of adjoint line bundles
- Author
-
Campana, Frédéric, Koziarz, Vincent, and Paun, Mihai
- Subjects
Mathematics - Algebraic Geometry - Abstract
In this note we show that given a lc pair $(X, \Delta)$, a large enough multiple of the bundle $K_X+ \Delta$ is effective provided that its Chern class contains an effective $\bQ$-divisor., Comment: Corollary 3 was modified, the rest is unchanged
- Published
- 2010
13. The Toledo invariant on smooth varieties of general type
- Author
-
Koziarz, Vincent and Maubon, Julien
- Subjects
Mathematics - Differential Geometry ,Mathematics - Algebraic Geometry - Abstract
We propose a definition of the Toledo invariant for representations of fundamental groups of smooth varieties of general type into semisimple Lie groups of Hermitian type. This definition allows to generalize the results known in the classical case of representations of complex hyperbolic lattices to this new setting: assuming that the rank of the target Lie group is not greater than two, we prove that the Toledo invariant satisfies a Milnor-Wood type inequality and we characterize the corresponding maximal representations., Comment: 19 pages
- Published
- 2008
14. Nonexistence of holomorphic submersions between complex unit balls equivariant with respect to a lattice and their generalizations
- Author
-
Koziarz, Vincent and Mok, Ngaiming
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Differential Geometry - Abstract
In this article we prove first of all the nonexistence of holomorphic submersions other than covering maps between compact quotients of complex unit balls, with a proof that works equally well in a more general equivariant setting. For a non-equidimensional surjective holomorphic map between compact ball quotients, our method applies to show that the set of critical values must be nonempty and of codimension 1. In the equivariant setting the line of arguments extend to holomorphic mappings of maximal rank into the complex projective space or the complex Euclidean space, yielding in the latter case a lower estimate on the dimension of the singular locus of certain holomorphic maps defined by integrating holomorphic 1-forms. In another direction, we extend the nonexistence statement on holomorphic submersions to the case of ball quotients of finite volume, provided that the target complex unit ball is of dimension m>=2, giving in particular a new proof that a local biholomorphism between noncompact m-ball quotients of finite volume must be a covering map whenever m>=2. Finally, combining our results with Hermitian metric rigidity, we show that any holomorphic submersion from a bounded symmetric domain into a complex unit ball equivariant with respect to a lattice must factor through a canonical projection to yield an automorphism of the complex unit ball, provided that either the lattice is cocompact or the ball is of dimension at least 2.
- Published
- 2008
15. Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type
- Author
-
Koziarz, Vincent and Maubon, Julien
- Subjects
Mathematics - Differential Geometry - Abstract
Let G be either SU(p,2) with p>=2, Sp(2,R) or SO(p,2) with p>=3. The symmetric spaces associated to these G's are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of K\"{a}hler manifolds and Higgs bundles we study representations of uniform lattices of SU(m,1), m>1, into G. We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily G=SU(p,2) with p>=2m and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU(p,2)/S(U(p)xU(2)), on which it acts cocompactly.
