1. Joint 3D Point Cloud Segmentation using Real-Sim Loop: From Panels to Trees and Branches
- Author
-
Qiu, Tian, Du, Ruiming, Spine, Nikolai, Cheng, Lailiang, and Jiang, Yu
- Subjects
Computer Science - Robotics ,Computer Science - Computer Vision and Pattern Recognition ,Quantitative Biology - Quantitative Methods - Abstract
Modern orchards are planted in structured rows with distinct panel divisions to improve management. Accurate and efficient joint segmentation of point cloud from Panel to Tree and Branch (P2TB) is essential for robotic operations. However, most current segmentation methods focus on single instance segmentation and depend on a sequence of deep networks to perform joint tasks. This strategy hinders the use of hierarchical information embedded in the data, leading to both error accumulation and increased costs for annotation and computation, which limits its scalability for real-world applications. In this study, we proposed a novel approach that incorporated a Real2Sim L-TreeGen for training data generation and a joint model (J-P2TB) designed for the P2TB task. The J-P2TB model, trained on the generated simulation dataset, was used for joint segmentation of real-world panel point clouds via zero-shot learning. Compared to representative methods, our model outperformed them in most segmentation metrics while using 40% fewer learnable parameters. This Sim2Real result highlighted the efficacy of L-TreeGen in model training and the performance of J-P2TB for joint segmentation, demonstrating its strong accuracy, efficiency, and generalizability for real-world applications. These improvements would not only greatly benefit the development of robots for automated orchard operations but also advance digital twin technology., Comment: Accepted by ICRA 2025
- Published
- 2025