6 results on '"Duan, L.M."'
Search Results
2. A new isomeric state in Pa
- Author
-
Zhang, M.M., Yang, H.B., Gan, Z.G., Zhang, Z.Y., Huang, M.H., Ma, L., Yang, C.L., Yuan, C.X., Wang, Y.S., Tian, Y.L., Zhou, H.B., Huang, S., He, X.T., Wang, S.Y., Xu, W.Z., Li, H.W., Xu, X.X., Wang, J.G., Yang, H.R., Duan, L.M., Yang, W.Q., Zhou, S.G., Ren, Z.Z., Zhou, X.H., Xu, H.S., Voinov, A.A., Tsyganov, Yu.S., Polyakov, A.N., and Shumeiko, M.V.
- Abstract
The decay of $^{218}$Pa was investigated by means of α and γ spectroscopy. The nucleus was produced in the fusion reaction $^{40}$Ar+$^{182}$W and separated in flight by the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure). The known α decays of $^{218}$Pa were measured with improved precision and newly assigned to be originating from the ground state, which clarified the ambiguities in their previous assignments. In addition, a new isomeric state in $^{218}$Pa decaying with α-particle energies of 9691(15) keV, 9595(21) keV and a half-life of 135−32+62 μs was identified. The spins and parities of the involved states were tentatively assigned on the basis of the systematic α-decay properties of the odd-proton N=127 isotones and shell model calculations.
- Published
- 2019
3. Alpha decay properties of the semi-magic nucleus 219Np
- Author
-
Yang, H.B., Ma, L., Zhang, Z.Y., Yang, C.L., Gan, Z.G., Zhang, M.M., Huang, M.H., Yu, L., Jiang, J., Tian, Y.L., Wang, Y.S., Wang, J.G., Liu, Z., Liu, M.L., Duan, L.M., Zhou, S.G., Ren, Z.Z., Zhou, X.H., Xu, H.S., and Xiao, G.Q.
- Published
- 2018
- Full Text
- View/download PDF
4. Alpha decay properties of the semi-magic nucleus Np
- Author
-
Yang, H.B., Ma, L., Zhang, Z.Y., Yang, C.L., Gan, Z.G., Zhang, M.M., Huang, M.H., Yu, L., Jiang, J., Tian, Y.L., Wang, Y.S., Wang, J.G., Liu, Z., Liu, M.L., Duan, L.M., Zhou, S.G., Ren, Z.Z., Zhou, X.H., Xu, H.S., and Xiao, G.Q.
- Abstract
The semi-magic nucleus $^{219}$Np was produced in the fusion reaction $^{187}$Re($^{36}$Ar, 4n)$^{219}$Np at the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure). A fast electronics system based on waveform digitizers was used in the data acquisition and the sampled pulses were processed by digital algorithms. The reaction products were identified using spatial and time correlations between the implants and subsequent α decays. According to the observed α-decay chain, an energy of Eα=9039(40) keV and a half-life of T1/2=0.15−0.07+0.72 ms were determined for $^{219}$Np. The deduced proton binding energy of $^{219}$Np fits well into the systematics, which gives another evidence of that there is no sub-shell closure at Z=92. The influence of the N=126 shell closure on the stability of Np isotopes is discussed within the framework of α-decay reduced widths.
- Published
- 2017
5. Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization
- Author
-
Chen, L.J., Li, J.Y., Xu, W., Qiu, H.R., Zhu, Y., Zhang, Y.P., Duan, L.M., Qian, S.X., and Lu, H.
