17 results on '"hall-mhd"'
Search Results
2. Uniform regularity of fully compressible Hall-MHD systems
- Author
-
Jishan Fan and Yong Zhou
- Subjects
hall-mhd ,uniform regularity ,compressible ,Mathematics ,QA1-939 - Published
- 2021
3. Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces.
- Author
-
Liu, Lvqiao and Tan, Jin
- Subjects
- *
BESOV spaces , *MAGNETIC fields , *MAGNETOHYDRODYNAMICS - Abstract
We prove the global well-posedness of the Cauchy problem to the 3D incompressible Hall-magnetohydrodynamic system supplemented with initial data in critical Besov spaces that allowing for different integrability indices for the velocity field u and magnetic field b (and its current J), which generalize the result in [13]. Meanwhile, we analyze the long-time behavior of the solutions and get some decay estimates. Finally, a stability theorem for global solutions is established. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations
- Author
-
A. M. Alghamdi, S. Gala, and M. A. Ragusa
- Subjects
Hall-MHD ,regularity criterion ,Morrey space ,Besov space $\overset {\cdot }{B}_{\infty ,Mathematics ,QA1-939 - Abstract
In this work, we investigate the regularitycriterion for the solution of the Hall-MHD system in three-dimensions. It isproved that if the pressure $\pi $ and the gradient of magnetic field $%\nabla B$ satisfies some kind of space-time integrable condition on $[0,T]$,then the corresponding solution keeps smoothness up to time $T$. This resultimproves some previous works to the Morrey space $\overset{\cdot }{\mathcal{M}}_{2,\frac{3}{r}}$ for $0\leq r
- Published
- 2018
- Full Text
- View/download PDF
5. A regularity criterion for a new density-dependent Hall-MHD system.
- Author
-
Fan, Jishan, Wang, Liangwei, and Zhou, Yong
- Subjects
- *
POSITIVE systems , *TECHNICAL specifications - Abstract
Abstract This paper proves a regularity criterion for a new density-dependent incompressible Hall-MHD system with positive density. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. Regularity criteria for the wave map and related systems
- Author
-
Jishan Fan and Yong Zhou
- Subjects
Regularity criterion ,wave map ,liquid crystals ,Hall-MHD ,Mathematics ,QA1-939 - Abstract
We obtain some regularity criteria for the wave map, a liquid crystals model, and the Hall-MHD with ion-slip effect.
- Published
- 2016
7. On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system.
- Author
-
Weng, Shangkun
- Subjects
- *
VISCOUS flow , *ANALYTIC functions , *MAGNETOHYDRODYNAMICS , *MATHEMATICAL bounds , *DERIVATIVES (Mathematics) - Abstract
We address the analyticity and large time decay rates for strong solutions of the Hall-MHD equations. By Gevrey estimates, we show that the strong solution with small initial date in H r ( R 3 ) with r > 5 2 becomes analytic immediately after t > 0 , and the radius of analyticity will grow like t in time. Upper and lower bounds on the decay of higher order derivatives are also obtained, which extends the previous work by Chae and Schonbek (2013) [4] . [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
8. Space–time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations.
- Author
-
Weng, Shangkun
- Subjects
- *
SPACETIME , *ESTIMATION theory , *INCOMPRESSIBLE flow , *MAGNETOHYDRODYNAMICS , *HEAT equation , *MAGNETIC fields , *DERIVATIVES (Mathematics) , *INTERPOLATION - Abstract
In this paper, we address the space–time decay properties for strong solutions to the incompressible viscous resistive Hall-MHD equations. We obtained the same space–time decay rates as those of the heat equation. Based on the temporal decay results in [10] , we find that one can obtain weighted estimates of the magnetic field B by direct weighted energy estimate, and then by regarding the magnetic convection term as a forcing term in the velocity equations, we can obtain the weighted estimates for the vorticity, which yields the corresponding estimates for the velocity field. The higher order derivative estimates will be obtained by using a parabolic interpolation inequality proved in [22] . It should be emphasized that the magnetic field has stronger decay properties than the velocity field in the sense that there is no restriction on the exponent of the weight. The same arguments also yield the sharp space–time decay rates for strong solutions to the usual MHD equations. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
