8 results on '"Dmytriv, Vasyl"'
Search Results
2. Management of technological process optimisation
- Author
-
Lypchuk Vasyl and Dmytriv Vasyl
- Subjects
workload factor ,process productivity ,analytical model ,duration of operations ,amount of equipment ,Production management. Operations management ,TS155-194 - Abstract
The research aims to characterise the optimisation of a technological process depending on the main time parameters for production. The optimisation does not require to correct technical parameters of a system, but rather the organisational and managerial factors of the technological process. The workload is taken as an evaluation criterion, which factors in the probability distribution of time characteristics of computer process operations. Time characteristics that represent the performance of an operation influence the workloads of an operator and equipment, determining the productivity of the technological process. Analytical models were developed for the operational control of a production line efficiency considering the probability–statistical parameters pertaining to the performance of operations and technological equipment peculiarities. The article presents research results, which characterise the dependence of a production line efficiency on the type of equipment, and the duration of preparatory and final operations considering their probability. Under an optimal workload of the operator, the duration of the complete program changes linearly, regardless of the time required for the performance of operations by a computer without the involvement of the operator, and depending on the type of equipment. A managerial decision can be optimal under the condition that the factor of technological process efficiency (K_TP) tends to max. The developed method of analytical determination can be used to calculate the workload of both an operator and technological equipment. The calculations of the duration of a production line operation resulted in the methodology for the consideration of probability characteristics pertaining to the time distribution of the period required to perform operations, which influences the unequal efficiency of the production line. The probabilistic character of time distribution related to intervals of performed operations serves as a parameter in the management of technological process optimisation, which can be achieved using simulators of technological processes optimised in terms of their efficiency.
- Published
- 2020
- Full Text
- View/download PDF
3. A Mathematical Model for Conical Hopper Mass Efficiency.
- Author
-
Bembenek, Michał, Dmytriv, Vasyl, Banha, Vasyl, Horodniak, Roman, and Pawlik, Jan
- Subjects
MATHEMATICAL logic ,GRANULAR materials ,MATHEMATICAL models ,FACTORIAL experiment designs ,ANGLES - Abstract
Almost every branch of industry, at a certain point, utilizes omnifarous materials in their granular form. A key constituent in many bulk material logistic systems is the hopper, which usually acts as a buffering component. In order to achieve the desired throughput, the geometry of the particular hopper must be carefully determined. Considering the geometric properties of the given hopper, the inclination of the walls and the outlet orifice characteristics are the pivotal determinants of hopper functionality. In this paper, the authors have developed an analytical model of the conical hopper's mass efficiency and compared the model with the experimental results for two distinctive granular materials. The model inputs were: the density of the bulk material, critical angle of material repose, generatrix inclination angle of the cone, and diameter of the circular outlet. The experiment was conducted according to a 3
2 full factorial design. The repeatability of the results was examined according to Cochran's theorem and the adequacy of the data was evaluated via Fisher's criterion, which confirmed the quality of the mathematical model. The error of the developed model does not exceed 4.5%. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
4. A Method for Simulating the Positioning Errors of a Robot Gripper.
- Author
-
Dmytriv, Vasyl, Dmytriv, Ihor, Horodetskyy, Ivan, Hutsol, Taras, Kukharets, Savelii, Cesna, Jonas, Bleizgys, Rolandas, Pietruszynska, Marta, Parafiniuk, Stanislaw, Kubon, Maciej, and Horetska, Iryna
- Subjects
LAGRANGE equations ,ROBOT motion ,ELASTIC deformation ,INDUSTRIAL robots ,EQUATIONS of motion - Abstract
The research is aimed at creating a methodology for increasing the positioning accuracy of an industrial robot and minimizing the vibration of the robot gripper by applying machine learning based on the developed mathematical model for estimating the positioning error. Two components of positioning accuracy are considered: geometric and kinematic errors and elastic static deformations. The dynamic error in the partial system of motion of the robot manipulator links is analyzed. The equation of partial motions is obtained from Lagrange's differential equation of motion of the II kind. The system of differential equations for the positioning error was solved analytically by Euler's method. An example of modeling the position and orientation error of the gripper due to temperature deformations of the third link for the manipulator scheme is given. An example of the modeling of static deformations and errors of the manipulator with elastic pliability of the robot links is given. An example of dynamic error modeling in a partial system of motion of the robot links is given. The proposed method of modeling robot gripper positioning errors makes it possible to increase the positioning accuracy of the industrial robot and minimize the vibration of the gripper. Having a mathematical model of positioning errors, it is possible to compensate for the positioning error by changing the speed of movement of the gripper reference point before determining the direct kinematic task. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Models of adaptation of the milking machines systems
- Author
-
Dmytriv Vasyl, Dmytriv Ihor, Lavryk Yurij, and Horodeckyy Ivan
- Subjects
milking machine ,mathematical model ,vacuum ,amplitude ,load factor. ,Microbiology ,QR1-502 ,Physiology ,QP1-981 ,Zoology ,QL1-991 - Abstract
Two systems of milking machines were considered - biotechnical and vacuum. Methodology for estimation of efficiency of the "machine-animal" biotechnical system was worked out. The dependences of the efficiency parameters of the technical system operation were analyzed. The KMMO operator load factor of the milking machine was proposed. The factor characterizes the technological process of the machine milking. The analytical dependences were worked out for the simulation of the productivity of milking machines and oscillation of the vacuum-gage pressure. As to the simulation results, when the vacuum pipeline diameter was increased the oscillation of the vacuum-gage pressure decreased. The results of analysis and theoretical researches on technological process of the cow machine milking gave a possibility to define the requirements to the improvement of technological process and technical equipment, which will provide the increase of efficiency of the milking systems. Usage of the developed cyber-physical system of the machine milking of cows will increase the productivity of the milking machine in 1.26…1.85 times. At the vacuum gage pressure oscillation of ΔPvp = 2500 Pa the suction ability of milking machine will be E=4.093 m/s accordingly. The defined index of efficiency of the adapted systems functioning of the milking machine is KBTS2 = 55.3.
