1. Non-linear magnetic buoyancy instability and galactic dynamos
- Author
-
Qazi, Yasin, Shukurov, Anvar., Gent, Frederick. A., Tharakkal, Devika., and Bendre, Abhijit. B.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The magnetic buoyancy (MBI) and Parker instabilities are strong and generic instabilities expected to occur in most astrophysical systems with sufficiently strong magnetic fields. In galactic and accretion discs, large-scale magnetic fields are thought to result from the mean-field dynamo action, in particular, the $\alpha^2\Omega$. Using non-ideal MHD equations, we model a section of the galactic disc in which the large-scale magnetic field is generated by an imposed $\alpha$-effect and differential rotation. We extend our earlier study of the interplay between magnetic buoyancy and the mean-field dynamo. We add differential rotation which enhances the dynamo and cosmic rays which enhance magnetic buoyancy. We construct a simple 1D model which replicates all significant features of the 3D simulations. We confirm that magnetic buoyancy can lead to oscillatory magnetic fields and discover that it can vary the magnetic field parity between quadrupolar and dipolar, and that inclusion of the differential rotation is responsible for the switch in field parity. Our results suggest that the large-scale magnetic field can have a dipolar parity within a few kiloparsecs of the galactic centre, provided the MBI is significantly stronger the the dynamo. Quadrupolar parity can remain predominant in the outer parts of a galactic disc. Cosmic rays accelerate both the dynamo and the MBI and support oscillatory non-linear states, a spatial magnetic field structure similar to the alternating magnetic field directions observed in some edge-on galaxies., Comment: 13 pages, 2 tables,, 9 figures
- Published
- 2024