14 results on '"Davit, Y"'
Search Results
2. A staggered projection scheme for viscoelastic flows
- Author
-
Mokhtari, O, Davit, Y, Latché, J.-C, Quintard, M, TotalEnergies E&P, CSTJF, Pau, France, Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), and Davit, Yohan
- Subjects
Physics::Fluid Dynamics ,staggered discretization ,projection scheme ,[INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,viscoelastic flows ,finite volume ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We develop a numerical scheme for the flow of viscoelastic fluids, including the OldroydB and FENE-CR constitutive models. The space discretization is staggered, using either the Marker-And-Cell (MAC) scheme for structured nonuniform grids, or the Rannacher and Turek (RT) nonconforming low-order finite element approximation for general quandrangular or hexahedral meshes. The time discretization uses a fractional-step algorithm where the solution of the Navier-Stokes equations is first obtained by a projection method and then the transport-reaction equation for the conformation tensor is solved by a finite volume scheme. In order to obtain consistency, the space discretization of the divergence of the elastic part of the stress tensor in the momentum balance equation is derived using a weak form of the MAC scheme. For stability and accuracy purposes, the solution of the transport-reaction equation for the conformation tensor is split into pure convection steps, with a change of variable to the log-conformation tensor, and a reaction step, which consists in solving one ODE per cell via an Euler scheme with local sub-cycling. Numerical computations for the flow in the lid-driven cavity at Weissenberg numbers above one and the flow around a confined cylinder confirm the efficiency of the scheme.
- Published
- 2023
- Full Text
- View/download PDF
3. Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging
- Author
-
Ostvar, S., Iltis, G., Davit, Y., Schlüter, Steffen, Andersson, L., Wood, B.D., Wildenschild, D., Ostvar, S., Iltis, G., Davit, Y., Schlüter, Steffen, Andersson, L., Wood, B.D., and Wildenschild, D.
- Abstract
We explore how X-ray computed microtomography can be used to generate highly-resolved 3D biofilm datasets on length scales that span multiple pore bodies. The data is integrated into a study of the effects of flow rate on three-dimensional growth of biofilm in porous media. Three flow rates were investigated in model packed-bed columns. Biofilm growth was monitored during an 11-day growth period using a combination of differential pressure and effluent dissolved oxygen measurements. At the end of the growth period, all columns were scanned using X-ray computed microtomography and a barium sulfate-based contrast agent. The resulting images were prepared for quantitative analysis using a novel image processing workflow that was tailored to this specific system. The reduction in permeability due to biofilm growth was studied using both transducer-based pressure drop measurements and image-based calculations using the Kozeny–Carman model. In addition, a set of structural measures related to the spatial distribution of biofilms were computed and analyzed for the different flow rates. We generally observed 1 to 2 orders of magnitude decrease in permeability as a result of bioclogging for all columns (i.e, across flow rates). The greatest average permeability and porosity reduction was observed for the intermediate flow rate (4.5 ml/h). A combination of results from different measurements all suggest that biofilm growth was oxygen limited at the lowest flow rate, and affected by shear stresses at the highest flow rate. We hypothesize that the interplay between these two factors drives the spatial distribution and quantity of biofilm growth in the class of porous media studied here. Our approach opens the way to more systematic studies of the structure-function relationships involved in biofilm growth in porous media and the impact that such growth may have on physical properties such as hydraulic conductivity.
- Published
- 2018
4. Solute transport within porous biofilms: diffusion or dispersion?
- Author
-
Davit, Y, Byrne, H, Osborne, J, Pitt-Francis, J, Gavaghan, D, and Quintard, M
- Abstract
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behaviour by controllling nutrient supply, evacuation of waste products and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilmscale. We show that solute transport may be described via two coupled partial differential equations for the averaged concentrations, or telegrapher’s equations. These models are particularly relevant for chemical species, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterised by a second-order tensor whose components depend on: (1) the topology of the channels’ network; (2) the solute’s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion-dominated, this analysis shows that dispersion effects may significantly contribute to transport.
- Published
- 2016
5. Chaste: An Open Source C plus plus Library for Computational Physiology and Biology
- Author
-
Prlic, A, Mirams, GR, Arthurs, CJ, Bernabeu, MO, Bordas, R, Cooper, J, Corrias, A, Davit, Y, Dunn, S-J, Fletcher, AG, Harvey, DG, Marsh, ME, Osborne, JM, Pathmanathan, P, Pitt-Francis, J, Southern, J, Zemzemi, N, Gavaghan, DJ, Prlic, A, Mirams, GR, Arthurs, CJ, Bernabeu, MO, Bordas, R, Cooper, J, Corrias, A, Davit, Y, Dunn, S-J, Fletcher, AG, Harvey, DG, Marsh, ME, Osborne, JM, Pathmanathan, P, Pitt-Francis, J, Southern, J, Zemzemi, N, and Gavaghan, DJ
- Abstract
Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.
