15 results on '"KAMLAND"'
Search Results
2. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator
- Author
-
Yoshida, S. [Tohoku Univ., Sendai (Japan)]
- Published
- 2014
- Full Text
- View/download PDF
3. Neutron yield and energy spectrum of 13C(alpha,n)16O reaction in liquid scintillator of KamLAND: A Nedis-2m simulation
- Author
-
Hector Rene Vega-Carrillo, Nima Ghal-Eh, Gennady N. Vlaskin, and Sergey V. Bedenko
- Subjects
Physics ,Range (particle radiation) ,Detector ,13C(α,n)16O reaction cross section ,TK9001-9401 ,chemistry.chemical_element ,Neutron energy spectrum ,Alpha particle ,Scintillator ,Nuclear physics ,Nuclear Energy and Engineering ,chemistry ,KamLAND ,Nuclear engineering. Atomic power ,Neutron ,Neutrino ,Nuclear Experiment ,Carbon ,Energy (signal processing) ,Nedis-2m program Code - Abstract
The 13C (α,n)16O reaction cross-section is important data for nuclear physics, astrophysical, and neutrino physics experiments, however, they exhibit uncertainties due to the discrepancies in the experimental data. In this study, using the Nedis-2m program code, the energy spectrum of α-induced neutrons in a thin carbon target was calculated and the corresponding reaction cross-section was refined in the alpha particle energy range of 5–8 MeV. The results were used to calculate the intensity and energy spectrum of background neutrons produced in the liquid scintillator of KamLAND. The results will be useful in a variety of astrophysical and neutrino experiments especially those based on LS or Gd-LS detectors.
- Published
- 2021
4. Limits on Astrophysical Antineutrinos with the KamLAND Experiment
- Author
-
Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirahata, Y, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Ichikawa, A, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Hirata, S, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirahata Y., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Ichikawa A. K., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Hirata S., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., Dell'Oro S., Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirahata, Y, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Ichikawa, A, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Hirata, S, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirahata Y., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Ichikawa A. K., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Hirata S., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., and Dell'Oro S.
- Abstract
We report on a search for electron antineutrinos ( ) from astrophysical sources in the neutrino energy range 8.3-30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60-110 cm-2 s-1 (90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of 8B solar neutrinos converting into , (90% CL) assuming an undistorted shape. This corresponds to a solar flux of 60 cm-2 s-1 (90% CL) in the analysis energy range.
- Published
- 2022
5. Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events
- Author
-
Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Ichikawa, A, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Ichikawa A. K., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., Dell'Oro S., Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Ichikawa, A, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Ichikawa A. K., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., and Dell'Oro S.
- Abstract
We present the results of a search for MeV-scale electron antineutrino events in KamLAND coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antineutrino fluence between 108 and 1013 cm-2 for neutrino energies in the energy range of 1.8-111 MeV.
- Published
- 2021
6. Geoneutrinos and geoscience: an intriguing joint-venture
- Author
-
Bellini, G., Inoue, K., Mantovani, F., Serafini, A., Strati, V., and Watanabe, H.
- Subjects
Heat producing elements ,Antineutrinos detection, Borexino, Bulk silicate Earth, Heat producing elements, KamLAND, Radiogenic heat ,General Physics and Astronomy ,FOS: Physical sciences ,Antineutrinos detection ,Radiogenic heat ,NO ,High Energy Physics - Experiment ,Geophysics (physics.geo-ph) ,Physics - Geophysics ,High Energy Physics - Experiment (hep-ex) ,Borexino ,Bulk silicate Earth ,KamLAND - Abstract
The review is conceived to help the reader to interpret present geoneutrino results in the framework of Earth's energetics and composition. Starting from the comprehension of antineutrino production, propagation, and detection, the status of the geoneutrino field is presented through the description of the experimental and technological features of the Borexino and KamLAND ongoing experiments. The current understanding of the energetical, geophysical and geochemical traits of our planet is examined in a critical analysis of the currently available models. By combining theoretical models and experimental results, the mantle geoneutrino signal extracted from the results of the two experiments demonstrates the effectiveness in investigating deep earth radioactivity through geoneutrinos from different sites. The obtained results are discussed and framed in the puzzle of the diverse classes of formulated Bulk Silicate Earth models, analyzing their implications on planetary heat budget and composition. As a final remark, we present the engaging technological challenges and the future experiments envisaged for the next decade in the geoneutrino field., Comment: Submitted to "La Rivista del Nuovo Cimento"
- Published
- 2021
- Full Text
- View/download PDF
7. Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO
- Author
-
Zhao, J., Abusleme, A., Adam, T., Ahmad, S., Ahmed, R., Aiello, S., Akram, M., An, F., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., André, J. P. A. M., Auguste, D., Babic, A., Balashov, N., Baldini, W., Barresi, A., Basilico, D., Baussan, E., Bellato, M., Bergnoli, A., Birkenfeld, T., Blin, S., Blum, D., Blyth, S., Bolshakova, A., Bongrand, M., Bordereau, C., Breton, D., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Buscemi, M., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y., Cai, Z., Callegari, R., Cammi, A., Campeny, A., Cao, C., Cao, G., Cao, J., Caruso, R., Cerna, C., Chang, J., Chang, Y., Chen, P., Chen, P. -A, Chen, S., Chen, X., Chen, Y. -W, Chen, Y., Chen, Z., Cheng, J., Cheng, Y., Chetverikov, A., Chiesa, D., Chimenti, P., Chukanov, A., Claverie, G., Clementi, C., Clerbaux, B., Di Lorenzo, S. C., Corti, D., Dal Corso, F., Dalager, O., La Taille, C., Deng, J., Deng, Z., Depnering, W., Diaz, M., Ding, X., Ding, Y., Dirgantara, B., Dmitrievsky, S., Dohnal, T., Dolzhikov, D., Donchenko, G., Dong, J., Doroshkevich, E., Dracos, M., Druillole, F., Du, R., Du, S., Dusini, S., Dvorak, M., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D., Fan, L., Fang, J., Fang, W., Fargetta, M., Fedoseev, D., Fekete, V., Feng, L. -C, Feng, Q., Ford, R., Fournier, A., Gan, H., Gao, F., Garfagnini, A., Gavrikov, A., Giammarchi, M., Giaz, A., Giudice, N., Gonchar, M., Gong, G., Gong, H., Gornushkin, Y., Göttel, A., Grassi, M., Grewing, C., Gromov, V., Gu, M., Gu, X., Gu, Y., Guan, M., Guardone, N., Gul, M., Guo, C., Guo, J., Guo, W., Guo, X., Guo, Y., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hassan, M. S., He, M., He, W., Heinz, T., Hellmuth, P., Heng, Y., Herrera, R., Hor, Y., Hou, S., Hsiung, Y., Hu, B. -Z, Hu, H., Hu, J., Hu, S., Hu, T., Hu, Z., Huang, C., Huang, G., Huang, H., Huang, W., Huang, X., Huang, Y., Hui, J., Huo, L., Huo, W., Huss, C., Hussain, S., Ioannisian, A., Isocrate, R., Jelmini, B., Jen, K. -L, Jeria, I., Ji, X., Jia, H., Jia, J., Jian, S., Jiang, D., Jiang, W., Jiang, X., Jin, R., Jing, X., Jollet, C., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karaparambil, R., Kazarian, N., Khosonthongkee, K., Korablev, D., Kouzakov, K., Krasnoperov, A., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachenmaier, T., Landini, C., Leblanc, S., Lebrin, V., Lefevre, F., Lei, R., Leitner, R., Leung, J., Li, D., Li, F., Li, H., Li, J., Li, M., Li, N., Zhu, Z., Li, Q., Li, R., Li, S., Li, T., Li, W., Li, X., Li, Y., Li, Z., Liang, H., Zhuang, B., Liao, J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, G. -L, Lin, S., Lin, T., Ling, J., Lippi, I., Liu, F., Liu, H., Liu, J., Liu, M., Liu, Q., Liu, R., Liu, S., Liu, X., Liu, Y., Lokhov, A., Lombardi, P., Lombardo, C., Loo, K., Lu, C., Lu, H., Lu, J., Lu, S., Lu, X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Lukanov, A., Luo, F., Luo, G., Luo, P., Luo, S., Luo, W., Lyashuk, V., Ma, B., Ma, Q., Ma, S., Ma, X., Maalmi, J., Malyshkin, Y., Mandujano, R. C., Mantovani, F., Manzali, F., Mao, X., Mao, Y., Mari, S. M., Marini, F., Marium, S., Martellini, C., Martin-Chassard, G., Martini, A., Mayer, M., Mayilyan, D., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhöfer, D., Mezzetto, M., Miller, J., Miramonti, L., Montini, P., Montuschi, M., Müller, A., Nastasi, M., Naumov, D. V., Naumova, E., Navas-Nicolas, D., Nemchenok, I., Thi, M. T. N., Ning, F., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Orestano, D., Ortica, F., Othegraven, R., Pan, H. -R, Paoloni, A., Parmeggiano, S., Pei, Y., Pelliccia, N., Peng, A., Peng, H., Perrot, F., Petitjean, P. -A, Petrucci, F., Pilarczyk, O., Rico, L. F. P., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Qi, F., Qi, M., Qian, S., Qian, X., Qian, Z., Qiao, H., Qin, Z., Qiu, S., Rajput, M. U., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Ricci, B., Robens, M., Roche, M., Rodphai, N., Romani, A., Roskovec, B., Roth, C., Ruan, X., Rujirawat, S., Rybnikov, A., Andrei Sadovskiy, Saggese, P., Sanfilippo, S., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schwab, C., Schweizer, K., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shao, Z., Sharov, V., Shaydurova, A., Shi, J., Shi, Y., Shutov, V., Sidorenkov, A., Šimkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Sokolov, S., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Šrámek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Štefánik, D., Steiger, H., Steinmann, J., Sterr, T., Stock, M. R., Strati, V., Studenikin, A., Sun, S., Sun, X., Sun, Y., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Torri, M. D. C., Treskov, K., Triossi, A., Troni, G., Trzaska, W., Tuve, C., Ushakov, N., Den Boom, J., Waasen, S., Vanroyen, G., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Vollbrecht, M., Volpe, C., Vorobel, V., Voronin, D., Votano, L., Walker, P., Wang, C., Wang, C. -H, Wang, E., Wang, G., Wang, J., Wang, K., Wang, L., Wang, M., Zong, L., Wang, R., Wang, S., Wang, W., Zou, J., Wang, X., Wang, Y., Zhuang, H., Wang, Z., Waqas, M., Watcharangkool, A., Wei, L., Wei, W., Wei, Y., Wen, K., Wen, L., Wiebusch, C., Wong, S. C. -F, Wonsak, B., Wu, D., Wu, Q., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y., Xia, D., Xie, X., Xie, Y., Xie, Z., Xing, Z., Xu, B., Xu, C., Xu, D., Xu, F., Xu, H., Xu, J., Xu, M., Xu, Y., Yan, B., Yan, T., Yan, W., Yan, X., Yan, Y., Yang, A., Yang, C., Yang, H., Yang, J., Yang, L., Yang, X., Yang, Y., Zhu, K., Yao, H., Yasin, Z., Ye, J., Ye, M., Ye, Z., Yegin, U., Yermia, F., Yi, P., Yin, N., Yin, X., You, Z., Yu, B., Yu, C., Yu, H., Yu, M., Yu, X., Yu, Z., Yuan, C., Yuan, Y., Yuan, Z., Yue, B., Zafar, N., Zambanini, A., Zavadskyi, V., Zeng, S., Zeng, T., Zeng, Y., Zhan, L., Zhang, A., Zhang, F., Zhang, G., Zhang, H., Zhang, J., Zhang, P., Zhang, Q., Zhang, S., Zhang, T., Zhang, X., Zhang, Y., Zhang, Z., Zhao, F., Zhao, R., Zhao, S., Zhao, T., Zheng, D., Zheng, H., Zheng, M., Zheng, Y., Zhong, W., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, T., Zhou, X., Zhu, J., Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), JUNO, Abusleme