- Published
- 2007
16. Harmonic maps and representations of non-uniform lattices of PU(m,1)
- Author
-
Koziarz, Vincent and Maubon, Julien
- Subjects
Mathematics - Differential Geometry - Abstract
We study representations of lattices of PU(m,1) into PU(n,1). We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m-space to complex hyperbolic n-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU(n,1) of non-uniform lattices in PU(1,1), and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices., Comment: v2: the case of lattices of PU(1,1) has been rewritten and is now treated in full generality + other minor modifications
- Published
- 2003
17. Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
- Author
-
Koziarz, Vincent, primary and Nguyen, Duc-Manh, additional
- Published
- 2021
- Full Text
- View/download PDF
18. Le caractère numérique de l’effectivité des systèmes linéaires adjoints
- Author
-
Campana, Frédéric, Koziarz, Vincent, Păun, Mihai, Institut Élie Cartan de Nancy (IECN), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2012
- Full Text
- View/download PDF
19. Harmonic maps and representations of non-uniform lattices of PU(m,1)
- Author
-
Koziarz, Vincent, Maubon, Julien, Institut Élie Cartan de Nancy (IECN), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), and Maubon, Julien
- Subjects
Mathematics - Differential Geometry ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,FOS: Mathematics ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] - Abstract
We study representations of lattices of PU(m,1) into PU(n,1). We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m-space to complex hyperbolic n-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU(n,1) of non-uniform lattices in PU(1,1), and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices., Comment: v2: the case of lattices of PU(1,1) has been rewritten and is now treated in full generality + other minor modifications
- Published
- 2004
20. On the equidistribution of totally geodesic submanifolds in compact locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors
- Author
-
Koziarz, Vincent, Maubon, Julien, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Mathematics - Algebraic Geometry ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,FOS: Mathematics ,Mathematics::Metric Geometry ,Mathematics::Differential Geometry ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) - Abstract
We prove an equidistribution result for totally geodesic submanifolds in a compact locally symmetric space. In the case of Hermitian locally symmetric spaces, this gives a convergence theorem for currents of integration along totally geodesic subvarieties. As a corollary, we obtain that on a complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self intersection. More generally, we prove that there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of the noncompact type of dimension at least 2., Comment: The paper has been substantially rewritten. Corollary 1.3 in the previous versions was false as stated. This has been corrected (see Corollary 1.5). The main results are not affected
21. Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below
- Author
-
HOCHARD, Raphaël, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Laurent Bessières, Bessières, Laurent, Koziarz, Vincent, Besson, Gérard, Carron, Gilles, Miles, Simon, Gérard Besson [Président], Gilles Carron [Rapporteur], Simon Miles [Rapporteur], and Vincent Koziarz
- Subjects
Flot de Ricci ,Espace métriques singuliers ,Ricci Flow ,Courbure de Ricci minorée ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Ricci curvature bounded from below ,Geometrie Riemannienne ,Geometric analysis ,Analyse géométrique ,Riemannian geometry ,Ricci limit spaces - Abstract
The Ricci Flow is a partial differential equation governing the evolution of a Riemannian metric depending on a time parameter t on a differential manifold. It was first introduced and studied by R. Hamilton, and eventually led to the solution of the Geometrization conjecture for closed three-dimensional manifolds by G. Perelman in 2001. The classical short-time existence theory for the Ricci Flow, due to Hamilton and Shi, asserts, in any dimension, the existence of a flow starting from any initial metric when the underlying manifold in compact, or for any complete initial metric with a bound on the norm of the curvature tensor otherwise. In the absence of such a bound, though, the conjecture is that starting from dimension 3 one can find such initial data for which there is no solution. In this thesis, we prove short-time existence theorems under hypotheses weaker than a bound on the norm of the curvature tensor. To do this, we introduce a general construction which, for any Riemannian metric g (not necessarily complete) on a manifold M, allows us to produce a solution to the equation of the flow on an open domain D of the space-time M * [0,T] which contains the initial time