8 results on '"Dimitrijević, Danijela"'
Search Results
2. Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic
- Author
-
Raja, Nussaïbah B., Dimitrijević, Danijela, Krause, Mihaela Cristina, and Kiessling, Wolfgang
- Published
- 2022
- Full Text
- View/download PDF
3. Oversimplification risks too much: a response to ‘How predictable are mass extinction events?'
- Author
-
Reddin, Carl J., primary, Aberhan, Martin, additional, Dimitrijević, Danijela, additional, Dowding, Elizabeth M., additional, Kocsis, Ádám T., additional, Mathes, Gregor, additional, Nätscher, Paulina S., additional, Patzkowsky, Mark E., additional, and Kiessling, Wolfgang, additional
- Published
- 2023
- Full Text
- View/download PDF
4. What is conservation paleobiology? Tracking 20 years of research and development
- Author
-
Dillon, Erin M., primary, Pier, Jaleigh Q., additional, Smith, Jansen A., additional, Raja, Nussaïbah B., additional, Dimitrijević, Danijela, additional, Austin, Elizabeth L., additional, Cybulski, Jonathan D., additional, De Entrambasaguas, Julia, additional, Durham, Stephen R., additional, Grether, Carolin M., additional, Haldar, Himadri Sekhar, additional, Kocáková, Kristína, additional, Lin, Chien-Hsiang, additional, Mazzini, Ilaria, additional, Mychajliw, Alexis M., additional, Ollendorf, Amy L., additional, Pimiento, Catalina, additional, Regalado Fernández, Omar R., additional, Smith, Isaiah E., additional, and Dietl, Gregory P., additional
- Published
- 2022
- Full Text
- View/download PDF
5. What is conservation paleobiology? Tracking 20 years of research and development
- Author
-
Dillon, Erin M, Pier, Jaleigh Q, Smith, Jansen A, Raja, Nussaïbah B, Dimitrijević, Danijela, Austin, Elizabeth L, Cybulski, Jonathan D, De Entrambasaguas, Julia, Durham, Stephen R, Grether, Carolin M, Haldar, Himadri Sekhar, Kocáková, Kristína, Lin, Chien-Hsiang, Mazzini, Ilaria, Mychajliw, Alexis M, Ollendorf, Amy L, Pimiento, Catalina, Regalado Fernández, Omar R, Smith, Isaiah E, Dietl, Gregory P, Dillon, Erin M, Pier, Jaleigh Q, Smith, Jansen A, Raja, Nussaïbah B, Dimitrijević, Danijela, Austin, Elizabeth L, Cybulski, Jonathan D, De Entrambasaguas, Julia, Durham, Stephen R, Grether, Carolin M, Haldar, Himadri Sekhar, Kocáková, Kristína, Lin, Chien-Hsiang, Mazzini, Ilaria, Mychajliw, Alexis M, Ollendorf, Amy L, Pimiento, Catalina, Regalado Fernández, Omar R, Smith, Isaiah E, and Dietl, Gregory P
- Abstract
Conservation paleobiology has coalesced over the last two decades since its formal coining, united by the goal of applying geohistorical records to inform the conservation, management, and restoration of biodiversity and ecosystem services. Yet, the field is still attempting to form an identity distinct from its academic roots. Here, we ask a deceptively simple question: What is conservation paleobiology? To track its development as a field, we synthesize complementary perspectives from a survey of the scientific community that is familiar with conservation paleobiology and a systematic literature review of publications that use the term. We present an overview of conservation paleobiology’s research scope and compare survey participants’ perceptions of what it is and what it should be as a field. We find that conservation paleobiologists use a variety of geohistorical data in their work, although research is typified by near-time records of marine molluscs and terrestrial mammals collected over local to regional spatial scales. Our results also confirm the field’s broad disciplinary basis: survey participants indicated that conservation paleobiology can incorporate information from a wide range of disciplines spanning conservation biology, ecology, historical ecology, paleontology, and archaeology. Finally, we show that conservation paleobiologists have yet to reach a consensus on how applied the field should be in practice. The survey revealed that many participants thought the field should be more applied but that most do not currently engage with conservation practice. Reflecting on how conservation paleobiology has developed over the last two decades, we discuss opportunities to promote community cohesion, strengthen collaborations within conservation science, and align training priorities with the field’s identity as it continues to crystallize.
- Published
- 2022
6. Isotopic niches of sympatric Gentoo and Chinstrap Penguins: evidence of competition for Antarctic krill?
- Author
-
Dimitrijević, Danijela, Paiva, Vitor H., Ramos, Jaime A., Seco, José, Ceia, Filipe R., Chipev, Nesho, Valente, Tiago, Barbosa, Andrés, Xavier, Jose C., Dimitrijević, Danijela, Paiva, Vitor H., Ramos, Jaime A., Seco, José, Ceia, Filipe R., Chipev, Nesho, Valente, Tiago, Barbosa, Andrés, and Xavier, Jose C.