9. Uniform regularity for a density-dependent incompressible Hall-MHD system.
- Author
-
Fan, Jishan and Zhou, Yong
- Subjects
- *
POSITIVE systems , *MAGNETOHYDRODYNAMICS - Abstract
This paper proves uniform regularity for a density-dependent incompressible Hall-MHD system with positive density. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
10. Regularity criteria for the density-dependent Hall-magnetohydrodynamics.
- Author
-
Fan, Jishan and Ozawa, Tohru
- Subjects
- *
REGULAR functions (Mathematics) , *MAGNETOHYDRODYNAMICS , *MATHEMATICAL proofs , *EXISTENCE theorems , *INFINITY (Mathematics) , *MATHEMATICAL analysis - Abstract
Abstract: This paper proves two regularity criteria for the density-dependent Hall-MHD system with positive initial density. We also prove a global nonexistence result for initial density with a high decrease at infinity. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
11. Well-posedness for Hall-magnetohydrodynamics.
- Author
-
Chae, Dongho, Degond, Pierre, and Liu, Jian-Guo
- Subjects
- *
MAGNETOHYDRODYNAMICS , *LIOUVILLE'S theorem , *APPLIED mathematics , *MATHEMATICAL analysis , *STATISTICS , *MATHEMATICS theorems - Abstract
Abstract: We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
12. Interplay between turbulence and waves: large-scale helical transfer, and small-scale dissipation and mixing in fluid and Hall-MHD turbulence
- Author
-
Duane Rosenberg, Julia E. Stawarz, and Annick Pouquet
- Subjects
CASCADE ,Hall-MHD ,ACCELERATION ,01 natural sciences ,law.invention ,03 medical and health sciences ,Helicity ,law ,Intermittency ,0103 physical sciences ,RECONNECTION ,010303 astronomy & astrophysics ,General Environmental Science ,Physics ,0303 health sciences ,Science & Technology ,Turbulence ,MAGNETIC-FIELD ,CROSS-HELICITY ,Inverse cascades ,Mechanics ,Vorticity ,Dissipation ,Anatomy & Morphology ,Magnetic field ,Multidisciplinary Sciences ,Solar wind ,030301 anatomy & morphology ,Eddy ,SOLAR-WIND ,Waves ,General Earth and Planetary Sciences ,Science & Technology - Other Topics ,INTERMITTENCY ,Magnetic potential ,MAGNETOHYDRODYNAMIC TURBULENCE ,General Agricultural and Biological Sciences ,DYNAMO ACTION ,SELF-SIMILARITY - Abstract
Novel features of turbulent flows have been analyzed recently, for example: (1) the possibility of an ideal invariant, such as the energy, to be transferred both to the small scales and to the large scales, in each case with a constant flux; (2) the existence of non-Gaussian wings in Probability Distribution Functions of kinetic, magnetic, and temperature fluctuations, together with their gradients, thus displaying large-scale as well as small-scale intermittency; and (3) the linear dependence on the control parameter of the effective dissipation in turbulence when non-linear eddies and waves interact. We shall briefly review these results with examples stemming from Solar Wind data, the atmosphere and the ocean with either magnetic fields, stratification, and/or rotation. In a second part, we shall examine numerically the inverse cascades of magnetic and of generalized helicity for Hall-MHD in the presence of forcing. These helical invariants in the ideal non-dissipative case involve various cross-correlations between the velocity and vorticity, the magnetic field, and the magnetic potential. For an ion inertial length larger than the forcing scale, the effect of the waves is significant. It leads to an exponential attenuation of the inverse cascade to large scales, since, through the velocity and vorticity, small scales play an increasing dynamical role for a strong Hall current.
