12 results on '"Boundary concentration"'
Search Results
2. Asymptotic transversality and symmetry breaking bifurcation from boundary concentrating solutions
- Author
-
Miyamoto, Yasuhito
- Subjects
- *
MATHEMATICAL symmetry , *BIFURCATION theory , *NEUMANN problem , *SMOOTHNESS of functions , *HOMEOMORPHISMS , *MATHEMATICAL proofs , *RECTANGLES - Abstract
Abstract: Let and . We consider the Neumann problem Let . When λ is large, we prove the existence of a smooth curve consisting of radially symmetric and radially decreasing solutions concentrating on . Moreover, checking the transversality condition, we show that this curve has infinitely many symmetry breaking bifurcation points from which continua consisting of nonradially symmetric solutions emanate. If , then the closure of each bifurcating continuum is locally homeomorphic to a disk. When the domain is a rectangle , we show that a curve consisting of one-dimensional solutions concentrating on has infinitely many symmetry breaking bifurcation points. Extending this solution with even reflection, we obtain a new entire solution. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
3. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data
- Author
-
Haitao Yang and Yibin Zhang
- Subjects
Discrete mathematics ,Physics ,Boundary concentration ,Applied Mathematics ,010102 general mathematics ,Boundary (topology) ,Unit normal vector ,01 natural sciences ,Omega ,Exponential function ,010101 applied mathematics ,Planar ,Domain (ring theory) ,Neumann boundary condition ,Discrete Mathematics and Combinatorics ,0101 mathematics ,Analysis - Abstract
Let Ω be a bounded domain in \begin{document}$\mathbb{R}^2 $\end{document} with smooth boundary, we study the following Neumann boundary value problem \begin{document}$\left\{ \begin{gathered} \begin{gathered} - \Delta \upsilon + \upsilon = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{in}}\;\;\Omega {\text{,}} \hfill \\ \frac{{\partial \upsilon }}{{\partial \nu }} = {e^\upsilon } - s{\phi _1} - h\left( x \right)\;\;\;{\text{on}}\;\partial \Omega \hfill \\ \end{gathered} \end{gathered} \right.$ \end{document} where \begin{document} $ν$ \end{document} denotes the outer unit normal vector to \begin{document} $\partial \Omega$ \end{document} , \begin{document} $h∈ C^{0,α}(\partial \Omega)$ \end{document} , \begin{document} $s>0$ \end{document} is a large parameter and \begin{document} $\phi_1$ \end{document} is a positive first Steklov eigenfunction. We construct solutions of this problem which exhibit multiple boundary concentration behavior around maximum points of \begin{document} $\phi_1$ \end{document} on the boundary as \begin{document} $s\to+∞$ \end{document} .
- Published
- 2017
- Full Text
- View/download PDF
4. Domain-size effects on boundary layers of a nonlocal sinh-Gordon equation
- Author
-
Chiun-Chang Lee
- Subjects
Pointwise ,Boundary concentration ,Applied Mathematics ,010102 general mathematics ,Thin layer ,Mathematical analysis ,Hyperbolic function ,01 natural sciences ,Robin boundary condition ,010101 applied mathematics ,Boundary layer ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,Ball (mathematics) ,0101 mathematics ,Asymptotic expansion ,Analysis ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
This work investigates a nonlocal sinh–Gordon equation with a singularly perturbed parameter in a ball. Under the Robin boundary condition, the solution asymptotically forms a quite steep boundary layer in a thin annular region, and rapidly becomes a flat curve outside this region. Focusing more particularly on the structure of the thin annular layer in this region, the pointwise asymptotic expansion involving the domain-size is evaluated more sharply, where the domain-size exactly appears in the second term of the asymptotic expansion. It should be stressed that the standard argument of matching asymptotic expansions is limited because the model has a nonlocal coefficient depending on the unknown solution. A new approach relies on integrating ideas based on a Dirichlet-to-Neumann map in an asymptotic framework. The rigorous asymptotic expansions for the thin layer structure also matches well with the numerical results. Furthermore, various boundary concentration phenomena of the thin annular layer are precisely demonstrated.