A., Adam T., Ahmad S., Aiello S., Akram M., Ali N., An F., An G., An Q., Andronico G., Anfimov N., Antonelli V., Antoshkina T., Asavapibhop B., De Andre J.P.A.M., Auguste D., Babic A., Baldini W., Barresi A., Baussan E., Bellato M., Bergnoli A., Bernieri E., Biare D., Birkenfeld T., Blin S., Blum D., Blyth S., Bolshakova A., Bongrand M., Bordereau C., Breton D., Brigatti A., Brugnera R., Bruno R., Budano A., Buesken M., Buscemi M., Busto J., Butorov I., Cabrera A., Cai H., Cai X., Cai Y., Cai Z., Cammi A., Campeny A., Cao C., Cao G., Cao J., Caruso R., Cerna C., Chang J., Chang Y., Chen P., Chen P.-A., Chen S., Chen X., Chen Y.-W., Chen Y., Chen Z., Cheng J., Cheng Y., Chepurnov A., Chiesa D., Chimenti P., Chukanov A., Chuvashova A., Claverie G., Clementi C., Clerbaux B., Lorenzo S.C.D., Corti D., Costa S., Corso F.D., De La Taille C., Deng J., Deng Z., Depnering W., Diaz M., Ding X., Ding Y., Dirgantara B., Dmitrievsky S., Dohnal T., Donchenko G., Dong J., Dornic D., Doroshkevich E., Dracos M., Druillole F., Du S., Dusini S., Dvorak M., Enqvist T., Enzmann H., Fabbri A., Fajt L., Fan D., Fan L., Fang C., Fang J., Fargetta M., Fatkina A., Fedoseev D., Fekete V., Feng L.-C., Feng Q., Ford R., Formozov A., Fournier A., Gan H., Gao F., Garfagnini A., Gottel A., Genster C., Giammarchi M., Giaz A., Giudice N., Giuliani F., Gonchar M., Gong G., Gong H., Gorchakov O., Gornushkin Y., Grassi M., Grewing C., Gromov M., Gromov V., Gu M., Gu X., Gu Y., Guan M., Guardone N., Gul M., Guo C., Guo J., Guo W., Guo X., Guo Y., Hackspacher P., Hagner C., Han R., Han Y., He M., He W., Heinz T., Hellmuth P., Heng Y., Herrera R., Hong D., YuenKeung Hor, Hou S., Hsiung Y., Hu B.-Z., Hu H., Hu J., Hu S., Hu T., Hu Z., Huang C., Huang G., Huang H., Huang Q., Huang W., Huang X., Huang Y., Hui J., Huo W., Huss C., Hussain S., Insolia A., Ioannisian A., Ioannisyan D., Isocrate R., Jen K.-L., Ji X., Jia H., Jia J., Jian S., Jiang D., Jiang X., Jin R., Jing X., Jollet C., Joutsenvaara J., Jungthawan S., Kalousis L., Kampmann P., Kang L., Karagounis M., Kazarian N., Khan A., Khan W., Khosonthongkee K., Kinz P., Korablev D., Kouzakov K., Krasnoperov A., Krokhaleva S., Krumshteyn Z., Kruth A., Kutovskiy N., Kuusiniemi P., Lachenmaier T., Landini C., Leblanc S., Lefevre F., Lei L., Lei R., Leitner R., Leung J., Li D., Li F., Li H., Li J., Li K., Li M., Li N., Li Q., Li R., Li S., Li T., Li W., Li X., Li Y., Li Z., Liang H., Liang J., Liao J., Liebau D., Limphirat A., Limpijumnong S., Lin G.-L., Lin S., Lin T., Ling J., Lippi I., Liu F., Liu H., Liu J., Liu M., Liu Q., Liu R., Liu S., Liu X., Liu Y., Lokhov A., Lombardi P., Lombardo C., Loo K., Lu C., Lu H., Lu J., Lu S., Lu X., Lubsandorzhiev B., Lubsandorzhiev S., Ludhova L., Luo F., Luo G., Luo P., Luo S., Luo W., Lyashuk V., Ma Q., Ma S., Ma X., Maalmi J., Malyshkin Y., Mantovani F., Manzali F., Mao X., Mao Y., Mari S.M., Marini F., Marium S., Martellini C., Martin-Chassard G., Martini A., Mayilyan D., Muller A., Mednieks I., Meng Y., Meregaglia A., Meroni E., Meyhofer D., Mezzetto M., Miller J., Miramonti L., Monforte S., Montini P., Montuschi M., Morozov N., Muralidharan P., Nastasi M., Naumov D.V., Naumova E., Nemchenok I., Nikolaev A., Ning F., Ning Z., Nunokawa H., Oberauer L., Ochoa-Ricoux J.P., Olshevskiy A., Orestano D., Ortica F., Pan H.-R., Paoloni A., Parkalian N., Parmeggiano S., Payupol T., Pei Y., Pelliccia N., Peng A., Peng H., Perrot F., Petitjean P.-A., Petrucci F., Rico L.F.P., Pilarczyk O., Popov A., Poussot P., Pratumwan W., Previtali E., Qi F., Qi M., Qian S., Qian X., Qiao H., Qin Z., Qiu S., Rajput M., Ranucci G., Raper N., Re A., Rebber H., Rebii A., Ren B., Ren J., Rezinko T., Ricci B., Robens M., Roche M., Rodphai N., Romani A., Roskovec B., Roth C., Ruan X., Rujirawat S., Rybnikov A., Sadovsky A., Saggese P., Salamanna G., Sanfilippo S., Sangka A., Sanguansak N., Sawangwit U., Sawatzki J., Sawy F., Schever M., Schuler J., Schwab C., Schweizer K., Selivanov D., Selyunin A., Serafini A., Settanta G., Settimo M., Shahzad M., Sharov V., Shi G., Shi J., Shi Y., Shutov V., Sidorenkov A., Simkovic F., Sirignano C., Siripak J., Sisti M., Slupecki M., Smirnov M., Smirnov O., Sogo-Bezerra T., Songwadhana J., Soonthornthum B., Sotnikov A., Sramek O., Sreethawong W., Stahl A., Stanco L., Stankevich K., Stefanik D., Steiger H., Steinmann J., Sterr T., Stock M.R., Strati V., Studenikin A., Sun G., Sun S., Sun X., Sun Y., Suwonjandee N., Szelezniak M., Tang J., Tang Q., Tang X., Tietzsch A., Tkachev I., Tmej T., Treskov K., Triossi A., Troni G., Trzaska W., Tuve C., Van Waasen S., Van Den Boom J., Vanroyen G., Vassilopoulos N., Vedin V., Verde G., Vialkov M., Viaud B., Volpe C., Vorobel V., Votano L., Walker P., Wang C., Wang C.-H., Wang E., Wang G., Wang J., Wang K., Wang L., Wang M., Wang R., Wang S., Wang W., Wang X., Wang Y., Wang Z., Watcharangkool A., Wei L., Wei W., Wei Y., Wen L., Wiebusch C., Wong S.C.