1. Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks
- Author
-
Williams, Josh, Ahlqvist, Haavard, Cunningham, Alexander, Kirby, Andrew, Katz, Ira, Fleming, John, Conway, Joy, Cunningham, Steve, Ozel, Ali, and Wolfram, Uwe
- Subjects
Physics - Medical Physics ,Computer Science - Computer Vision and Pattern Recognition ,Physics - Fluid Dynamics - Abstract
For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases., Comment: 37 pages main text (including frontmatter). 9 figures. Additional supplementary material
- Published
- 2023
- Full Text
- View/download PDF