1. Sub-kiloparsec empirical relations and excitation conditions of HCN and HCO+ J = 3–2 in nearby star-forming galaxies
- Author
-
A. García-Rodríguez, A. Usero, A. K. Leroy, F. Bigiel, M. J. Jiménez-Donaire, D. Liu, M. Querejeta, T. Saito, E. Schinnerer, A. Barnes, F. Belfiore, I. Bešlić, Y. Cao, M. Chevance, D. A. Dale, J. S. den Brok, C. Eibensteiner, S. García-Burillo, S. C. O. Glover, R. S. Klessen, J. Pety, J. Puschnig, E. Rosolowsky, K. Sandstrom, M. C. Sormani, Y.-H. Teng, and T. G. Williams
- Subjects
Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present new HCN and HCO$^+$ ($J$=3-2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of $\sim$290-440 pc and resolve the inner $R_\textrm{gal} \lesssim$ 0.6-1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO$^+$, and CO and analyse the behaviour of a representative set of line ratios: HCN(3-2)/HCN(1-0), HCN(3-2)/HCO$^+$(3-2), HCN(1-0)/CO(2-1), and HCN(3-2)/CO(2-1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO$^+$ observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density ($\Sigma_\textrm{star}$), the intensity-weighted CO(2-1) ($\langle I_\text{CO}\rangle$), and the star formation rate surface density ($\Sigma_\text{SFR}$). We find no apparent correlation with $\Sigma_\text{SFR}$, but positive correlations with the other two parameters, which are stronger in the case of $\langle I_\text{CO}\rangle$. The HCN/CO-$\langle I_\text{CO}\rangle$ relations show $\lesssim$0.3 dex galaxy-to-galaxy offsets, with HCN(3-2)/CO(2-1)-$\langle I_\text{CO}\rangle$ being $\sim$2 times steeper than HCN(1-0)/CO(2-1). In contrast, the HCN(3-2)/HCN(1-0)-$\langle I_\text{CO}\rangle$ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g. density or temperature)., Comment: Accepted for publication in A&A. 14 pages, 8 figures
- Published
- 2023
- Full Text
- View/download PDF