-F., Wonsak B., Wu D., Wu F., Wu Q., Wu W., Wu Z., Wurm M., Wurtz J., Wysotzki C., Xi Y., Xia D., Xie Y., Xie Z., Xing Z., Xu B., Xu D., Xu F., Xu J., Xu M., Xu Y., Yan B., Yan X., Yan Y., Yang A., Yang C., Yang H., Yang J., Yang L., Yang X., Yang Y., Yao H., Yasin Z., Ye J., Ye M., Yegin U., Yermia F., Yi P., Yin X., You Z., Yu B., Yu C., Yu H., Yu M., Yu X., Yu Z., Yuan C., Yuan Y., Yuan Z., Yue B., Zafar N., Zambanini A., Zeng P., Zeng S., Zeng T., Zeng Y., Zhan L., Zhang F., Zhang G., Zhang H., Zhang J., Zhang P., Zhang Q., Zhang S., Zhang T., Zhang X., Zhang Y., Zhang Z., Zhao F., Zhao J., Zhao R., Zhao S., Zhao T., Zheng D., Zheng H., Zheng M., Zheng Y., Zhong W., Zhou J., Zhou L., Zhou N., Zhou S., Zhou X., Zhu J., Zhu K., Zhuang H., Zong L., Zou J., Abusleme, A., Adam, T., Ahmad, S., Aiello, S., Akram, M., Ali, N., An, F., An, G., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., De Andre, J. P. A. M., Auguste, D., Babic, A., Baldini, W., Barresi, A., Baussan, E., Bellato, M., Bergnoli, A., Bernieri, E., Biare, D., Birkenfeld, T., Blin, S., Blum, D., Blyth, S., Bolshakova, A., Bongrand, M., Bordereau, C., Breton, D., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Buesken, M., Buscemi, M., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y., Cai, Z., Cammi, A., Campeny, A., Cao, C., Cao, G., Cao, J., Caruso, R., Cerna, C., Chang, J., Chang, Y., Chen, P., Chen, P. -A., Chen, S., Chen, X., Chen, Y. -W., Chen, Y., Chen, Z., Cheng, J., Cheng, Y., Chepurnov, A., Chiesa, D., Chimenti, P., Chukanov, A., Chuvashova, A., Claverie, G., Clementi, C., Clerbaux, B., Lorenzo, S. C. D., Corti, D., Costa, S., Corso, F. D., De La Taille, C., Deng, J., Deng, Z., Depnering, W., Diaz, M., Ding, X., Ding, Y., Dirgantara, B., Dmitrievsky, S., Dohnal, T., Donchenko, G., Dong, J., Dornic, D., Doroshkevich, E., Dracos, M., Druillole, F., Du, S., Dusini, S., Dvorak, M., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D., Fan, L., Fang, C., Fang, J., Fargetta, M., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. -C., Feng, Q., Ford, R., Formozov, A., Fournier, A., Gan, H., Gao, F., Garfagnini, A., Gottel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, M., Gromov, V., Gu, M., Gu, X., Gu, Y., Guan, M., Guardone, N., Gul, M., Guo, C., Guo, J., Guo, W., Guo, X., Guo, Y., Hackspacher, P., Hagner, C., Han, R., Han, Y., He, M., He, W., Heinz, T., Hellmuth, P., Heng, Y., Herrera, R., Hong, D., Yuenkeung, Hor, Hou, S., Hsiung, Y., Hu, B. -Z., Hu, H., Hu, J., Hu, S., Hu, T., Hu, Z., Huang, C., Huang, G., Huang, H., Huang, Q., Huang, W., Huang, X., Huang, Y., Hui, J., Huo, W., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Ioannisyan, D., Isocrate, R., Jen, K. -L., Ji, X., Jia, H., Jia, J., Jian, S., Jiang, D., Jiang, X., Jin, R., Jing, X., Jollet, C., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Korablev, D., Kouzakov, K., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachenmaier, T., Landini, C., Leblanc, S., Lefevre, F., Lei, L., Lei, R., Leitner, R., Leung, J., Li, D., Li, F., Li, H., Li, J., Li, K., Li, M., Li, N., Li, Q., Li, R., Li, S., Li, T., Li, W., Li, X., Li, Y., Li, Z., Liang, H., Liang, J., Liao, J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, G. -L., Lin, S., Lin, T., Ling, J., Lippi, I., Liu, F., Liu, H., Liu, J., Liu, M., Liu, Q., Liu, R., Liu, S., Liu, X., Liu, Y., Lokhov, A., Lombardi, P., Lombardo, C., Loo, K., Lu, C., Lu, H., Lu, J., Lu, S., Lu, X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luo, F., Luo, G., Luo, P., Luo, S., Luo, W., Lyashuk, V., Ma, Q., Ma, S., Ma, X., Maalmi, J., Malyshkin, Y., Mantovani, F., Manzali, F., Mao, X., Mao, Y., Mari, S. M., Marini, F., Marium, S., Martellini, C., Martin-Chassard, G., Martini, A., Mayilyan, D., Muller, A., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhofer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muralidharan, P., Nastasi, M., Naumov, D. V., Naumova, E., Nemchenok, I., Nikolaev, A., Ning, F., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Orestano, D., Ortica, F., Pan, H. -R., Paoloni, A., Parkalian, N., Parmeggiano, S., Payupol, T., Pei, Y., Pelliccia, N., Peng, A., Peng, H., Perrot, F., Petitjean, P. -A., Petrucci, F., Rico, L. F. P., Pilarczyk, O., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Qi, F., Qi, M., Qian, S., Qian, X., Qiao, H., Qin, Z., Qiu, S., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Romani, A., Roskovec, B., Roth, C., Ruan, X., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sanfilippo, S., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shahzad, M., Sharov, V., Shi, G., Shi, J., Shi, Y., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steinmann, J., Sterr, T., Stock, M. R., Strati, V., Studenikin, A., Sun, G., Sun, S., Sun, X., Sun, Y., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Triossi, A., Troni, G., Trzaska, W., Tuve, C., Van Waasen, S., Van Den Boom, J., Vanroyen, G., Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. -H., Wang, E., Wang, G., Wang, J., Wang, K., Wang, L., Wang, M., Wang, R., Wang, S., Wang, W., Wang, X., Wang, Y., Wang, Z., Watcharangkool, A., Wei, L., Wei, W., Wei, Y., Wen, L., Wiebusch, C., Wong, S. C. -F., Wonsak, B., Wu, D., Wu, F., Wu, Q., Wu, W., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y., Xia, D., Xie, Y., Xie, Z., Xing, Z., Xu, B., Xu, D., Xu, F., Xu, J., Xu, M., Xu, Y., Yan, B., Yan, X., Yan, Y., Yang, A., Yang, C., Yang, H., Yang, J., Yang, L., Yang, X., Yang, Y., Yao, H., Yasin, Z., Ye, J., Ye, M., Yegin, U., Yermia, F., Yi, P., Yin, X., You, Z., Yu, B., Yu, C., Yu, H., Yu, M., Yu, X., Yu, Z., Yuan, C., Yuan, Y., Yuan, Z., Yue, B., Zafar, N., Zambanini, A., Zeng, P., Zeng, S., Zeng, T., Zeng, Y., Zhan, L., Zhang, F., Zhang, G., Zhang, H., Zhang, J., Zhang, P., Zhang, Q., Zhang, S., Zhang, T., Zhang, X., Zhang, Y., Zhang, Z., Zhao, F., Zhao, J., Zhao, R., Zhao, S., Zhao, T., Zheng, D., Zheng, H., Zheng, M., Zheng, Y., Zhong, W., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K., Zhuang, H., Zong, L., Zou, J., Abusleme, A, Adam, T, Ahmad, S, Aiello, S, Akram, M, Ali, N, An, F, An, G, An, Q, Andronico, G, Anfimov, N, Antonelli, V, Antoshkina, T, Asavapibhop, B, De