slice, with g as an initial datum. We proceed to show that under suitable hypotheses on g, one can control the shape of the domain D, so that in particular, D contains a subset of the form M * [0,t] with t>0 if g is complete. By « suitable hypothesis », we mean one of the following. In any case, we assume a lower bound on the volume of balls of radius at most 1, plus a) in dimension 3, a lower bound on the Ricci tensor, b) in dimension n, a lower bound on the so-called « isotropic curvature I » or c) in dimension n, a bound on the norm of the Ricci tensor, as well as a hypothesis which garanties the metric proximity of every ball of radius at most 1 with a ball of the same radius in a metric product between a three-dimensional metric space and a n-3 dimensional Euclidian factor. Moreover, with these existence results come estimates on the existence time and regularization properties of the flow, quantified in term of the hypotheses on the initial data. The possibility to regularize metrics, locally or globally, with such estimates has consequences in terms of the metric spaces obtained as limits, in the Gromov-Hausdorff topology, of sequences of manifolds uniformly satisfying a), b) or c). Indeed, the classical compactness theorems for the Ricci Flow allow for the extraction of a limit flow for any sequence of initial metrics uniformly satisfying the hypotheses and thus possessing a flow for a controlled amount of time. In the case when these metrics approach a singular space in the Gromov-Hausdorff topology, such a limit solution can be interpreted as a flow regularizing the singular limit space, the existence of which puts constraints on the topology of this space.; Le flot de Ricci est une équation aux dérivées partielles qui régit l’évolution d’une métrique riemannienne dépendant d’un paramètre de temps sur une variété différentielle. D’abord introduit et étudié par R. Hamilton, il est à l’origine de la solution de la conjecture de géométrisation des variétés compactes de dimension 3 par G. Perelman en 2001. La théorie classique concernant l’existence en temps court des solutions, due à Hamilton et à Shi, garantit (en dimension quelconque) l’existence d’un flot soit sur une variété compacte, soit lorsque la métrique initiale est complète avec une borne sur la norme du tenseur de courbure. En l’absence de cette borne, on conjecture qu’on peut trouver, à partir de la dimension 3, des données initiales pour lesquelles il n’existe pas de solution. Dans cette thèse, on démontre des théorèmes d’existence en temps court du flot sous des hypothèses plus faibles qu’une borne sur la norme du tenseur de courbure. Pour cela, on introduit une construction générale qui, pour une métrique riemannienne g quelconque sur une variété M, pas nécessairement complète, permet de produire une solution de l’équation du flot sur un domaine ouvert D de l’espace-temps M * [0,T] qui contient la tranche de temps initiale, avec g pour donnée initiale. On montre ensuite que sous des hypothèses adaptées sur la métrique g, on contrôle la forme du domaine D. En particulier, lorsque la métrique g est complète, D contient un ensemble de la forme M * [0,t], avec t>0, ce qui revient à dire qu’il existe un flot au sens classique dont la donnée initiale est g. Les « hypothèses adaptées » qui conduisent à des théorèmes d’existence sont de trois types. Dans tout les cas, on suppose une minoration uniforme du volume des boules de rayon au plus 1, à quoi on ajoute : a) en dimension 3, une minoration du tenseur de Ricci, b) en dimension n, une minoration d’une notion de courbure dite « courbure isotrope I » ou bien c) en dimension n, une borne sur la norme du tenseur de Ricci et une hypothèse qui garantit la proximité au sens métrique des boules de rayon au plus 1 avec une boule de même rayon dans un espace métrique obtenu comme le produit cartésien d’un espace de dimension 3 et d’un facteur euclidien de dimension n-3. De plus, avec ces résultats d’existence viennent des estimations sur les propriétés de régularisation du flot quantifiées en fonction des hypothèses sur la donnée initiale. La possibilité ainsi offerte de régulariser, globalement ou localement, pour un temps et avec des estimations quantifiés, une métrique initiale a des conséquence sur les espaces métriques singuliers obtenus comme limites, pour la distance de Gromov-Hausdorff, de suites de variétés satisfaisant uniformément aux conditions a), b) ou c). En effet, des théorèmes de compacité classiques pour le flot de Ricci permettent d’extraire un flot limite, étant donnée une suite de métriques initiales satisfaisant uniformément à ces hypothèses, et possédant donc toutes un flot pour un temps contrôlé. Lorsque les métriques en question approchent, pour la topologie de Gromov-Hausdorff, un espace singulier, cette solution limite s’interprète comme un flot régularisant l’espace singulier en question, et son existence contraint la topologie de cet espace singulier.