- Published
- 2019
5. Температурний коефіцієнт опору композиційних систем «кераміка-вуглець» з нанорозмірними вуглецевими наповнювачами
- Author
-
Мельник, О. Л., Ярош, Я. Д., Балицька, Н. О., Соловйов, А. В., Melnyk, O., Yarosh, Y., Balytska, N., Soloviov, A., Мельник, А. Л., Балицкая, Н. А., Мельник, О. Л., Ярош, Я. Д., Балицька, Н. О., Соловйов, А. В., Melnyk, O., Yarosh, Y., Balytska, N., Soloviov, A., Мельник, А. Л., and Балицкая, Н. А.
- Abstract
Робота присвячена експериментальному дослідженню залежності електричного опору, коефіцієнту теплопровідності та пористості електропровідних композиційних матеріалів (ЕКМ) системи «кераміка-вуглець» від вмісту нанорозмірних вуглецевих наповнювачів та технологічних режимів виготовлення. Проаналізовано аналітичні залежності питомого електричного опору від деформованого стану ЕКМ у рамках теорії перколяції. Результати експериментальних досліджень показали, що зменшення дисперсності частинок електропровідної фази композиту (використання нанопластинок графіту замість термічно розширеного графіту) дозволяє значно зменшити гістерезис кривих залежності електричного опору від температури при нагріванні та охолодженні. Експериментально підтверджено вплив зміни об’єму діелектричної складової ЕКМ на електричний опір при зміні температури в межах 20–620 °C., The work is devoted of the experimental study the dependence of electrical resistance, the thermal conductivity coefficient and porosity of the electro conductive composite materials (ECM) system «ceramics-carbon» on the content of nanosized carbon fillers and technological regimes of manufacture. The analytical dependences of the specific electric resistance on the deformed state of the ECM in the percolation theory has been analyzed. The results The results of experimental studies have shown that the decrease of the dispersion of the particles of the conductive phase of the composite (usage of graphite nanoplates instead of thermally extended graphite) was able to significantly reduced the hysteresis of the curves of the resistance of the electric resistance to the temperature when heated and cooled. The influence of the change in the volume of the dielectric component of the ECM on the electrical resistance at a temperature change of 20-620 °C has been experimentally confirmed., Работа посвящена экспериментальному исследованию зависимости электрического сопротивления, коэффициента теплопроводности и пористости, электропроводящих композиционных материалов (ЭКМ) системы «керамика-углерод» от содержания наноразмерных углеродных наполнителей и технологических режимов изготовления. Проанализированы аналитические зависимости удельного электрического сопротивления от деформированного состояния ЭКМ в рамках теории перколяции. Результаты экспериментальных исследований показали, что уменьшение дисперсности частиц электропроводящей фазы композита (использование нанопластинок графита вместо термически расширенного графита) позволяет значительно уменьшить гистерезис кривых зависимости электрического сопротивления от температуры при нагревании и охлаждении. Экспериментально подтверждено влияние изменения объема диэлектрической составляющей ЭКМ на электрическое сопротивление при изменении температуры в пределах 20–620 °С.
- Published
- 2018
6. Boundary concentration of a Gauged nonlinear Schrödinger equation on large balls
- Author
-
David Ruiz and Alessio Pomponio
- Subjects
Boundary concentration ,Singular perturbation ,Applied Mathematics ,Mathematical analysis ,Schrödinger equation ,symbols.namesake ,Nonlinear system ,Dirichlet boundary condition ,Ball (bearing) ,symbols ,Boundary value problem ,Nonlinear Schrödinger equation ,Analysis ,Mathematics - Abstract
This paper is motivated by a gauged Schrodinger equation in dimension 2 including the so-called Chern–Simons term. The radially symmetric case leads to an elliptic problem with a nonlocal defocusing term, in competition with a local focusing nonlinearity. In this work we pose the equations in a ball under homogeneous Dirichlet boundary conditions. By using singular perturbation arguments we prove existence of solutions for large values of the radius. Those solutions are located close to the boundary and the limit profile is given.
- Published
- 2014
- Full Text
- View/download PDF
7. BOUNDARY CONCENTRATION IN SERIES COIN FLIP. THEOREM ON EQUALITY OF EVENTS SUM OF THE FIRST TO GUES THE NUMBER OF SERIES
- Author
-
Oleg Vladimirovich Filatov and Zao Scientific
- Subjects
Boundary concentration ,Coin flipping ,Series (mathematics) ,Mathematical analysis ,General Medicine ,Mathematics - Published
- 2017
- Full Text
- View/download PDF
8. Температурний коефіцієнт опору композиційних систем «кераміка-вуглець» з нанорозмірними вуглецевими наповнювачами
- Author
-
Melnyk, O., Yarosh, Y., Balytska, N., and Soloviov, A.