Andre, J, Auguste, D, Babic, A, Baldini, W, Barresi, A, Baussan, E, Bellato, M, Bergnoli, A, Bernieri, E, Biare, D, Birkenfeld, T, Blin, S, Blum, D, Blyth, S, Bolshakova, A, Bongrand, M, Bordereau, C, Breton, D, Brigatti, A, Brugnera, R, Bruno, R, Budano, A, Buesken, M, Buscemi, M, Busto, J, Butorov, I, Cabrera, A, Cai, H, Cai, X, Cai, Y, Cai, Z, Cammi, A, Campeny, A, Cao, C, Cao, G, Cao, J, Caruso, R, Cerna, C, Chang, J, Chang, Y, Chen, P, Chen, S, Chen, X, Chen, Y, Chen, Z, Cheng, J, Cheng, Y, Chepurnov, A, Chiesa, D, Chimenti, P, Chukanov, A, Chuvashova, A, Claverie, G, Clementi, C, Clerbaux, B, Lorenzo, S, Corti, D, Costa, S, Corso, F, De La Taille, C, Deng, J, Deng, Z, Depnering, W, Diaz, M, Ding, X, Ding, Y, Dirgantara, B, Dmitrievsky, S, Dohnal, T, Donchenko, G, Dong, J, Dornic, D, Doroshkevich, E, Dracos, M, Druillole, F, Du, S, Dusini, S, Dvorak, M, Enqvist, T, Enzmann, H, Fabbri, A, Fajt, L, Fan, D, Fan, L, Fang, C, Fang, J, Fargetta, M, Fatkina, A, Fedoseev, D, Fekete, V, Feng, L, Feng, Q, Ford, R, Formozov, A, Fournier, A, Gan, H, Gao, F, Garfagnini, A, Gottel, A, Genster, C, Giammarchi, M, Giaz, A, Giudice, N, Giuliani, F, Gonchar, M, Gong, G, Gong, H, Gorchakov, O, Gornushkin, Y, Grassi, M, Grewing, C, Gromov, M, Gromov, V, Gu, M, Gu, X, Gu, Y, Guan, M, Guardone, N, Gul, M, Guo, C, Guo, J, Guo, W, Guo, X, Guo, Y, Hackspacher, P, Hagner, C, Han, R, Han, Y, He, M, He, W, Heinz, T, Hellmuth, P, Heng, Y, Herrera, R, Hong, D, Yuenkeung, H, Hou, S, Hsiung, Y, Hu, B, Hu, H, Hu, J, Hu, S, Hu, T, Hu, Z, Huang, C, Huang, G, Huang, H, Huang, Q, Huang, W, Huang, X, Huang, Y, Hui, J, Huo, W, Huss, C, Hussain, S, Insolia, A, Ioannisian, A, Ioannisyan, D, Isocrate, R, Jen, K, Ji, X, Jia, H, Jia, J, Jian, S, Jiang, D, Jiang, X, Jin, R, Jing, X, Jollet, C, Joutsenvaara, J, Jungthawan, S, Kalousis, L, Kampmann, P, Kang, L, Karagounis, M, Kazarian, N, Khan, A, Khan, W, Khosonthongkee, K, Kinz, P, Korablev, D, Kouzakov, K, Krasnoperov, A, Krokhaleva, S, Krumshteyn, Z, Kruth, A, Kutovskiy, N, Kuusiniemi, P, Lachenmaier, T, Landini, C, Leblanc, S, Lefevre, F, Lei, L, Lei, R, Leitner, R, Leung, J, Li, D, Li, F, Li, H, Li, J, Li, K, Li, M, Li, N, Li, Q, Li, R, Li, S, Li, T, Li, W, Li, X, Li, Y, Li, Z, Liang, H, Liang, J, Liao, J, Liebau, D, Limphirat, A, Limpijumnong, S, Lin, G, Lin, S, Lin, T, Ling, J, Lippi, I, Liu, F, Liu, H, Liu, J, Liu, M, Liu, Q, Liu, R, Liu, S, Liu, X, Liu, Y, Lokhov, A, Lombardi, P, Lombardo, C, Loo, K, Lu, C, Lu, H, Lu, J, Lu, S, Lu, X, Lubsandorzhiev, B, Lubsandorzhiev, S, Ludhova, L, Luo, F, Luo, G, Luo, P, Luo, S, Luo, W, Lyashuk, V, Ma, Q, Ma, S, Ma, X, Maalmi, J, Malyshkin, Y, Mantovani, F, Manzali, F, Mao, X, Mao, Y, Mari, S, Marini, F, Marium, S, Martellini, C, Martin-Chassard, G, Martini, A, Mayilyan, D, Muller, A, Mednieks, I, Meng, Y, Meregaglia, A, Meroni, E, Meyhofer, D, Mezzetto, M, Miller, J, Miramonti, L, Monforte, S, Montini, P, Montuschi, M, Morozov, N, Muralidharan, P, Nastasi, M, Naumov, D, Naumova, E, Nemchenok, I, Nikolaev, A, Ning, F, Ning, Z, Nunokawa, H, Oberauer, L, Ochoa-Ricoux, J, Olshevskiy, A, Orestano, D, Ortica, F, Pan, H, Paoloni, A, Parkalian, N, Parmeggiano, S, Payupol, T, Pei, Y, Pelliccia, N, Peng, A, Peng, H, Perrot, F, Petitjean, P, Petrucci, F, Rico, L, Pilarczyk, O, Popov, A, Poussot, P, Pratumwan, W, Previtali, E, Qi, F, Qi, M, Qian, S, Qian, X, Qiao, H, Qin, Z, Qiu, S, Rajput, M, Ranucci, G, Raper, N, Re, A, Rebber, H, Rebii, A, Ren, B, Ren, J, Rezinko, T, Ricci, B, Robens, M, Roche, M, Rodphai, N, Romani, A, Roskovec, B, Roth, C, Ruan, X, Rujirawat, S, Rybnikov, A, Sadovsky, A, Saggese, P, Salamanna, G, Sanfilippo, S, Sangka, A, Sanguansak, N, Sawangwit, U, Sawatzki, J, Sawy, F, Schever, M, Schuler, J, Schwab, C, Schweizer, K, Selivanov, D, Selyunin, A, Serafini, A, Settanta, G, Settimo, M, Shahzad, M, Sharov, V, Shi, G, Shi, J, Shi, Y, Shutov, V, Sidorenkov, A, Simkovic, F, Sirignano, C, Siripak, J, Sisti, M, Slupecki, M, Smirnov, M, Smirnov, O, Sogo-Bezerra, T, Songwadhana, J, Soonthornthum, B, Sotnikov, A, Sramek, O, Sreethawong, W, Stahl, A, Stanco, L, Stankevich, K, Stefanik, D, Steiger, H, Steinmann, J, Sterr, T, Stock, M, Strati, V, Studenikin, A, Sun, G, Sun, S, Sun, X, Sun, Y, Suwonjandee, N, Szelezniak, M, Tang, J, Tang, Q, Tang, X, Tietzsch, A, Tkachev, I, Tmej, T, Treskov, K, Triossi, A, Troni, G, Trzaska, W, Tuve, C, Van Waasen, S, Van Den Boom, J, Vanroyen, G, Vassilopoulos, N, Vedin, V, Verde, G, Vialkov, M, Viaud, B, Volpe, C, Vorobel, V, Votano, L, Walker, P, Wang, C, Wang, E, Wang, G, Wang, J, Wang, K, Wang, L, Wang, M, Wang, R, Wang, S, Wang, W, Wang, X, Wang, Y, Wang, Z, Watcharangkool, A, Wei, L, Wei, W, Wei, Y, Wen, L, Wiebusch, C, Wong, S, Wonsak, B, Wu, D, Wu, F, Wu, Q, Wu, W, Wu, Z, Wurm, M, Wurtz, J, Wysotzki, C, Xi, Y, Xia, D, Xie, Y, Xie, Z, Xing, Z, Xu, B, Xu, D, Xu, F, Xu, J, Xu, M, Xu, Y, Yan, B, Yan, X, Yan, Y, Yang, A, Yang, C, Yang, H, Yang, J, Yang, L, Yang, X, Yang, Y, Yao, H, Yasin, Z, Ye, J, Ye, M, Yegin, U, Yermia, F, Yi, P, Yin, X, You, Z, Yu, B, Yu, C, Yu, H, Yu, M, Yu, X, Yu, Z, Yuan, C, Yuan, Y, Yuan, Z, Yue, B, Zafar, N, Zambanini, A, Zeng, P, Zeng, S, Zeng, T, Zeng, Y, Zhan, L, Zhang, F, Zhang, G, Zhang, H, Zhang, J, Zhang, P, Zhang, Q, Zhang, S, Zhang, T, Zhang, X, Zhang, Y, Zhang, Z, Zhao, F, Zhao, J, Zhao, R, Zhao, S, Zhao, T, Zheng, D, Zheng, H, Zheng, M, Zheng, Y, Zhong, W, Zhou, J, Zhou, L, Zhou, N, Zhou, S, Zhou, X, Zhu, J, Zhu, K, Zhuang, H, Zong, L, Zou, J, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