- Published
- 2013
6. Influences of cell shape in microbial communities
- Author
-
Smith, W, Osborne, J, Pitt-Francis, J, Foster, K, and Davit, Y
- Subjects
Biophysics ,Microbiology - Abstract
By growing together in dense communities, microorganisms (microbes) have a huge impact on human life. Microbes also come in a wide variety of shapes, but we have yet to understand the importance of these shapes for community biology. How are multi- species communities, such as biofilms and colonies, affected by the morphologies of constituent cells? Which morphologies might these environments select for in turn? To address these questions, we use individual-based modelling to investigate the effects of cell shape on patterning and evolution within microbial communities. We develop a flexible simulation framework, coupling a continuum model of the biofilm chemical environment to a cellular-level description of biofilm growth mechanics. This modelling system allows competitions between different microbial cell shapes to be simulated and studied, in different community contexts. Our models predict that cell shape can strongly affect spatial structure and patterning within competitive communities. Rod cells perform better at colonising surfaces and the expanding edges of colonies, while round cells are better at dominating the upper surface of a community. Our predictions are supported by experiments using Escherichia coli and Pseudomonas aeruginosa bacteria, and demonstrate that particular shapes can confer a selective advantage in communities. In summary, the work presented in this thesis predicts and examines new mechanisms of self-organisation driven by cell shape, demonstrating a new significance for microbial morphology as a means for cells to succeed in a dense and competitive environment.
- Published
- 2017
7. Modeling oxygen transport in the brain: An efficient coarse-grid approach to capture perivascular gradients in the parenchyma.
- Author
-
Pastor-Alonso D, Berg M, Boyer F, Fomin-Thunemann N, Quintard M, Davit Y, and Lorthois S
- Subjects
- Animals, Humans, Models, Neurological, Computer Simulation, Computational Biology methods, Parenchymal Tissue metabolism, Oxygen metabolism, Brain metabolism, Brain blood supply, Oxygen Consumption physiology
- Abstract
Recent progresses in intravital imaging have enabled highly-resolved measurements of periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are increasingly used as proxies to estimate the local baseline oxygen consumption, which is a hallmark of cell activity. However, the oxygen profile around a given arteriole arises from an interplay between oxygen consumption and delivery, not only by this arteriole but also by distant capillaries. Integrating such interactions across scales while accounting for the complex architecture of the microvascular network remains a challenge from a modelling perspective. This limits our ability to interpret the experimental oxygen maps and constitutes a key bottleneck toward the inverse determination of metabolic rates of oxygen. We revisit the problem of parenchymal oxygen transport and metabolism and introduce a simple, conservative, accurate and scalable direct numerical method going beyond canonical Krogh-type models and their associated geometrical simplifications. We focus on a two-dimensional formulation, and introduce the concepts needed to combine an operator-splitting and a Green's function approach. Oxygen concentration is decomposed into a slowly-varying contribution, discretized by Finite Volumes over a coarse cartesian grid, and a rapidly-varying contribution, approximated analytically in grid-cells surrounding each vessel. Starting with simple test cases, we thoroughly analyze the resulting errors by comparison with highly-resolved simulations of the original transport problem, showing considerable improvement of the computational-cost/accuracy balance compared to previous work. We then demonstrate the model ability to flexibly generate synthetic data reproducing the spatial dynamics of oxygen in the brain parenchyma, with sub-grid resolution. Based on these synthetic data, we show that capillaries distant from the arteriole cannot be overlooked when interpreting POGs, thus reconciling recent measurements of POGs across cortical layers with the fundamental idea that variations of vascular density within the depth of the cortex may reveal underlying differences in neuronal organization and metabolic load., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Pastor-Alonso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
