Razlog za nastanek mnogih bolezni je nenormalna ekspresija proteinov oziroma motnja v prenosu signalov, zato je ena izmed obetavnih metod zdravljenja nadzorovanje teh mehanizmov. Protein toplotnega šoka 90 (Hsp90) je pomemben in evolucijsko ohranjen šaperon, ki se v evkariontih izraža v povečani meri med celičnim stresom z namenom zmanjšanja celičnih poškodb. V celici je Hsp90 regulator genskega izražanja, proliferacije in celičnega cikla ter sodeluje pri dozorevanju več kot 300 proteinov, zato lahko opazimo, da motnje izražanja Hsp90 lahko povzročijo povečano izražanje proteinov, ki so induktorji patoloških stanj. S tem razlogom je Hsp90 postal pomembna tarča za razvoj zaviralcev, ki lahko s svojim delovanjem ustavijo zvijanje in dozorevanje številnih patoloških proteinov. Do danes so kar nekaj zaviralcev N-končne domene Hsp90 vrednotili v kliničnih študijah, vendar so razvoj večine, predvsem zaradi toksičnosti in aktivacije odziva toplotnega šoka, ustavili. V zadnjih dvajsetih letih se je po odkritju alosteričnega vezavnega mesta v C-končni domeni proteina veliko skupin usmerilo v razvoj alosteričnih zaviralcev, ki pa za razliko od N-končnih zaviralcev ne povzročajo aktivacije odziva toplotnega šoka in so v splošnem manj toksični. Ker še ni bilo eksperimentalno določene strukture Hsp90, ki bi imela kokristaliziran alosterični zaviralec C-končne domene, smo se odločili, da z računalniškimi metodami raziščemo model vezave, kar bi izboljšalo nadaljnje načrtovanje zaviralcev. Z uporabo računalniškega sidranja, simulacijami molekulske dinamike in uporabo zaviralcev, katerih aktivnost je poznana, smo predlagali model vezave nekaterih najaktivnejših učinkovin, kar da globlji vpogled v vezavni žep in interakcije, ki so pomembne za zaviralno aktivnost. Ker je vezavni žep v C-končnem delu zelo voluminozen, je raziskava potekala v dveh delih. Najprej smo se posvetili iskanju vezavnega mesta, v katerega se veže referenčna spojina TVS-21 in njeni analogi. Drugi del raziskav je bilo odkrivanje odnosa med strukturo in delovanjem spojin. Izbrali smo več spojin, tako aktivnih kot neaktivnih, ki smo jih sidrali v izbran vezavni žep. S tem smo želeli razložiti, kako posamezna modifikacija vpliva na model vezave sorodnih spojin. Spoznanja, ki smo jih pridobili z raziskovanjem vezav alosteričnih zaviralcev, nam bodo v prihodnje olajšala načrtovanje novih zaviralcev z močnejšim delovanjem na Hsp90. Zavedati se moramo, da so predlagani modeli le hipotetični in bi za podporo le teh potrebovali še rezultate eksperimentalnih metod, kot so testi mutageneze in/ali raziskave STD-NMR. Za nadaljnje raziskave in modifikacije bi bilo smiselno uporabiti spojino 8 kot referenčno spojino in referenčni model vezave. Many diseases are caused by abnormal protein expression or impaired signal transduction. Therefore, one of the promising targets for treatment of various diseases is to control these mechanisms. Heat shock protein 90 (Hsp90) is an important and evolutionarily conserved chaperone whose expression in eukaryotes increases during cellular stress in order to reduce cellular damage. Hsp90 is a cellular regulator of gene expression, proliferation, cell cycle and is responsible for maturation of over 300 proteins. It can be observed that dysregulation of Hsp90 expression can cause increased expression of proteins, which in turn are inducers of pathological conditions. For this reason, the protein has become an important target for the development of inhibitors that can, by acting on Hsp90, stop the folding of a wide range of pathological proteins. To date, quite a few inhibitors of the Hsp90 N-terminal domain have entered clinical trials, but most have been discontinued due to toxicity and heat shock response activation. In the last twenty years, following the identification of an allosteric binding site in the C-terminal domain of Hsp90, many groups have focused their research on the development of allosteric inhibitors, which unlike N-terminal inhibitors, do not activate the heat shock response and are generally less toxic. Since there has been no experimentally determined structure of Hsp90 co-crystallized with allosteric C-terminal domain inhibitor, we decided to use computational methods to determine the binding mode, which would improve further design of allosteric inhibitors. Using computational docking, molecular dynamics simulations, and a library of active compounds with known activities, we proposed a binding model of some of the most potent compounds that gives us a deeper insight into the binding pocket and interactions relevant to the inhibitory activity. Because the binding pocket in the C-terminal domain is very voluminous, the research was conducted in two parts, where we initially focused on locating the binding site where the reference active compound TVS-21 and its derivatives bind. The second part of the research was to establish structure-activity relationship of the previously prepared Hsp90 inhibitors. We selected several active and inactive compounds, which we docked in the selected binding pocket. With this, we wanted to explain how an individual modification affects the binding of related active compounds. The lessons learned from the research of the binding of allosteric inhibitors will enable the design of new compounds with improved activity in the future. However, we must be aware that the proposed models are only hypothetical and the results of experimental methods, such as site-directed mutagenesis and/or STD-NMR experiments, would be needed to support our findings. Compound 8 should be used as the reference compound and reference binding model for further research and optimisation.