1. Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury
- Author
-
Bhattacharyay, Shubhayu, Rattray, John, Wang, Matthew, Dziedzic, Peter H, Calvillo, Eusebia, Kim, Han B, Joshi, Eshan, Kudela, Pawel, Etienne-Cummings, Ralph, Stevens, Robert D, Bhattacharyay, Shubhayu [0000-0001-7428-5588], Apollo - University of Cambridge Repository, Kim, Han B [0000-0001-5929-8444], Joshi, Eshan [0000-0001-5786-4078], Etienne-Cummings, Ralph [0000-0003-4445-973X], and Stevens, Robert D [0000-0001-5984-7837]
- Subjects
Male ,639/705/1042 ,Cerebrovascular disorders ,Statistical methods ,Critical Illness ,Science ,692/699/375/1370 ,Glasgow Outcome Scale ,Pilot Projects ,Brain injuries ,692/699/375/380 ,Severity of Illness Index ,Article ,692/617/375/534 ,Accelerometry ,Humans ,Author Correction ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,ComputingMilieux_MISCELLANEOUS ,692/699/375/1345 ,Neurovascular disorders ,Aged ,692/617/375/1345 ,Multidisciplinary ,Computational science ,Middle Aged ,631/114/2415 ,Stroke ,639/166/985 ,692/617/375/1370 ,Medicine ,Female ,692/617/375/380 ,692/699/375/534 ,Biomedical engineering - Abstract
Funder: Gates Cambridge Trust; doi: http://dx.doi.org/10.13039/501100005370, Funder: Office of the Provost, Johns Hopkins University; doi: http://dx.doi.org/10.13039/100012800, Our goal is to explore quantitative motor features in critically ill patients with severe brain injury (SBI). We hypothesized that computational decoding of these features would yield information on underlying neurological states and outcomes. Using wearable microsensors placed on all extremities, we recorded a median 24.1 (IQR: 22.8-25.1) hours of high-frequency accelerometry data per patient from a prospective cohort (n = 69) admitted to the ICU with SBI. Models were trained using time-, frequency-, and wavelet-domain features and levels of responsiveness and outcome as labels. The two primary tasks were detection of levels of responsiveness, assessed by motor sub-score of the Glasgow Coma Scale (GCSm), and prediction of functional outcome at discharge, measured with the Glasgow Outcome Scale-Extended (GOSE). Detection models achieved significant (AUC: 0.70 [95% CI: 0.53-0.85]) and consistent (observation windows: 12 min-9 h) discrimination of SBI patients capable of purposeful movement (GCSm > 4). Prediction models accurately discriminated patients of upper moderate disability or better (GOSE > 5) with 2-6 h of observation (AUC: 0.82 [95% CI: 0.75-0.90]). Results suggest that time series analysis of motor activity yields clinically relevant insights on underlying functional states and short-term outcomes in patients with SBI.
- Published
- 2021