8. Ultraviolet control of bacterial biofilms in microfluidic chips.
- Author
-
Ramos G, Toulouze C, Rima M, Liot O, Duru P, and Davit Y
- Abstract
Polydimethylsiloxane (PDMS) microfluidic systems have been instrumental in better understanding couplings between physical mechanisms and bacterial biofilm processes, such as hydrodynamic effects. However, precise control of the growth conditions, for example, the initial distribution of cells on the substrate or the boundary conditions in a flow system, has remained challenging. Furthermore, undesired bacterial colonization in crucial parts of the systems, in particular, in mixing zones or tubing, is an important factor that strongly limits the duration of the experiments and, therefore, impedes our ability to study the biophysics of biofilm evolving over long periods of time, as found in the environment, in engineering, or in medicine. Here, we develop a new approach that uses ultraviolet-C (UV-C) light-emitting diodes (LEDs) to confine bacterial development to specific zones of interest in the flow channels. The LEDs are integrated into a 3D printed light guide that is positioned upon the chip and used to irradiate germicidal UV-C directly through the PDMS. We first demonstrate that this system is successful in controlling undesired growth of Pseudomonas aeruginosa biofilm in inlet and outlet mixing zones during 48 h. We further illustrate how this can be used to define the initial distribution of bacteria to perturb already formed biofilms during an experiment and to control colonization for seven days-and possibly longer periods of time-therefore opening the way toward long-term biofilm experiments in microfluidic devices. Our approach is easily generalizable to existing devices at low cost and may, thus, become a standard in biofilm experiments in PDMS microfluidics., Competing Interests: The authors have no conflicts to disclose., (© 2023 Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
9. The evolution of tit-for-tat in bacteria via the type VI secretion system.
- Author
-
Smith WPJ, Brodmann M, Unterweger D, Davit Y, Comstock LE, Basler M, and Foster KR
- Subjects
- Bacterial Proteins genetics, Pseudomonas aeruginosa genetics, Type VI Secretion Systems genetics, Vibrio cholerae genetics, Bacterial Proteins metabolism, Biological Evolution, Pseudomonas aeruginosa physiology, Type VI Secretion Systems metabolism, Vibrio cholerae physiology
- Abstract
Tit-for-tat is a familiar principle from animal behavior: individuals respond in kind to being helped or harmed by others. Remarkably some bacteria appear to display tit-for-tat behavior, but how this evolved is not understood. Here we combine evolutionary game theory with agent-based modelling of bacterial tit-for-tat, whereby cells stab rivals with poisoned needles (the type VI secretion system) after being stabbed themselves. Our modelling shows tit-for-tat retaliation is a surprisingly poor evolutionary strategy, because tit-for-tat cells lack the first-strike advantage of preemptive attackers. However, if cells retaliate strongly and fire back multiple times, we find that reciprocation is highly effective. We test our predictions by competing Pseudomonas aeruginosa (a tit-for-tat species) with Vibrio cholerae (random-firing), revealing that P. aeruginosa does indeed fire multiple times per incoming attack. Our work suggests bacterial competition has led to a particular form of reciprocation, where the principle is that of strong retaliation, or 'tits-for-tat'.
- Published
- 2020
- Full Text
- View/download PDF
10. Brain Capillary Networks Across Species: A few Simple Organizational Requirements Are Sufficient to Reproduce Both Structure and Function.
- Author
-
Smith AF, Doyeux V, Berg M, Peyrounette M, Haft-Javaherian M, Larue AE, Slater JH, Lauwers F, Blinder P, Tsai P, Kleinfeld D, Schaffer CB, Nishimura N, Davit Y, and Lorthois S
- Abstract
Despite the key role of the capillaries in neurovascular function, a thorough characterization of cerebral capillary network properties is currently lacking. Here, we define a range of metrics (geometrical, topological, flow, mass transfer, and robustness) for quantification of structural differences between brain areas, organs, species, or patient populations and, in parallel, digitally generate synthetic networks that replicate the key organizational features of anatomical networks (isotropy, connectedness, space-filling nature, convexity of tissue domains, characteristic size). To reach these objectives, we first construct a database of the defined metrics for healthy capillary networks obtained from imaging of mouse and human brains. Results show that anatomical networks are topologically equivalent between the two species and that geometrical metrics only differ in scaling. Based on these results, we then devise a method which employs constrained Voronoi diagrams to generate 3D model synthetic cerebral capillary networks that are locally randomized but homogeneous at the network-scale. With appropriate choice of scaling, these networks have equivalent properties to the anatomical data, demonstrated by comparison of the defined metrics. The ability to synthetically replicate cerebral capillary networks opens a broad range of applications, ranging from systematic computational studies of structure-function relationships in healthy capillary networks to detailed analysis of pathological structural degeneration, or even to the development of templates for fabrication of 3D biomimetic vascular networks embedded in tissue-engineered constructs.