- Published
- 2018
- Full Text
- View/download PDF
6. Model of forced turbulence for pulsing flow
- Author
-
Dmytriv, Vasyl, primary
- Published
- 2020
- Full Text
- View/download PDF
7. Analytical model of the measurer of thermoanemometric type of kinematic parameters of the biphasic pulsing flow
- Author
-
Dmytriv, Vasyl, Mykyychuk, Mykola, Dmytriv, Ihor, Dmytriv, Taras, Національний університет 'Львівська політехніка', and Lviv Polytechnic National University
- Subjects
модель ,температурне поле ,вимірювач ,термоанемометр ,сенсор ,Measurer ,Temperature field ,Thermoanemometer ,Similarity criteria ,тепловий баланс ,Thermal balance ,критерії подібності ,Sensor ,Model - Abstract
Наведено структурну і функціональну схеми сенсора термоанемометричного типу для вимірювання одно- і двофазних (рідина + газ) середовищ за пульсуючого характеру потоку. На основі рівняння теплового балансу отримано рівняння для моделювання температури сприймальних елементів сенсора залежно від споживаної потужності, характеристик матеріалу елементів сенсора, їх маси і конструкційних розмірів, теплотехнічних характеристик і кінематичних параметрів вимірювального середовища. Розглянуто процес поширення теплового потоку із внутрішнім джерелом теплоти від сприймального елемента сенсора із радіусом поперечного перерізу rЕ, описаний дифенціальним рівнянням інтенсивності поширення температури з урахуванням теплопровідності вимірювального середовища і матеріалу сприймального елемента сенсора. Моделювання температури сприймальних елементів сенсора і розподілу температурного поля у вимірювальному середовищі виконано з урахуванням коефіцієнта тепловіддачі елементів сенсора і коефіцієнта теплопровідності середовища. Інтенсивність потоку вимірювального середовища приймали від 16,7 до 58,3 г/с, залежно від діаметра корпусу сенсора розраховували середню швидкість потоку. Коефіцієнт тепловіддачі α був у межах від 60000 до 130000 Вт/(м2·°С) за діапазону швидкостей вимірювального середовища від 2,125 до 4,0 м/с і внутрішніх діаметрів корпусу сенсора 12, 14 і 16 мм. Наведено результати моделювання зміни температури на межі температурного поля і її віддаль від елементів залежно від швидкості потоку вимірювального середовища. Вимірювальним середовищем було молоко зі швидкістю потоку у межах 2,125–4,0 м/с, внутрішній діаметр корпусу сенсора 14 мм і потужність живлення 15 Вт. Температура на межі температурного поля сприймальних елементів сенсора коливалася у межах від 29,97 град. до 28,38 град, за зміни віддалі межі від холоднішого сприймального елемента сенсора у межах 5,02–6,29 мм. Температура на межі температурних полів і віддаль межі поля від сприймальних елементів сенсора є змінною залежно від інтенсивності потоку (швидкості) вимірювального середовища і його характеристик, віддалі між елементами, потужності живлення елементів сенсора. Обґрунтована віддаль між сприймальними елементами термоанемометричного сенсора становить 10 мм. The structural and functional diagrams of the thermoanemometric type sensor for measuring the mono- and biphasic (liquid + gas) medium by the pulsating nature of the flow are presented. The temperature distribution in the sensor environment is considered and the sensing elements are not in contact with the inner surface of the sensor body. On the basis of the heat balance equation, the equations were obtained to simulate the temperature of the sensing elements of the sensor, depending on the power consumption, the characteristics of material of the sensor elements, their mass and design dimensions, the thermal and technical characteristics and the kinematic parameters of the measuring environment. The results of temperature modeling of the sensing elements for measuring the flow of milk and water are presented. The process of heat flux propagation with an internal heat source from the sensing element of the sensor with a cross-sectional radius is considered, described by the differential equation of the intensity of the temperature propagation taking into account the thermal conductivity of the measuring medium and the material of the sensing element of the sensor. The equation for modeling the temperature at the boundary of the temperature field distribution of the sensing elements of the thermoanemometric sensor was obtained. The results of temperature modeling at the boundary of the temperature fields of sensor elements are presented. The simulation of the temperature of the sensing elements of the sensor and the distribution of the temperature field in the measuring environment is made taking into account the coefficient of heat transfer of the sensor elements and the coefficient of thermal conductivity of the medium. The results of modeling the temperature change at the boundary of the temperature field and its distance from the elements depending on the flow velocity of the measuring medium are presented.
- Published
- 2019
8. Analytical dynamic model of coefficient of friction of air pipeline under pressure
- Author
-
Dmytriv, Vasyl, primary, Dmytriv, Ihor, additional, Horodetskyy, Ivan, additional, and Dmytriv, Taras, additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.