- Abstract
As climate change, among other factors, is increasingly affecting Antarctic marine systems, competition for prey may increase between predators, particularly in the Antarctic Peninsula which has warmed more than elsewhere. Under such a context, we tested the feeding and trophic ecology of Gentoo (Pygoscelis papua) and Chinstrap (Pygoscelis antarctica) penguins breeding in sympatry at Livingston Island (Antarctic Peninsula) in a single season. We compared the diets of adults (from faecal samples, and stable isotopes in feathers and blood) and chicks (from stomach contents, and stable isotopes in down feathers, toenails and muscles of chicks that had died of unknown causes). Antarctic krill Euphausia superba dominated the diet of both species, although Gentoo Penguins fed on larger Antarctic krill than did Chinstrap Penguins. Stable isotope analyses of adult tissues revealed that both species fed at different niches in successive years, as depicted by the different levels δ13C in feathers (showing values from the previous breeding season) and whole blood (showing values from the current season). Tissues collected from chicks confirmed their diet over different time scales (i.e. days to weeks): Gentoo Penguins fed at a higher trophic level (possibly due to a more varied diet) and in different habitats than Chinstrap Penguins, providing evidence of isotopic niche separation of penguins. Our results may be relevant to the monitoring programmes of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) and suggest that adult scats, and stomach contents and tissues of recently died chicks, can be used in such programmes.
- Published
- 2018
7. Feeding ecology of chinstrap penguins Pygoscelis antarctica at Livingston Island (Antarctic)
- Author
-
Dimitrijević, Danijela, Xavier, José Carlos Caetano, and Ramos, Jaime
- Subjects
Ecologia alimentar ,Isótopos estáveis ,krill do Antártico ,Cadeia alimentar marinha ,Ilha Livingston ,Pygoscelis antarctica - Abstract
Dissertação de mestrado em Ecologia, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Antarctic and Southern Ocean marine ecosystems have been changing for the past 30 years, along with the global climate change. The most evident changes are on the Western Antarctic Peninsula, which is warming four times faster than the average rate of Earth‘s overall warming. Within the Antarctic Peninsula region, one of the penguin species used to monitor Southern Ocean food web changes is the chinstrap penguin (Pygoscelis antarctica). The main objective of this study is to assess the feeding ecology of chinstrap penguins in Livingston Island. This is done by comparing the diets from adult chinstrap penguins (through fecal samples; scats) and chicks (through stomach contents from naturally died chicks). To complement these analyses, different tissues (i.e. feathers, blood, flesh and nails) were collected from adult penguins and dead chicks and used for stable isotope analyses of 15N and 13C. Also a snapshot of the marine food web around Livingston Island is provided, in order to assess chinstrap penguin trophic level in comparison with other organisms through the stable isotopic analyses of typical, key organisms found in Livingston Island (i.e. algae, krill, seabirds, seals). Crustaceans, specifically Antarctic krill comprised the diet 100% by frequency of occurrence, by mass and by number of both adults and chicks chinstrap penguins. This confirmed that Antarctic krill dominates the diet of chinstrap penguins at least during the breeding period. The mean size of collected Antarctic krill was 38.66 ± 2.56 mm for adults and 39.87 ± 2.69 mm for chicks. Different tissues reflect different time scales of stable isotope incorporation. For adults, feathers were more enriched in stable isotope ratios of nitrogen and carbon than blood, and reflect the diet form the previous year after the breeding season, while blood reflects the most recent diet. High significant differences were found between these two tissues, indicating different feeding habits during breeding and non-breeding periods. In the case of chicks of chinstrap penguins there were two metabolically inactive tissues – feathers and nails, and metabolically active flesh. The chicks were 2-3 weeks old when they died, thus for this short period the sampled tissues should accumulate isotopes at the same rates. However, no correlation was found between these tissues, and high significant differences for δ15N were recorded between feathers and all other tissues, which confirm that different tissues accumulate the same isotopes at different ratios. Regarding the δ13C values significant differences between active and inactive tissues (flesh and nails; flesh and feathers) refer to different foraging habitats during incubation and during chick-growing period. Also, it was possible to compare stable isotope ratios of feathers between adult and chicks. Chick feathers indirectly reflect mother‘s diet, while adult feathers reflect the period after the previous breeding season. Expectedly, differences in carbon values indicate changed feeding habitat in summer and in winter, while nitrogen comparison shows that they remain foraging at the same trophic level. Analyses of δ15N and δ13C of other organisms revealed three main groups in the marine food web of Livingston Island - higher order predators such as elephant seal, brown skua, kelp gull and southern giant petrel were at the top of the food chain, while penguins had increased levels of nitrogen and carbon isotope