- Published
- 2019
- Full Text
- View/download PDF
11. Cooperation, competition and antibiotic resistance in bacterial colonies.
- Author
-
Frost I, Smith WPJ, Mitri S, Millan AS, Davit Y, Osborne JM, Pitt-Francis JM, MacLean RC, and Foster KR
- Subjects
- Computer Simulation, Plasmids metabolism, Pseudomonas aeruginosa physiology, Streptomycin pharmacology, beta-Lactamases metabolism, Anti-Bacterial Agents pharmacology, Carbenicillin chemistry, Drug Resistance, Microbial, Pseudomonas aeruginosa drug effects
- Abstract
Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.
- Published
- 2018
- Full Text
- View/download PDF
12. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex.
- Author
-
Peyrounette M, Davit Y, Quintard M, and Lorthois S
- Subjects
- Humans, Models, Biological, Capillaries physiology, Cerebral Cortex blood supply, Cerebrovascular Circulation, Microcirculation
- Abstract
Aging or cerebral diseases may induce architectural modifications in human brain microvascular networks, such as capillary rarefaction. Such modifications limit blood and oxygen supply to the cortex, possibly resulting in energy failure and neuronal death. Modelling is key in understanding how these architectural modifications affect blood flow and mass transfers in such complex networks. However, the huge number of vessels in the human brain-tens of billions-prevents any modelling approach with an explicit architectural representation down to the scale of the capillaries. Here, we introduce a hybrid approach to model blood flow at larger scale in the brain microcirculation, based on its multiscale architecture. The capillary bed, which is a space-filling network, is treated as a porous medium and modelled using a homogenized continuum approach. The larger arteriolar and venular trees, which cannot be homogenized because of their fractal-like nature, are treated as a network of interconnected tubes with a detailed representation of their spatial organization. The main contribution of this work is to devise a proper coupling model at the interface between these two components. This model is based on analytical approximations of the pressure field that capture the strong pressure gradients building up in the capillaries connected to arterioles or venules. We evaluate the accuracy of this model for both very simple architectures with one arteriole and/or one venule and for more complex ones, with anatomically realistic tree-like vessels displaying a large number of coupling sites. We show that the hybrid model is very accurate in describing blood flow at large scales and further yields a significant computational gain by comparison with a classical network approach. It is therefore an important step towards large scale simulations of cerebral blood flow and lays the groundwork for introducing additional levels of complexity in the future.
- Published
- 2018
- Full Text
- View/download PDF
13. Cell morphology drives spatial patterning in microbial communities.
- Author
-
Smith WP, Davit Y, Osborne JM, Kim W, Foster KR, and Pitt-Francis JM
- Subjects
- Bioengineering, Biofilms, Biophysical Phenomena, Computer Simulation, Escherichia coli genetics, Escherichia coli growth & development, Escherichia coli Proteins genetics, Mutation, Phenotype, Synthetic Biology, Escherichia coli cytology, Microbial Consortia genetics, Microbial Consortia physiology, Models, Biological
- Abstract
The clearest phenotypic characteristic of microbial cells is their shape, but we do not understand how cell shape affects the dense communities, known as biofilms, where many microbes live. Here, we use individual-based modeling to systematically vary cell shape and study its impact in simulated communities. We compete cells with different cell morphologies under a range of conditions and ask how shape affects the patterning and evolutionary fitness of cells within a community. Our models predict that cell shape will strongly influence the fate of a cell lineage: we describe a mechanism through which coccal (round) cells rise to the upper surface of a community, leading to a strong spatial structuring that can be critical for fitness. We test our predictions experimentally using strains of Escherichia coli that grow at a similar rate but differ in cell shape due to single amino acid changes in the actin homolog MreB. As predicted by our model, cell types strongly sort by shape, with round cells at the top of the colony and rod cells dominating the basal surface and edges. Our work suggests that cell morphology has a strong impact within microbial communities and may offer new ways to engineer the structure of synthetic communities., Competing Interests: The authors declare no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
14. Chaste: an open source C++ library for computational physiology and biology.
- Author
-
Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn SJ, Fletcher AG, Harvey DG, Marsh ME, Osborne JM, Pathmanathan P, Pitt-Francis J, Southern J, Zemzemi N, and Gavaghan DJ
- Subjects
- Computer Simulation, Humans, Models, Cardiovascular, Neoplasms, Computational Biology methods, Databases, Factual
- Abstract
Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.