- Published
- 2019
22. Arakelov inequalities and semistable families of curves uniformized by the unit ball
- Author
-
DAMJANOVIC, Nikola, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Universiteit Leiden (Leyde, Pays-Bas), Vincent Koziarz, Robin De Jong, Bas Edixhoven, Xavier Roulleau [Rapporteur], Richard Wentworth [Rapporteur], Ben Moonen, Chris Peters, Mingmin Shen, Peter Stevenhagen, Koziarz, Vincent, Jong, Robin De, Edixhoven, Bas, Roulleau, Xavier, Wentworth, Richard, Moonen, Ben, Peters, Chris, Shen, Mingmin, and Stevenhagen, Peter
- Subjects
Cyclic coverings ,Courbes de Teichmüller ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Higgs bundles ,Fibrés de Higgs ,Familles de courbes semi-stables ,Variations of Hodge structures ,Ball quotients ,Teichmüller curves ,Semistable families of curves ,Revêtements cycliques ,Variations de structures de Hodge ,Quotients de la boule - Abstract
The main object of study in this thesis is an Arakelov inequality which bounds the degree of an invertible subsheaf of the direct image of the pluricanonical relative sheaf of a semistable family of curves. A natural problem that arises is the characterization of those families for which the equality is satisfied in that Arakelov inequality, i.e. the case of Arakelov equality. Few examples of such families are known. In this thesis we provide some examples by proving that the direct image of the bicanonical relative sheaf of a semistable family of curves uniformized by the unit ball, all whose singular fibers are totally geodesic, contains an invertible subsheaf which satisfies Arakelov equality.; L'objet principal de cette thèse est de démontrer une inégalité d'Arakelov qui consiste à borner le degré d'un sous-faisceau inversible de l'image directe d'un faisceau relatif pluricanonique d'une famille semi-stable de courbes. Un problème naturel qui apparaît est la caractérisation des familles pour lesquelles sont satisfaites le cas d'égalité dans l'inégalité d'Arakelov, i.e. le cas d'égalité d'Arakelov. Peu d'exemples de telles familles sont connus. Dans cette thèse nous en proposons plusieurs en prouvant que le faisceau relatif bicanonique d'une famille semi-stable de courbes uniformisée par la boule unité et dont toutes les fibres singulières sont totalement géodésiques contient un sous-faisceau inversible qui satisfait l'égalité d'Arakelov.
- Published
- 2018
23. Nonexistence of holomorphic submersions between complex unit balls equivariant with respect to a lattice and their generalizations
- Author
-
Ngaiming Mok, Vincent Koziarz, Institut Élie Cartan de Nancy (IECN), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, HKU, The University of Hong Kong (HKU), and Koziarz, Vincent
- Subjects
Unit sphere ,Mathematics - Differential Geometry ,Pure mathematics ,General Mathematics ,Holomorphic function ,Identity theorem ,01 natural sciences ,Mathematics - Algebraic Geometry ,0103 physical sciences ,FOS: Mathematics ,Hermitian manifold ,Analyticity of holomorphic functions ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,Biholomorphism ,Mathematics::Complex Variables ,Complex projective space ,010102 general mathematics ,Mathematical analysis ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Equivariant map ,010307 mathematical physics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] - Abstract
In this article we prove first of all the nonexistence of holomorphic submersions other than covering maps between compact quotients of complex unit balls, with a proof that works equally well in a more general equivariant setting. For a non-equidimensional surjective holomorphic map between compact ball quotients, our method applies to show that the set of critical values must be nonempty and of codimension 1. In the equivariant setting the line of arguments extend to holomorphic mappings of maximal rank into the complex projective space or the complex Euclidean space, yielding in the latter case a lower estimate on the dimension of the singular locus of certain holomorphic maps defined by integrating holomorphic 1-forms. In another direction, we extend the nonexistence statement on holomorphic submersions to the case of ball quotients of finite volume, provided that the target complex unit ball is of dimension m>=2, giving in particular a new proof that a local biholomorphism between noncompact m-ball quotients of finite volume must be a covering map whenever m>=2. Finally, combining our results with Hermitian metric rigidity, we show that any holomorphic submersion from a bounded symmetric domain into a complex unit ball equivariant with respect to a lattice must factor through a canonical projection to yield an automorphism of the complex unit ball, provided that either the lattice is cocompact or the ball is of dimension at least 2.
- Published
- 2008
24. Variétés affines Hermite-Lorentz
- Author
-
BARUCCHIERI, Bianca, Koziarz, Vincent, Mounoud, Pierre, Cornulier, Yves de, Frances, Charles, Bavard, Christophe, Dumitrescu, Sorin, Vincent Koziarz, Pierre Mounoud, Sorin Dumitrescu [Président], Yves de Cornulier [Rapporteur], Charles Frances [Rapporteur], and Christophe Bavard
- Subjects
Variétés affines ,Variétés Hermite-Lorentz ,Algèbres de Lie nilpotentes ,Groupes cristallographiques
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.