signatures compared to their prey – Antarctic krill. The food chain length for Livingston Island marine food web calculated is 4.7, and it is inside the range calculated for other marine pelagic ecosystems across the planet. This study is particularly relevant for monitoring programs under CCAMLR. It showed that it is possible to contribute to the future monitoring of chinstrap penguin diets in alternative ways (i.e. not invasive for penguins). In general this kind of study can contribute to the conservation of this species through protecting their food resources and feeding habitats and in understanding their future population processes. Os ecossistemas marinhos do Oceano Antártico têm vindo a mudar nos últimos 30 anos, acompanhando as mudanças climatéricas globais. As alterações mais evidentes são visíveis na Península Antártica Ocidental, que tem uma taxa de aquecimento quatro vezes mais alta que a média global. Na região da Península Antártica, uma das espécies de pinguins usada para monitorizar as alterações nas cadeias alimentares do Oceano Antártico é o Pinguim-de-barbicha (Pygoscelis antarctica). Os pinguins-de-barbicha são dos maiores consumidores de krill do Antártico neste ecossistema marinho e as suas tendências populacionais estão diretamente relacionadas com a disponibilidade de krill. O principal objetivo deste estudo é avaliar a ecologia alimentar dos pinguins-debarbicha na Ilha Livingston. Isto foi feito pela comparação das dietas de pinguins-debarbicha adultos (através de amostras fecais) e de pintos (através de conteúdo estomacal de pintos mortos por causa natural). De modo a complementar estas análises, foram recolhidos também outros tecidos (i.e. penas, sangue, músculo e unhas) dos pinguins adultos e dos pintos mortos. Estes tecidos foram usados para análise dos isótopos estáveis 15N e 13C. É apresentada uma análise da cadeia alimentar na zona da Ilha Livingston de modo a avaliar o nível trófico do pinguim-de-barbicha comparativamente com outros organismos, através da análise de isótopos estáveis em organismos-chave nesta ilha (i.e. algas, krill, aves marinhas, focas). Crustáceos, nomeadamente o krill do Antártico, representaram 100% da dieta dos pinguins adultos e pintos, por frequência de ocorrência, por massa e por número. Este facto veio a confirmar que o krill do Antártico domina a dieta dos pinguins-debarbicha, pelo menos durante a época de reprodução. O tamanho médio do krill recolhido foi de 38.66 ± 2.56 mm para os adultos e 39.87 ± 2.69 mm para os pintos. Tecidos diferentes apresentam escalas temporais diferentes de incorporação de isótopos estáveis. Nos adultos, as penas mostraram-se mais enriquecidas nos ratios do azoto e carbono em isótopos estáveis do que o sangue, refletindo a dieta do ano anterior, enquanto o sangue refletiu a dieta mais recente. Foram encontradas diferenças significativas entre estes tecidos, indicando hábitos alimentares diferentes durantes as épocas de reprodução e as épocas não-reprodutivas. No caso dos pintos do pinguim-debarbicha houve dois tecidos metabolicamente inativos – penas e unhas, e músculos metabolicamente ativos. Os pintos tinham entre 2 e 3 semanas aquando da morte, sendo de esperar que para este curto período de tempo os tecidos amostrados tivessem acumulado isótopos ao mesmo ritmo. No entanto, não foi encontrada nenhuma correlação entre estes tecidos. Foram registadas diferenças altamente significativas para δ15N entre as penas e todos os outros tecidos, confirmando assim que diferentes tecidos acumulam os mesmos isótopos a diferentes ratios. Relativamente aos valores de δ13C, as diferenças significativas encontradas entre tecidos ativos e inativos (músculo e unhas; músculo e penas) referem-se a diferentes hábitos de forrageamento durante os períodos de gestação e de crescimento dos pintos. Foi também possível comparar os ratios de isótopos estáveis entre as penas de adultos e pintos. As penas dos pintos refletem indiretamente a dieta materna, enquanto as penas dos adultos refletem o período após a época reprodutiva anterior. Como seria de esperar, as diferenças nos valores de carbono indicam diferenças nas dietas de verão e inverno, ao passo que o azoto mostra que eles permanecem no mesmo nível trófico de forrageamento. A análise de δ15N e δ13C noutros organismos revelou três grandes grupos na cadeia alimentar da Ilha Livingston – os predadores de topo, como o elefante-marinho, a skua Stercorarius antarcticus, o gaivotão Larus dominicanus e o petrel-gigante-do-sul encontram-se no topo da cadeia alimentar, enquanto os pinguins aumentaram os níveis isotópicos das assinaturas de azoto e carbono comparativamente com as suas presas – o krill do Antártico. O comprimento da cadeia alimentar calculado na Ilha Ligingston é 4.7, valor que se encontra na margem calculada para outros ecossistemas marinhos pelágicos no planeta. Este estudo é particularmente relevante para os programas de monitorização da CCAMLR. Mostrou que é possível contribuir para a futura monitorização do pinguimde-barbicha de formas alternativas (i.e. não invasivas para os animais). No geral, este tipo de estudos pode contribuir para a conservação desta espécie através da proteção dos seus recursos e hábitos alimentares e na compreensão da futura progressão das populações.
- Published
- 2015
8. Antioxidant and antimicrobial activity of different extracts from leaves and roots of Jovibarba heuffelii (Schott.) A. Löve and D. Löve
- Author
-
Dimitrijević,, Danijela, primary
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.