Johanna Mappes, Keith R. Willmott, Marianne Elias, Janne K. Valkonen, Pável Matos-Maraví, Erika Páez, Organismal and Evolutionary Biology Research Programme, Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Department of Biological and Environmental Science [Jyväskylä Univ] (JYU), University of Jyväskylä (JYU), McGuire Center for Lepidoptera and Biodiversity, Institute of Entomology [České Budějovice] (BIOLOGY CENTRE CAS), Biology Centre of the Czech Academy of Sciences (BIOLOGY CENTRE CAS), Czech Academy of Sciences [Prague] (CAS)-Czech Academy of Sciences [Prague] (CAS), Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, HiLIFE - Institute of Biotechnology [Helsinki] (BI), Helsinki Institute of Life Science (HiLIFE), University of Helsinki-University of Helsinki-Helsinki Institute of Life Science (HiLIFE), and University of Helsinki-University of Helsinki
Most research on aposematism has focused on chemically defended prey, but the signalling difficulty of capture remains poorly explored. Similar to classical Batesian and Müllerian mimicry related to distastefulness, such ‘evasive aposematism' may also lead to convergence in warning colours, known as evasive mimicry. A prime candidate group for evasive mimicry areAdelphabutterflies, which are agile insects and show remarkable colour pattern convergence. We tested the ability of naive blue tits to learn to avoid and generalizeAdelphawing patterns associated with the difficulty of capture and compared their response to that of birds that learned to associate the same wing patterns with distastefulness. Birds learned to avoid all wing patterns tested and generalized their aversion to other prey to some extent, but learning was faster with evasive prey compared to distasteful prey. Our results on generalization agree with longstanding observations of striking convergence in wing colour patterns amongAdelphaspecies, since, in our experiments, perfect mimics of evasive and distasteful models were always protected during generalization and suffered the lowest attack rate. Moreover, generalization on evasive prey was broader compared to that on distasteful prey. Our results suggest that being hard to catch may deter predators at least as effectively as distastefulness. This study provides empirical evidence for evasive mimicry, a potentially widespread but poorly understood form of morphological convergence driven by predator selection.