1. Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images.
- Author
-
Tafavvoghi M, Sildnes A, Rakaee M, Shvetsov N, Bongo LA, Busund LR, and Møllersen K
- Abstract
Classifying breast cancer molecular subtypes is crucial for tailoring treatment strategies. While immunohistochemistry (IHC) and gene expression profiling are standard methods for molecular subtyping, IHC can be subjective, and gene profiling is costly and not widely accessible in many regions. Previous approaches have highlighted the potential application of deep learning models on hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) for molecular subtyping, but these efforts vary in their methods, datasets, and reported performance. In this work, we investigated whether H&E-stained WSIs could be solely leveraged to predict breast cancer molecular subtypes (luminal A, B, HER2-enriched, and Basal). We used 1433 WSIs of breast cancer in a two-step pipeline: first, classifying tumor and non-tumor tiles to use only the tumor regions for molecular subtyping; and second, employing a One-vs-Rest (OvR) strategy to train four binary OvR classifiers and aggregating their results using an eXtreme Gradient Boosting model. The pipeline was tested on 221 hold-out WSIs, achieving an F1 score of 0.95 for tumor vs non-tumor classification and a macro F1 score of 0.73 for molecular subtyping. Our findings suggest that, with further validation, supervised deep learning models could serve as supportive tools for molecular subtyping in breast cancer. Our codes are made available to facilitate ongoing research and development., Competing Interests: All authors declare they have no conflicts of interest., (© 2024 The Authors.) more...
- Published
- 2024
- Full Text
- View/download PDF