Urban soils may restrict turfgrass rooting depth with shallow soil layers in high sand content soils, which may influence water conservation. A greenhouse study sought to quantify water usage and determine the physiological response of turfgrasses at four irrigation levels. ‘ATF-1434′ tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.), ‘Jamur' Japanese lawngrass (Zoysia japonica Steud.), and ‘Zeon' Manilagrass [Zoysia matrella (L.) Merr.] were established in 10 cm (4 in) diameter by 17.8 cm (7 in) tall containers. Each species was irrigated with 16.5, 21.9, 27.3, or 32.7 mm.wk−1 (0.65, 0.86, 1.1, or 1.3 in.wk−1). Gravimetric water loss was determined by pre- and post-irrigation pot weights. Turf quality, leaf discoloration, percent green cover, and gross photosynthesis were evaluated weekly and root parameters were measured at the conclusion of each trial. Although root mass was similar among species, water deficit stress and leaf discoloration occurred sooner in tall fescue than the two Zoysia species, reducing turf quality and green cover. Japanese lawngrass and Manilagrass had greater stomatal conductance, resulting in 109 and 89% higher gross photosynthesis relative to tall fescue. Both zoysiagrasses maintained acceptable turf quality with 27.3 mm water.wk−1. However, tall fescue quality was not acceptable at any irrigation level.Index words: Photosynthesis, gravimetric water loss, tall fescue, Japanese lawngrass, Manilagrass.Species used in this study: Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.); Japanese lawngrass (Zoysia japonica Steud.); Manilagrass [Zoysia matrella (L.) Merr.].