- Subjects
Original contributions - Abstract
Background: Multiple myeloma (MM) is an incurable hematological disorder characterized by the accumulation of malignant plasma cells within the bone marrow (BM). The clinical heterogeneity of MM is dictated by the cytogenetic aberrations present in the clonal plasma cells (PCs). Cytogenetic studies in MM are hampered by the hypoproliferative nature of plasma cells in MM. Therefore, fluorescence in situ hybridization (FISH) analysis combined with magnetic-activated cell sorting (MACS) is an attractive alternative for evaluation of numerical and structural chromosomal changes in MM. Methods: Interphase FISH studies with three different specific probes for the regions containing 13q14.3 (D13S319), 14q32 (IGHC/IGHV) and 1q12(CEP1 ) were performed in 48 MM patients. Interphase FISH studies with LSI IGH/CCND1, LSI IGH/FGFR3, and LSI IGH/MAF probes were used to detect t(11;14)(q13;q32), t(4;14)(p16;q32), and t(14;16)(q32;q23) in patients with 14q32 rearrangement. Results: Molecular cytogenetic aberrations were found in 40 (83.3%) of the 48 MM patients. 13 patients (27.1%) simultaneously had 13q deletion/monosomy 13 [del(13q14)], illegitimate IGH rearrangement and chromosome 1 abnormality. Del(13q14) was detected in 21 cases (43.7%), and illegitimate IGH rearrangements in 29 (60.4%) including 6 with t(11;14) and 5 with t(4;14). None of 9 patients with illegitimate IGH rearrangements and without t(11;14) or t(4;14) we detected had t(14;16) (q32;q23). 24 of the 48 MM patients (50%) had chromosome 1 abnormalities. Among 21 patients with del(13q14), 15 patients had Amp1q12;16 had IgH rearrangements. Whereas, among 27 cases without del(13q14), 8 had Amp1q12; 13 had IgH rearrangements. There was a strong association between del(13q14) and Amp1q12(c2 = 8.26, р < 0.01), and between del(13q14) and IgH rearrangement(c2 = 3.88, p < 0.05). Conclusion: 13q deletion/monosomy 13, IGH rearrangement and chromosome 1 abnormality are frequent in MM. They are not randomly distributed, but strongly interconnected. Interphase FISH technique combined with MACS using CD138-specific antibody is a highly sensitive technique at detecting molecular cytogenetic aberrations in MM. Обоснование: множественная миелома (MM) — неизлечимое гематологическое заболевание, характеризирующееся накоплением злокачественных плазматических клеток в костном мозге (КM). Клиническая гетерогенность MM определяется цитогенетическими аберрациями, присутствующими в клоне плазматических клеток (ПК). Цитогенетические исследования MM осложнены гипопролиферативными особенностями ПК. В связи с этим флуоресцентная гибридизация in situ (FISH) в комбинации с сортировкой клеток, активированных магнитными полями (MACS) представляется достойной альтернативой методам оценки точечных и структурных изменений хромосом при MM. Методы: интерфазные исследования методом FISH с использованием трех различных специфических зондов для участков, содержащих 13q14.3 (D13S319), 14q32 (IGHC/IGHV) и 1q12(CEP1), проводили у 48 больных с MM. Интерфазные исследования методом FISH с использованием зондов LSI IGH/CCND1, LSI IGH/FGFR3 и LSI IGH/MAF применяли для детекции t(11;14)(q13;q32), t(4;14)(p16;q32), и t(14;16)(q32;q23) у пациентов с перестройкой 14q32. Результаты: молекулярные цитогенетические аберрации выявляли у 40 (83,3%) из 48 больных с MM. У 13 пациентов (27,1%) одновременно определены 13q делеция/моносомия 13 [del(13q14)], аномальная перестройка IGH и аномалия хромосомы 1. Del(13q14) детектировали в 21 случае (43,7%), а аномальные перестройки IGH — в 29 (60,4%), в том числе у 6 пациентов с t(11;14) и 5 с t(4;14). Ни у одного из 9 больных с аномальными перестройками IGH и без t(11;14) или t(4;14) не выявляли транслокацию t(14;16) (q32;q23). У 24 из 48 пациентов с MM (50%) определяли аномалии хромосомы 1. В группе из 21 больных с del(13q14) в 15 случаях имелись перестройки IgH Amp1q12;16. В то же время из 27 случаев без del(13q14) у 8 содержались Amp1q12; в 13 случаях отмечали перестройки IgH. Выявлена взаимосвязь между del(13q14) и Amp1q12(χ2 = 8,26, p < 0,01) и между del(13q14) и перестройками IgH (χ2 = 3,88, p < 0,05). Выводы: 13q делецию/моносомию 13, перестройку IGH и аномалию хромосомы 1 часто отмечают при MM, причем их распределение не случайно и тесно взаимосвязано. Интерфазный анализ FISH в комбинации с MACS с использованием CD138-специфичных антител является высокочувствительным методом детекции молекулярных цитогенетических аберраций при MM.
- Published
- 2007
6. Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles
- Author
-
Lukin, M.D., Fleischhauer, M., Cote, R., Duan, L.M., Jaksch, D., Cirac, J.I., Zoller, P., Lukin, M.D., Fleischhauer, M., Cote, R., Duan, L.M., Jaksch, D., Cirac, J.I., and Zoller, P.
- Abstract
We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.