7 results on '"Delos, Maxime"'
Search Results
2. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans
- Author
-
Martinez, Pierre, Denys, Agnès, Delos, Maxime, Sikora, Anne-Sophie, Carpentier, Mathieu, Julien, Sylvain, Pestel, Joël, and Allain, Fabrice
- Published
- 2015
- Full Text
- View/download PDF
3. Fetal bovine serum impacts the observed N‐glycosylation defects in TMEM165 KO HEK cells
- Author
-
Climer, Leslie, Morelle, Willy, De Bettignies, Geoffroy, Krzewinski Recchi, Marie-Ange, Lupashin, Vladimir, Medina-Cano, Daniel, Ucuncu, Ekin, Nguyen, Lam Son, Nicouleau, Michael, Lipecka, Joanna, Bizot, Jean-Charles, Thiel, Christian, Lefort, Nathalie, Faivre-Sarrailh, Catherine, Colleaux, Laurence, Guerrera, Ida Chiara, Cantagrel, Vincent, Lebredonchel, Elodie, Garat, Anne, Legrand, Dominique, Decool, Valérie, Klein, André, Ouzzine, Mohamed, Gasnier, Bruno, Potelle, Sven, Groux‐Degroote, Sophie, Cogez, Virginie, Noel, Maxence, Portier, Lucie, Solórzano, Carlos, Dall'Olio, Fabio, Steenackers, Agata, Mortuaire, Marlène, Gonzalez‐Pisfil, Mariano, Henry, Mélanie, Heliot, Laurent, Harduin-Lepers, Anne, Berthe, Audrey, Zaffino, Marie, Muller, claire, Houdou, Marine, Schulz, Céline, Bost, Frédéric, De Fay, Elia, Mazerbourg, Sabine, Flament, Stéphane, Mouajjah, Dounia, Ashikov, Angel, Abu Bakar, Nurulamin, Wen, Xiao-Yan, Niemeijer, Marco, Rodrigues Pinto Osorio, Glentino, Brand-Arzamendi, Koroboshka, Hasadsri, Linda, Hansikova, Hana, Raymond, Kimiyo, Ondruskova, Nina, Simon, Marleen, Pfundt, Rolph, Timal, Sharita, Beumers, Roel, Smeets, Roel, Kersten, Marjan, Huijben, Karin, Linders, Peter, van den Bogaart, Geert, van Hijum, Sacha, Rodenburg, Richard, van den Heuvel, Lambertus, Van Spronsen, Francjan, Honzik, Tomas, van Scherpenzeel, Monique, Lefeber, Dirk, Mirjam, Wamelink, Han, Brunner, Helen, Mundy, Helen, Michelakakis, Peter, van Hasselt, Jiddeke, van de Kamp, Diego, Martinelli, Lars, Morkrid, Katja, Brocke Holmefjord, Jozef, Hertecant, Majid, Alfadhel, Kevin, Carpenter, Johann, te Water Naude, Delos, Maxime, Hellec, Charles, Fifre, Alexandre, Carpentier, Mathieu, Papy-Garcia, Dulce, Allain, Fabrice, Denys, Agnés, Gilormini, Pierre André, Lion, Cédric, Vicogne, Dorothée, Guerardel, Yann, Biot, Christophe, Witters, Peter, Breckpot, Jeroen, Preston, Graem, Morava, Eva, Rujano, Maria, Cannata Serio, Magda, Panasyuk, Ganna, Reunert, Janine, Hauser, Virginie, Park, Julien, Freisinger, Peter, Guida, Maria Clara, Maier, Esther, Wada, Yoshinao, Jäger, Stefanie, Krogan, Nevan, Kretz, Oliver, Nobre, Susana, Garcia, Paula, Quelhas, Dulce, Bird, Thomas, Raskind, Wendy, Schwake, Michael, Duvet, Sandrine, Marquardt, Thorsten, Simons, Matias, Blommaert, Eline, Péanne, Romain, Cherepanova, Natalia, Rymen, Daisy, Staels, Frederik, Jaeken, Jaak, Race, Valérie, Keldermans, Liesbeth, Souche, Erika, Corveleyn, Anniek, Sparkes, Rebecca, Bhattacharya, Kaustuv, Devalck, Christine, Schrijvers, Rik, Foulquier, Francois, Gilmore, Reid, Matthijs, Gert, Université Lille Nord de France (COMUE), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Variabilité génétique des défenses de l'organisme face à son environnement chimique, PRES Université Lille Nord de France-Université de Lille, Droit et Santé, ANR-15-CE14-0001,SOLV_CDG,Décryptage des patients CDG (Congenital Disorders of Glyvosylation) déficients en TMEM165 - de la compréhension des mécanismes moléculaires à une thérapie(2015), ANR-15-RAR3-0004,EURO-CDG-2,A European research network directed towards improving diagnosis and treatment of inborn glycosylation disorders.(2015), European Project: 643578,H2020,H2020-HCO-2014,E-Rare-3(2014), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 [UGSF], Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF], Centre Hospitalier Régional Universitaire [Lille] [CHRU Lille], Impact de l'environnement chimique sur la santé humaine - ULR 4483 [IMPECS], Baylor University, University of Arkansas for Medical Sciences [UAMS], Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de psychiatrie et neurosciences (U894 / UMS 1266), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Key-Obs, JRC Institute for Energy and Transport (IET), European Commission - Joint Research Centre [Petten], Institut de Neurobiologie de la Méditerranée [Aix-Marseille Université] (INMED - INSERM U1249), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme Protéomique Necker [SFR Necker] (PPN - 3P5), Structure Fédérative de Recherche Necker (SFR Necker - UMS 3633 / US24), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Impact de l'environnement chimique sur la santé humaine (IMPECS), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille, Biologie cellulaire et moléculaire de la sécrétion (BCMS), Centre National de la Recherche Scientifique (CNRS), Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, Department of Experimental, Diagnostic and Specialty Medicine (DIMES) (DIMES), Università di Bologna [Bologna] (UNIBO), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Biophotonique Cellulaire Fonctionelle, Institut de Recherche Interdisciplinaire, Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), Université de Lille, Sciences et Technologies-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Centre méditerranéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Medicine & Physiology , University of Toronto, First Faculty of Medicine, Charles University [Prague], University Medical Center [Utrecht], Department of Human Genetics, Radboud University Medical Center [Nijmegen], Paediatrics, Beatrix Children's Hospital/University Medical Center Groningen, Université Toulouse 1 Capitole (UT1), Croissance cellulaire, réparation et régénération tissulaires (CRRET), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Chimie Moléculaire et Formulation (EA 4478), Université de Lille, Sciences et Technologies, Unité de Catalyse et de Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Ecole Centrale de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Pediatrics, University Children's Hospital, Centre de recherche Croissance et signalisation (UMR_S 845), Reutlingen University, Department of General Pediatrics, Münster University Children Hospital, Molecular Diagnostics, Center for Human Genetics, Gasthuisberg, Katholieke Universiteit Leuven and Flanders Interuniversity Institute for Biotechnology 4, Leuven, Belgium, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Center for Human Genetics, and Laboratory of clinical immunology
- Subjects
Glycosylation ,Protein family ,[SDV]Life Sciences [q-bio] ,Golgi Apparatus ,FBS ,manganese level ,N‐glycosylation defects ,TMEM165 ,Article ,Antiporters ,Glycomics ,03 medical and health sciences ,chemistry.chemical_compound ,symbols.namesake ,Congenital Disorders of Glycosylation ,0302 clinical medicine ,N-linked glycosylation ,Genetics ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Cation Transport Proteins ,Genetics (clinical) ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Manganese ,0303 health sciences ,Ion Transport ,HEK 293 cells ,Serum Albumin, Bovine ,Golgi apparatus ,Embryonic stem cell ,Cell biology ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,carbohydrates (lipids) ,HEK293 Cells ,chemistry ,symbols ,Calcium ,030217 neurology & neurosurgery ,Fetal bovine serum - Abstract
TMEM165 is involved in a rare genetic human disease named TMEM165‐CDG (congenital disorders of glycosylation). It is Golgi localized, highly conserved through evolution and belongs to the uncharacterized protein family 0016 (UPF0016). The use of isogenic TMEM165 KO HEK cells was crucial in deciphering the function of TMEM165 in Golgi manganese homeostasis. Manganese is a major cofactor of many glycosylation enzymes. Severe Golgi glycosylation defects are observed in TMEM165 Knock Out Human Embryonic Kidney (KO HEK) cells and are rescued by exogenous manganese supplementation. Intriguingly, we demonstrate in this study that the observed Golgi glycosylation defect mainly depends on fetal bovine serum, particularly its manganese level. Our results also demonstrate that iron and/or galactose can modulate the observed glycosylation defects in TMEM165 KO HEK cells. While isogenic cultured cells are widely used to study the impact of gene defects on proteins' glycosylation patterns, these results emphasize the importance of the use of validated fetal bovine serum in glycomics studies. 43;2
- Published
- 2019
4. The heparan sulfate 3-O-sulfotransferases (HS3ST) 2, 3B and 4 enhance proliferation and survival in breast cancer MDA-MB-231 cells
- Author
-
Hellec, Charles, Delos, Maxime, Carpentier, Mathieu, Denys, Agnes, Allain, Fabrice, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), CNRS, Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF], Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 [UGSF], and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
breast cancer ,apoptosis ,transfection ,isozymes ,disaccharides ,NK cells ,transcription factors ,lcsh:Medicine ,Biochemistry ,Spectrum Analysis Techniques ,Cellular types ,Breast Tumors ,lcsh:Science ,Cell Death ,Organic Compounds ,Immune cells ,Flow Cytometry ,Enzymes ,Gene Expression Regulation, Neoplastic ,Killer Cells, Natural ,Chemistry ,Oncology ,Cell Processes ,Spectrophotometry ,Physical Sciences ,Hyperexpression Techniques ,White blood cells ,Female ,Cytophotometry ,Sulfotransferases ,Signal Transduction ,Research Article ,Blood cells ,Cell Survival ,Immunology ,Carbohydrates ,Breast Neoplasms ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Research and Analysis Methods ,Gene Expression Regulation, Enzymologic ,Cell Line, Tumor ,Gene Expression and Vector Techniques ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Biology Techniques ,Molecular Biology ,Cell Proliferation ,Medicine and health sciences ,Molecular Biology Assays and Analysis Techniques ,lcsh:R ,Organic Chemistry ,Chemical Compounds ,Biology and Life Sciences ,Proteins ,Cancers and Neoplasms ,Cell Biology ,Animal cells ,Enzymology ,lcsh:Q ,Heparitin Sulfate - Abstract
Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the final maturation step of heparan sulfates. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a relatively rare modification, and only a few biological processes have been described to be influenced by 3-O-sulfated motifs. A conflicting literature has recently reported that HS3ST2, 3A, 3B and 4 may exhibit either tumor-promoting or anti-oncogenic properties, depending on the model used and cancer cell phenotype. Hence, we decided to compare the consequences of the overexpression of each of these HS3STs in the same cellular model. We demonstrated that, unlike HS3ST3A, the other three isozymes enhanced the proliferation of breast cancer MDA-MB-231 and BT-20 cells. Moreover, the colony forming capacity of MDA-MB-231 cells was markedly increased by the expression of HS3ST2, 3B and 4. No notable difference was observed between the three isozymes, meaning that the modifications catalyzed by each HS3ST had the same functional impact on cell behavior. We then demonstrated that overexpression of HS3ST2, 3B and 4 was accompanied by increased activation of c-Src, Akt and NF-κB and up-regulation of the anti-apoptotic proteins survivin and XIAP. In line with these findings, we showed that HS3ST-transfected cells are more resistant to cell death induction by pro-apoptotic stimuli or NK cells. Altogether, our findings demonstrate that HS3ST2, 3B and 4 share the same pro-tumoral activity and support the idea that these HS3STs could compensate each other for loss of their expression depending on the molecular signature of cancer cells and/or changes in the tumor environment. 13;3
- Published
- 2018
5. Participation of 3-O-sulfated heparan sulfates in the protection of macrophages by herpes simplex virus-1 glycoprotein D and cyclophilin B against apoptosis
- Author
-
Delos, Maxime, primary, Hellec, Charles, additional, Foulquier, François, additional, Carpentier, Mathieu, additional, Allain, Fabrice, additional, and Denys, Agnès, additional
- Published
- 2016
- Full Text
- View/download PDF
6. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans
- Author
-
Martinez, Pierre, primary, Denys, Agnès, additional, Delos, Maxime, additional, Sikora, Anne-Sophie, additional, Carpentier, Mathieu, additional, Julien, Sylvain, additional, Pestel, Joël, additional, and Allain, Fabrice, additional
- Published
- 2014
- Full Text
- View/download PDF
7. The heparan sulfate 3-O-sulfotransferases (HS3ST) 2, 3B and 4 enhance proliferation and survival in breast cancer MDA-MB-231 cells.
- Author
-
Hellec C, Delos M, Carpentier M, Denys A, and Allain F
- Subjects
- Apoptosis genetics, Breast Neoplasms genetics, Breast Neoplasms immunology, Breast Neoplasms metabolism, Cell Line, Tumor, Cell Survival genetics, Female, Gene Expression Regulation, Enzymologic physiology, Gene Expression Regulation, Neoplastic, Humans, Killer Cells, Natural immunology, Signal Transduction genetics, Sulfotransferases genetics, Sulfotransferases metabolism, Breast Neoplasms pathology, Cell Proliferation genetics, Heparitin Sulfate metabolism, Sulfotransferases physiology
- Abstract
Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the final maturation step of heparan sulfates. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a relatively rare modification, and only a few biological processes have been described to be influenced by 3-O-sulfated motifs. A conflicting literature has recently reported that HS3ST2, 3A, 3B and 4 may exhibit either tumor-promoting or anti-oncogenic properties, depending on the model used and cancer cell phenotype. Hence, we decided to compare the consequences of the overexpression of each of these HS3STs in the same cellular model. We demonstrated that, unlike HS3ST3A, the other three isozymes enhanced the proliferation of breast cancer MDA-MB-231 and BT-20 cells. Moreover, the colony forming capacity of MDA-MB-231 cells was markedly increased by the expression of HS3ST2, 3B and 4. No notable difference was observed between the three isozymes, meaning that the modifications catalyzed by each HS3ST had the same functional impact on cell behavior. We then demonstrated that overexpression of HS3ST2, 3B and 4 was accompanied by increased activation of c-Src, Akt and NF-κB and up-regulation of the anti-apoptotic proteins survivin and XIAP. In line with these findings, we showed that HS3ST-transfected cells are more resistant to cell death induction by pro-apoptotic stimuli or NK cells. Altogether, our findings demonstrate that HS3ST2, 3B and 4 share the same pro-tumoral activity and support the idea that these HS3STs could compensate each other for loss of their expression depending on the molecular signature of cancer cells and/or changes in the tumor environment.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.