- Subjects
теплопровідність ,теплопроводность ,нанопластинки графита ,электрическое сопротивление ,перколяция ,електричний опір ,electroconductive composite materials ,перколяція ,boundary concentration ,гранична концентрація ,електропровідні композиційні матеріали ,percolation ,нанопластинки графіту ,graphite nanoplates ,electrical resistance ,thermal conductivity ,электрические композитные материалы ,предельная концентрация - Abstract
Робота присвячена експериментальному дослідженню залежності електричного опору, коефіцієнту теплопровідності та пористості електропровідних композиційних матеріалів (ЕКМ) системи «кераміка-вуглець» від вмісту нанорозмірних вуглецевих наповнювачів та технологічних режимів виготовлення. Проаналізовано аналітичні залежності питомого електричного опору від деформованого стану ЕКМ у рамках теорії перколяції. Результати експериментальних досліджень показали, що зменшення дисперсності частинок електропровідної фази композиту (використання нанопластинок графіту замість термічно розширеного графіту) дозволяє значно зменшити гістерезис кривих залежності електричного опору від температури при нагріванні та охолодженні. Експериментально підтверджено вплив зміни об’єму діелектричної складової ЕКМ на електричний опір при зміні температури в межах 20–620 °C., The work is devoted of the experimental study the dependence of electrical resistance, the thermal conductivity coefficient and porosity of the electro conductive composite materials (ECM) system «ceramics-carbon» on the content of nanosized carbon fillers and technological regimes of manufacture. The analytical dependences of the specific electric resistance on the deformed state of the ECM in the percolation theory has been analyzed. The results The results of experimental studies have shown that the decrease of the dispersion of the particles of the conductive phase of the composite (usage of graphite nanoplates instead of thermally extended graphite) was able to significantly reduced the hysteresis of the curves of the resistance of the electric resistance to the temperature when heated and cooled. The influence of the change in the volume of the dielectric component of the ECM on the electrical resistance at a temperature change of 20-620 °C has been experimentally confirmed., Работа посвящена экспериментальному исследованию зависимости электрического сопротивления, коэффициента теплопроводности и пористости, электропроводящих композиционных материалов (ЭКМ) системы «керамика-углерод» от содержания наноразмерных углеродных наполнителей и технологических режимов изготовления. Проанализированы аналитические зависимости удельного электрического сопротивления от деформированного состояния ЭКМ в рамках теории перколяции. Результаты экспериментальных исследований показали, что уменьшение дисперсности частиц электропроводящей фазы композита (использование нанопластинок графита вместо термически расширенного графита) позволяет значительно уменьшить гистерезис кривых зависимости электрического сопротивления от температуры при нагревании и охлаждении. Экспериментально подтверждено влияние изменения объема диэлектрической составляющей ЭКМ на электрическое сопротивление при изменении температуры в пределах 20–620 °С.
- Published
- 2017
9. Boundary concentration phenomena for the higher-dimensional Keller–Segel system
- Author
-
Oscar Agudelo and Angela Pistoia
- Subjects
Boundary concentration ,Applied Mathematics ,Dirac (video compression format) ,010102 general mathematics ,Rotational symmetry ,Boundary (topology) ,boundary layer ,01 natural sciences ,Domain (mathematical analysis) ,Quantitative Biology::Cell Behavior ,concentration phenomena ,010101 applied mathematics ,Bounded function ,Keller-Segel system, concentration phenomena, boundary layer ,Limit (mathematics) ,0101 mathematics ,Keller-Segel system ,Analysis ,Mathematics ,Mathematical physics ,Lyapunov–Schmidt reduction - Abstract
We study the existence of steady states to the Keller–Segel system with linear chemotactical sensitivity function on a smooth bounded domain in \(\mathbb {R}^N,\)\(N\ge 3,\) having rotational symmetry. We find three different types of chemoattractant concentration which concentrate along suitable \((N-2)\)-dimensional minimal submanifolds of the boundary. The corresponding density of the cellular slime molds exhibit in the limit one or more Dirac measures supported on those boundary submanifolds.