- Subjects
Physics - Instrumentation and Detectors ,neutrino: solar ,Physics::Instrumentation and Detectors ,Solar neutrino ,scintillation counter: liquid ,high [energy resolution] ,01 natural sciences ,7. Clean energy ,mass [target] ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,JUNO ,Neutrino oscillation ,elastic scattering [neutrino electron] ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,flavor [transformation] ,neutrino oscillation ,Instrumentation ,Jiangmen Underground Neutrino Observatory ,Physics ,Elastic scattering ,liquid [scintillation counter] ,neutrino oscillation, solar neutrino, JUNO ,Settore FIS/01 - Fisica Sperimentale ,oscillation [neutrino] ,Instrumentation and Detectors (physics.ins-det) ,Monte Carlo [numerical calculations] ,neutrino electron: elastic scattering ,tension ,mass difference [neutrino] ,ddc ,nuclear reactor [antineutrino] ,observatory ,High Energy Physics - Phenomenology ,Physics::Space Physics ,neutrino: flavor ,solar [neutrino] ,target: mass ,Neutrino ,numerical calculations: Monte Carlo ,Nuclear and High Energy Physics ,Particle physics ,matter: solar ,Cherenkov counter: water ,neutrino: mass difference ,FOS: Physical sciences ,NO ,transformation: flavor ,uranium ,PE2_2 ,0103 physical sciences ,electron: recoil: energy ,antineutrino: nuclear reactor ,solar [matter] ,ddc:530 ,ddc:610 ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,background: radioactivity ,Cherenkov radiation ,Astrophysique ,solar neutrino ,010308 nuclear & particles physics ,water [Cherenkov counter] ,radioactivity [background] ,flavor [neutrino] ,Astronomy and Astrophysics ,sensitivity ,neutrino: mixing angle ,recoil: energy [electron] ,energy spectrum [electron] ,electron: energy spectrum ,High Energy Physics::Experiment ,sphere ,neutrino: oscillation ,energy resolution: high ,Energy (signal processing) ,mixing angle [neutrino] - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background 238U and 232Th in the liquid scintillator can be controlled to 10-17g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If Δm221= 4.8 × 10-5(7.5 × 10-5) eV, JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3σ (2σ) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Δm221using 8B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Δm221reported by solar neutrino experiments and the KamLAND experiment., 0, info:eu-repo/semantics/published
- Published
- 2021
- Full Text
- View/download PDF
8. Cosmological limits on the neutrino mass and lifetime
- Author
-
Abhish Dev, Vivian Poulin, Zackaria Chacko, Yuhsin Tsai, Peizhi Du, University of Maryland [College Park], University of Maryland System, Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), and Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,matter: power spectrum ,Age of the universe ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Dark matter ,Cosmic background radiation ,FOS: Physical sciences ,cosmic background radiation ,KATRIN ,01 natural sciences ,dark matter ,Boltzmann equation ,High Energy Physics - Phenomenology (hep-ph) ,neutrino: decay ,KamLAND ,0103 physical sciences ,Neutrino Physics ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,neutrino: mass ,numerical calculations ,010306 general physics ,Monte Carlo ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,new physics ,010308 nuclear & particles physics ,Matter power spectrum ,High Energy Physics::Phenomenology ,Cosmology of Theories beyond the SM ,High Energy Physics - Phenomenology ,neutrino: lifetime ,density: perturbation ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Dark radiation ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
At present, the strongest upper limit on $\sum m_{\nu}$, the sum of neutrino masses, is from cosmological measurements. However, this bound assumes that the neutrinos are stable on cosmological timescales, and is not valid if the neutrino lifetime is less than the age of the universe. In this paper, we explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation on timescales of order the age of the universe, and determine the bound on the sum of neutrino masses in this scenario. We focus on the case in which the neutrinos decay after becoming non-relativistic. We derive the Boltzmann equations that govern the cosmological evolution of density perturbations in the case of unstable neutrinos, and solve them numerically to determine the effects on the matter power spectrum and lensing of the cosmic microwave background. We find that the results admit a simple analytic understanding. We then use these results to perform a Monte Carlo analysis based on the current data to determine the limit on the sum of neutrino masses as a function of the neutrino lifetime. We show that in the case of decaying neutrinos, values of $\sum m_{\nu}$ as large as 0.9 eV are still allowed by the data. Our results have important implications for laboratory experiments that have been designed to detect neutrino masses, such as KATRIN and KamLAND-ZEN., Comment: 31 pages, 6 figures. v2 matches the published JHEP version
- Published
- 2020
- Full Text
- View/download PDF
9. Precision Measurement of Neutrino Oscillation Parameters with KamLAND
- Author
-
ODonnell, Thomas Michael
- Subjects
Physics ,KamLAND ,neutrino mass ,neutrinos ,particle physics ,underground detectors - Abstract