- Published
- 2020
13. Undercompressive shock waves in Hall-magnetohydrodynamics
- Author
-
V. D. Sharma and Triveni P. Shukla
- Subjects
Shock wave ,asymptotic method ,hall-MHD ,General Mathematics ,010102 general mathematics ,General Engineering ,nonlinear waves ,SCALAR CONSERVATION-LAWS ,NONCLASSICAL SHOCKS ,Mechanics ,01 natural sciences ,010305 fluids & plasmas ,evolution equation ,0103 physical sciences ,Evolution equation ,undercompressive shocks ,KINETIC RELATIONS ,0101 mathematics ,Magnetohydrodynamics ,BURGERS-EQUATION ,Mathematics - Abstract
We study the propagation of nonlinear waves in a Hall-magnetohydrodynamic model. An asymptotic method is used to derive the Gardner-Burgers equation for fast magnetosonic waves; here, the flux function is nonconvex with both quadratic and cubic nonlinearities, and the evolution equation involves both second- and third-order derivatives representing diffusion and dispersion terms, respectively. Effects of Hall parameter are discussed on the evolution of waves and their interaction by solving a pair of Riemann problems both analytically and numerically. It is shown that the Hall parameter is responsible for shock splittinga phenomenon that is completely absent in ideal magnetohydrodynamic; indeed, the Hall parameter plays a significant role in deciding about the structure of the solution that involves undercompressive shocks and their interaction with refracted waves and the Lax shocks. It is found that increasing Hall parameter means increasing dispersion that triggers the physical mechanism causing speed and strength of an undercompressive shock to increase and the wave-fan width to decrease; numerical solutions substantiate these features predicted by the analytical solution.
- Published
- 2018
- Full Text
- View/download PDF
14. 太陽風中を伝播する有限振幅磁気流体波動のヴラソフシミュレーション : Vlasov-Hall-MHDコードの開発
- Subjects
Parametric in stabilities ,Physics::Plasma Physics ,Solar wind ,Physics::Space Physics ,Alfven waves ,Vlasov simulation ,Hall-MHD - Abstract
Vlasov simulation is a method to solve time evolution of a plasma by directly time advancing the distribution function in the position-velocity phase space. Unlike conventional PIC (particle-in-cell)simulations using finite number of particles, the Vlasov simulation is free from thermal (numerical) noise, and thus is advantageous in analyzing fine details of nonlinear plasma phenomena. With this background in mind, we have developed a new Vlasov simulation code (1-d in space, 3-d in the velocity space), in order to study basic properties of nonlinear evolution of magnetohydrodynamic (MHD) waves in the solar wind. In contrast to traditional Vlasov simulations in which electron waves are of major concern, our simulation code focuses on solving plasma behavior around the ion scales, assuming the massless electron fluid. Since we mainly deal with low frequency MHD waves propagating quasi-parallel to the background magnetic field, cyclotron coupling can be assumed to be weak for parameters typical to the solar wind. Thus the Vlasov equation is solved only along the longitudinall direction whereas the MHD equations are solved for the transverse directions. Propagation of Alfven and ion acoustic waves in the simulation is shown to satisfy theoretically obtained dispersion relations. Some results on parametric decay instability of Alfven waves are also presented.
- Published
- 2008
15. Hall-MHD turbulence in a strong magnetic field
- Author
-
Martín, Luis N. and Dmitruk, Pablo
- Subjects
HALL-MHD ,MHD ,MAGNETOHIDRODINAMICA ,HALL EFFECT ,EFECTO HALL ,TURBULENCE ,MAGNETOHYDRODYNAMICS ,TURBULENCIA - Abstract
En términos generales existen dos perspectivas para modelar la dinámica de los plasmas. Por un lado están los modelos cinéticos y por el otro los modelos de medios continuos (o modelosde fluidos). La teoría cinética describe a los plasmas desde la naturaleza microscópicadel sistema. Las teorias de fluídos por otro lado describen de manera natural los fenómenos aescalas macroscópicas. La mayor complicación del estudio de la turbulencia magnetohidrodinámica (y también lahidrodinámica) es que es un problema de multiescalas. Los rangos de escala que están en losextremos (macro y micro) son claros dominios de una y otra teoría, sin embargo las escalas quese encuentran entre las escalas MHD y la escala de Kolmogorov (o de disipación) son un rangocontroversial al respecto. En esta tesis se introducen efectos cinéticos en la magnetohidrodinámica de medios continuos,a traves de modelos de dos fluidos que consideran la separación entre iones y electrones, En particular, se desarrolla un modelo aproximado de dos fluidos para plasmas con campomagnético fuerte que presenta importantes ventajas computacionales. El interes en el efectodel término Hall con campo magnético fuerte está motivado por las observaciones geofísicas,astrofísicas y la implementación tecnológica de confinamiento por medio de guías magnéticas. El primer paso consistió en testear el modelo aproximado frente al modelo Hall-MHDgeneral. Luego desarrollamos un estudio detallado que incluyó múltiples puntos