- Published
- 2016
10. Large mass boundary condensation patterns in the stationary Keller–Segel system
- Author
-
Manuel del Pino, Angela Pistoia, Giusi Vaira, del Pino, Manuel, Pistoia, Angela, and Vaira, Giusi
- Subjects
Boundary concentration ,Applied Mathematics ,010102 general mathematics ,Condensation ,Boundary (topology) ,Directional derivative ,01 natural sciences ,Domain (mathematical analysis) ,010101 applied mathematics ,Keller–Segel system ,Analysis ,Boundary layer ,Bounded function ,Boundary value problem ,0101 mathematics ,Mathematics ,Mathematical physics - Abstract
We consider the boundary value problem { − Δ u + u = λ e u , in Ω ∂ ν u = 0 on ∂ Ω where Ω is a bounded smooth domain in R 2 , λ > 0 and ν is the inner normal derivative at ∂Ω. This problem is equivalent to the stationary Keller–Segel system from chemotaxis. We establish the existence of a solution u λ which exhibits a sharp boundary layer along the entire boundary ∂Ω as λ → 0 . These solutions have large mass in the sense that ∫ Ω λ e u λ ∼ | log λ | .
- Published
- 2016
11. Effect of Grain Size on Grain Boundary Segregation Thermodynamics of Phosphorus in Interstitial-Free and 2.25Cr-1Mo Steels
- Author
-
Shenhua Song, Hong Si, Yu Zhao, and Kai Wang
- Subjects
lcsh:TN1-997 ,Materials science ,low-alloy steels ,Enthalpy ,Thermodynamics ,02 engineering and technology ,grain boundaries ,segregation ,segregation thermodynamics ,segregation energy ,Grain boundary diffusion coefficient ,General Materials Science ,lcsh:Mining engineering. Metallurgy ,Grain boundary strengthening ,Auger electron spectroscopy ,Boundary concentration ,020502 materials ,Metallurgy ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Grain size ,0205 materials engineering ,Sufficient time ,Grain boundary ,0210 nano-technology - Abstract
Several grain sizes were obtained by heat treatment at different temperatures for interstitial-free (IF) and 2.25Cr-1Mo steels. Samples of the steels with different grain sizes were aged at 600 and 680 °C for IF steel and 520 and 560 °C for 2.25Cr-1Mo steel for sufficient time to achieve their equilibrium grain boundary segregation. The grain boundary concentrations of phosphorus were examined using Auger electron spectroscopy. At the same aging temperature, the boundary segregation of phosphorus increased with increasing grain size. The effect of grain size on equilibrium grain boundary segregation thermodynamics was analyzed based on the information of both grain size and phosphorus boundary concentration. The segregation enthalpy increased with increasing grain size and simultaneously the segregation entropy became less negative. Moreover, the segregation entropy (∆S) and enthalpy (∆H) of phosphorus in both IF and 2.25Cr-1Mo steels exhibited a unified linear relationship, being expressed as ∆S = 0.85∆H − 38.06, although it segregated to different types of grain boundaries (ferrite grain boundaries in IF steel and prior austenite grain boundaries in 2.25Cr-1Mo steel). With the aid of the acquired thermodynamic parameters and grain boundary segregation theories, the equilibrium segregation concentrations at different aging temperatures were modeled under different grain sizes for both steels.
- Published
- 2017
- Full Text
- View/download PDF
12. On the integral technique for spherical growth problems
- Author
-
Chuang Yun-ken and Olaf Ehrich
- Subjects
Fluid Flow and Transfer Processes ,Physics ,Boundary concentration ,Transcendental equation ,Interface (Java) ,Mechanical Engineering ,Mathematical analysis ,Boundary (topology) ,Function (mathematics) ,Diffusion (business) ,Integral form ,Condensed Matter Physics - Abstract
The diffusion problems with moving boundary are formulated into a general integral form. Fundamental Green's function is used to derive a transcendental equation that gives readily the interface advancement, the concentration profile, and the boundary concentration of a growing sphere. Examples dealing with the diffusion-controlled spherical growth in finite and infinite regions are calculated and compared to the results available in the literature. Potential applications of this technique are briefly discussed.
- Published
- 1974
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.