This dissertation describes a measurement of the neutrino oscillation parameters $Delta m^2_{21}$, $theta_{12}$ and constraints on $theta_{13}$ based on a study of reactor antineutrinos at a baseline of $sim 180,$km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of $2.64 \pm 0.07 times 10^{32}$ proton-years. For this exposure we expect $2140 \pm 74 (syst)$ antineutrino candidates from reactors, assuming standard model neutrino behavior, and $350 pm 88 (syst)$ candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is $$frac{N_{Obs}-N_{Bkg}}{N_{Exp}} = 0.59 \pm 0.02 (stat)\pm 0.045 (syst)nonumber$$which confirms reactor neutrino disappearance at greater than 5$sigma$ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are $Delta m^{2}_{21} = 7.60 ^{+0.20}_{-0.19} times 10^{-5} rm{eV^2}$, mbox{$theta_{12} = 32.5 \pm 2.9$ degrees} and $sin^{2}theta_{13} = 0.025 ^{+0.035}_{-0.035}$, the 95% confidence-level upper limit on $sin^{2}theta_{13}$ is mbox{$sin^{2}theta_{13}
- Published
- 2011
10. Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors
- Author
-
The Double Chooz collaboration, Kerret, H., Abrahão, T., Almazan, H., Dos Anjos, J. C., Appel, S., Barriere, J. C., Bekman, I., Bezerra, T. J. C., Bezrukov, L., Blucher, E., Brugière, T., Buck, C., Busenitz, J., Cabrera, A., Cerrada, M., Chauveau, E., Chimenti, P., Corpace, O., Dawson, J. V., Djurcic, Z., Etenko, A., Franco, D., Furuta, H., Gil-Botella, I., Givaudan, A., Gomez, H., Gonzalez, L. F. G., Goodman, M. C., Hara, T., Haser, J., Hellwig, D., Hourlier, A., Ishitsuka, M., Jochum, J., Jollet, C., Kale, K., Kaneda, M., Karakac, M., Kawasaki, T., Kemp, E., Kryn, D., Kuze, M., Lachenmaier, T., Lane, C. E., Lasserre, T., Lastoria, C., Lhuillier, D., Lima, H. P., Lindner, M., López-Castaño, J. M., Losecco, J. M., Lubsandorzhiev, B., Maeda, J., Mariani, C., Maricic, J., Martino, J., Matsubara, T., Mention, G., Meregaglia, A., Miletic, T., Milincic, R., Navas-Nicolás, D., Novella, P., Nunokawa, H., Oberauer, L., Obolensky, M., Onillon, A., Oralbaev, A., Palomares, C., Pepe, I. M., Pronost, G., Reichenbacher, J., Reinhold, B., Settimo, M., Schönert, S., Stefan Schoppmann, Scola, L., Sharankova, R., Sibille, V., Sinev, V., Skorokhvatov, M., Soldin, P., Stahl, A., Stancu, I., Stokes, L. F. F., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Tonazzo, A., Veyssiere, C., Viaud, B., Vivier, M., Wagner, S., Wiebusch, C., Wurm, M., Yang, G., Yermia, F., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Neutrino de Champagne Ardenne (LNCA - UMS 3263), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Center for Neutrino Physics
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,scintillation counter: liquid ,far detector ,muon nucleus: nuclear reaction ,FOS: Physical sciences ,nuclide: yield ,CHOOZ ,Scintillator ,7. Clean energy ,01 natural sciences ,Power law ,Spectral line ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,near detector ,0103 physical sciences ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,fission ,ddc:530 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Borexino ,Physics ,muon: energy ,Muon ,010308 nuclear & particles physics ,background ,Instrumentation and Detectors (physics.ins-det) ,Neutrino Detectors and Telescopes (experiments) ,Double Chooz ,neutrino: detector ,muon: cosmic radiation ,lcsh:QC770-798 ,Production (computer science) ,High Energy Physics::Experiment ,nuclear reactor ,numerical calculations: Monte Carlo ,Energy (signal processing) ,experimental results - Abstract
The yields and production rates of the radioisotopes $^9$Li and $^8$He created by cosmic muon spallation on $^{12}$C, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and depths, which means they are subject to different muon spectra. The near (far) detector has an overburden of $\sim$120 m.w.e. ($\sim$300 m.w.e.) corresponding to a mean muon energy of $32.1\pm2.0\,\mathrm{GeV}$ ($63.7\pm5.5\,\mathrm{GeV}$). Comparing the data to a detailed simulation of the $^9$Li and $^8$He decays, the contribution of the $^8$He radioisotope at both detectors is found to be compatible with zero. The observed $^9$Li yields in the near and far detectors are $5.51\pm0.51$ and $7.90\pm0.51$, respectively, in units of $10^{-8}\mu ^{-1} \mathrm{g^{-1} cm^{2} }$. The shallow overburdens of the near and far detectors give a unique insight when combined with measurements by KamLAND and Borexino to give the first multi--experiment, data driven relationship between the $^9$Li yield and the mean muon energy according to the power law $Y = Y_0( / 1\,\mathrm{GeV})^{\overline{\alpha}}$, giving $\overline{\alpha}=0.72\pm0.06$ and $Y_0=(0.43\pm0.11)\times 10^{-8}\mu ^{-1} \mathrm{g^{-1} cm^{2}}$. This relationship gives future liquid scintillator based experiments the ability to predict their cosmogenic $^9$Li background rates., Comment: 15 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
11. Geo-neutrinos
- Author
-
An. Ianni, G. Bellini, Fabio Mantovani, William F. McDonough, and Livia Ludhova
- Subjects
Nuclear and High Energy Physics ,010504 meteorology & atmospheric sciences ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Flux ,Geophysics ,01 natural sciences ,Physics::Geophysics ,Physics - Geophysics ,Geo-neutrino ,13. Climate action ,Oceanic crust ,Earth’s models ,KamLAND ,Physics::Space Physics ,0103 physical sciences ,Borexino ,Earth (chemistry) ,Neutrino detectors ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,0105 earth and related environmental sciences - Abstract
We review a new interdisciplinary field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth's geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted.