de vista. Mostramos que el efecto Hall afecta los valores de las las magnitudes globales y sus tiemposcaracterísticos. La distribución de energía por escalas se ve también modificada, incrementándoseel rango de escalas disipativas. Se modifican las estructuras del flujo cambiando su formay tamaño en las escalas comprendidas entre el ion skin depth (o escala de Hall) y la escala de Kolmogorov. Se reduce la intermitencia espacial y la autosimilaridad del flujo se incrementatendiendo a lamonofractalidad. Se analiza el efecto sobre la formación y estructura de las hojasde corriente. Se analizan las propiedades estadísticas del flujo, en particular la fractalidad y elefecto sobre la dimensionalidad de las estructuras responsables de la disipación. Finalmente,extendemos los primeros efectos cinéticos mas allá del efecto Hall introduciendo la inerciaelectrónica y presentamos resultados preliminares que muestran que la masa electrónica afectala dinámica mas allá de los efectos del término Hall. There are broadly two approaches for modeling the dynamics of plasma. On one side arethe kinetic theory models and on the other continuum models (or fluid models). The kinetictheory describes the plasmas from a microscopic point of view. On the other hand, the fluidmodels describe phenomena at macroscopic scales. The major complication in the study of magnetohydrodynamic turbulence (and hydrodynamic)is that it is a multi-scale problem. The scale ranges that are at the extremes (macro andmicro) are clearly domains of one theory or the other, however, scales between MHD scale and Kolmogorov (or dissipation) scales are controversial. In this thesis we introduce the first kineticeffects into the continuous media magnetohydrodynamic description, considering a two-fluidmodel, which thakes into accounr the separation between ions and electrons. In particular, we develop an approximate model of two fluids for plasmas with a strongmagnetic fields, where variations along the direction of the magnetic field are smoother thantransverse variations. This approximate model shows imortant computational advantagesagainst the fully general tridimensional Hall MHD model. The interest in the effect of the Hall term in a strong magnetic field is in turn motivated by geophysical and astrophysicalobservations, and technological implementation of confinement through magnetic guides. The first step was to test the approximante model with the full general Hall-MHD model. We then developed a detailed study which included multiple points of view. We showed thatthe Hall effect affects the values global quantities and their characteristic times. It also modifiesthe distribution of energy among scales, increasing the range of dissipative scales. It affectsflow structures changing its shape and size between the ion skin depth (Hall scale) and Kolmogorov scale. The intermittency is reduced and self-similarity of the flow increases approachingmonofractality. We analyzed the effects on the formation and structure of currentsheets (important for the energy dissipation). We studied the statistical properties of the flow,particularly the fractality and the effect on the dimensionality of the structures responsible forthe dissipation. Finally, we extend the first kinetic effects beyond the Hall effect, considering electron inertiaand introduce preliminary results showing that the electronic mass affects the dynamicsbeyond the effects of the Hall term. Fil: Martín, Luis N.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
- Published
- 2013
16. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations
- Author
-
Daniel O. Gómez, Pablo Dmitruk, and L. N. Martin
- Subjects
Physics ,Física de los Fluidos y Plasma ,Turbulence ,Ciencias Físicas ,Isotropy ,FOS: Physical sciences ,purl.org/becyt/ford/1.3 [https] ,Hall-MHD ,MAGNETOHYDRODINAMIC ,Condensed Matter Physics ,Physics - Plasma Physics ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,purl.org/becyt/ford/1 [https] ,Hall effect ,Quantum electrodynamics ,Compressibility ,TURBULENCE ,RHMHD ,Magnetohydrodynamic drive ,Magnetohydrodynamics ,Anisotropy ,CIENCIAS NATURALES Y EXACTAS - Abstract
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model RHMHD derived by Gomez et al., Phys. Plasmas 15, 102303 2008 with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied. Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context. © 2010 American Institute of Physics. Fil: Martin, Luis Nicolas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Gomez, Daniel Osvaldo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
- Published
- 2010
17. Regularity criteria for the wave map and related systems
- Author
-
Jishan Fan and Zhou, Y.
- Subjects
Physics::Fluid Dynamics ,liquid crystals ,Physics::Plasma Physics ,lcsh:Mathematics ,Physics::Space Physics ,Regularity criterion ,wave map ,Hall-MHD ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,lcsh:QA1-939 - Abstract
We obtain some regularity criteria for the wave map, a liquid crystals model, and the Hall-MHD with ion-slip effect.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.