- Published
- 2013
- Full Text
- View/download PDF
12. Global constraints on absolute neutrino masses and their ordering
- Author
-
Antonio Marrone, Alessandro Melchiorri, Eligio Lisi, Antonio Palazzo, Francesco Capozzi, Eleonora Di Valentino, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lagrange de Paris, Sorbonne Université (SU), Sorbonne Universités, Institut d'Astrophysique de Paris ( IAP ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Planck ,Physics and Astronomy (miscellaneous) ,Physics beyond the Standard Model ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Parameter space ,KATRIN ,01 natural sciences ,High Energy Physics - Experiment ,Phenomenological aspects of field theory ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,neutrino: atmosphere ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,neutrino: mass ,Nuclear Experiment (nucl-ex) ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment ,Physics ,Oscillation ,new physics ,phase: CP ,Observable ,High Energy Physics - Phenomenology ,symbols ,CP violation ,Neutrino ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,neutrino: mass difference ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,symbols.namesake ,statistical analysis ,double-beta decay: (0neutrino) ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,CP: violation ,010306 general physics ,Neutrino oscillation ,numerical calculations ,010308 nuclear & particles physics ,sensitivity ,neutrino: mixing angle ,general methods ,13. Climate action ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics::Experiment ,neutrino: oscillation ,neutrino: mixing ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,neutrino: mass: hierarchy - Abstract
Within the standard three-neutrino framework, the absolute neutrino masses and their ordering (either normal, NO, or inverted, IO) are currently unknown. However, the combination of current data coming from oscillation experiments, neutrinoless double beta decay searches, and cosmological surveys, can provide interesting constraints for such unknowns in the sub-eV mass range, down to O(0.1) eV in some cases. We discuss current limits on absolute neutrino mass observables by performing a global data analysis, that includes the latest results from oscillation experiments, neutrinoless double beta decay bounds from the KamLAND-Zen experiment, and constraints from representative combinations of Planck measurements and other cosmological data sets. In general, NO appears to be somewhat favored with respect to IO at the level of ~2 sigma, mainly by neutrino oscillation data (especially atmospheric), corroborated by cosmological data in some cases. Detailed constraints are obtained via the chi^2 method, by expanding the parameter space either around separate minima in NO and IO, or around the absolute minimum in any ordering. Implications for upcoming oscillation and non-oscillation neutrino experiments, including beta-decay searches, are also discussed., Comment: 17 pages, including 3 tables and 11 figures
- Published
- 2017
- Full Text
- View/download PDF
13. Nuclear physics for geo-neutrino studies
- Author
-
George Korga, Lino Miramonti, Oleg Smirnov, Gianni Fiorentini, Lothar Oberauer, Fabio Mantovani, M. Obolensky, Y. Suvorov, Marcello Lissia, Aldo Ianni, Fiorentini, Gianni, Ianni, Aldo, Korga, George, Lissia, Marcello, Mantovani, Fabio, Miramonti, Lino, Oberauer, Lothar, Obolensky, Michel, Smirnov, Oleg, and Suvorov, Yury
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Antiparticle ,GRAN SASSO ,Nuclear Theory ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Elementary particle ,Physics::Geophysics ,Nuclear physics ,Physics - Geophysics ,Nuclear Theory (nucl-th) ,BOREXINO ,Nuclear Experiment (nucl-ex) ,DETECTOR ,Nuclear Experiment ,Physics ,KAMLAND ,Fermion ,Geophysics (physics.geo-ph) ,Massless particle ,Antimatter ,COUNTING TEST FACILITY ,High Energy Physics::Experiment ,Neutrino ,Radioactive decay ,Lepton - Abstract
Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 \pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed., Comment: 8 pages RevTex format, 8 figures and 2 tables. Submitted to PRC
- Published
- 2009
- Full Text
- View/download PDF
14. The Role of matter density uncertainties in the analysis of future neutrino factory experiments
- Author
-
Tommy Ohlsson and Walter Winter
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,spectroscopy ,long-base-line ,oscillation experiments ,superbeams ,FOS: Physical sciences ,earth ,Parameter space ,Nuclear physics ,Subatomär fysik ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,CP violation ,KamLAND ,Subatomic Physics ,Bibliography ,Range (statistics) ,Measurements of neutrino speed ,Neutrino Factory ,Sensitivity (control systems) ,Neutrino oscillation - Abstract
Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters $\theta_{13}$ and $\deltacp$. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large $\stheta \gtrsim 10^{-3}$. Within the KamLAND-allowed range, they are most relevant for the precision measurements of $\stheta$ and $\deltacp$, but less relevant for ``binary'' measurements, such as for the sign of $\ldm$, the sensitivity to $\stheta$, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties., Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev. D
- Published
- 2003
15. The Role of matter density uncertainties in the analysis of future neutrino factory experiments
- Author
-
Ohlsson, Tommy, Winter, Walter, Ohlsson, Tommy, and Winter, Walter
- Abstract
Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters theta(13) and delta(CP). We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large sin(2)2theta(13)greater than or similar to10(-3). Within the KamLAND-allowed range, they are most relevant for the precision measurements of sin(2)2theta(13) and delta(CP), but less relevant for binary measurements, such as for the sign of Deltam(31)(2), the sensitivity to sin(2)2theta(13), or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties., QC 20100525
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.